计算机图像识别技术的发展现状与展望

合集下载

计算机图像识别技术的现状和改进建议

计算机图像识别技术的现状和改进建议

计算机图像识别技术的现状和改进建议计算机图像识别技术是近年来快速发展起来的技术之一,它已经在生产、医疗、安防等众多领域得到了广泛应用。

但是,当前的计算机图像识别技术还存在着一些问题,这些问题主要表现为准确度不高、鲁棒性差等方面,需要进一步加强改进。

首先,计算机图像识别技术目前的准确度仍然存在着不足。

尽管随着人工神经网络和深度学习技术的兴起,大大提升了识别效果,但是在特殊场景下,如图像分辨率较低、光线条件不好等情况下,计算机识别的准确率仍然很低。

为此,我们可以通过更多样化的数据集来训练识别模型,提高识别能力,同时可以考虑结合传统的计算机视觉技术,提高图像处理的能力和精度。

其次,计算机图像识别技术还需要提高其鲁棒性。

当前的图像识别技术主要依赖于特征提取和分类算法,并且容易受到噪声、照明等因素的影响,导致了识别错误率较高。

因此,我们可以通过继续改进特征提取和分类算法,应用更加灵活的机器学习方法,调整训练集来提高算法鲁棒性。

除此之外,深度学习等算法的学习过程中,也需要更多的数据来提高有效性和鲁棒性。

最后,为了进一步提高计算机图像识别技术的性能,我们还需要不断拓展它的应用领域。

除了医疗、安防和电商之外,还可以考虑将这一技术应用到农业、交通、环境监测等领域。

这些领域的识别需求更加特殊和多样化,可以从识别中获取更多有用的信息和数据。

同时,不断拓展应用领域还可以促进技术创新和发展,打开更多的商业机会。

综上所述,计算机图像识别技术在发展过程中,任重而道远。

在克服上述问题的同时,我们还需要加强算法研究,提高硬件设施的可用性,拓展应用领域,才能让计算机图像识别技术真正发挥出它所具备的优势。

计算机视觉技术的发展现状与未来趋势分析

计算机视觉技术的发展现状与未来趋势分析

计算机视觉技术的发展现状与未来趋势分析随着科技的进步和发展,计算机视觉技术在各个领域中的应用也越来越广泛。

计算机视觉技术是指通过计算机对图像或视频进行理解和处理的一种技术,其应用范围涵盖了人工智能、机器学习等诸多领域。

本文将从技术、应用和发展趋势三个方面来分析计算机视觉技术的现状和未来发展趋势。

一、技术发展现状计算机视觉技术的发展已经取得了很大的突破,目前在人脸识别、图像检索、目标检测等领域已经具备了相当的实用性。

例如,人脸识别技术已经广泛应用于安防领域、金融领域等,通过对人脸特征的提取和匹配,可以实现人脸的自动识别。

图像检索技术可以根据图像的内容进行相似图片的搜索,通过计算机视觉技术,可以在庞大的图像数据库中快速找到相似的图片。

目标检测技术可以实现对图像中目标的自动识别和定位,广泛应用于交通监控、无人驾驶等领域。

计算机视觉技术的核心是图像和视频的处理和理解。

随着硬件设备的升级和图像处理算法的不断优化,计算机视觉技术的实时性和准确性得到了大幅提升。

现如今,计算机可以通过深度学习算法对复杂的图像进行识别和分类,能够超越人眼在细节和准确性方面的表现。

二、应用领域的发展计算机视觉技术的应用领域越来越广泛,不仅仅局限于传统的安防、金融等领域。

如今,计算机视觉技术已经延伸到医疗、农业、智能交通等多个领域。

在医疗领域,计算机视觉技术可以帮助医生对疾病进行诊断和治疗。

通过对医学影像的分析,计算机可以快速准确地识别病灶,并给出相应的诊断建议。

在农业领域,计算机视觉技术可以监测和分析农作物的生长情况,帮助农民实现精准种植和施肥,提高农作物的产量和质量。

在智能交通领域,计算机视觉技术可以实现车辆和行人的自动识别和跟踪,为自动驾驶技术提供基础支持。

三、未来发展趋势随着技术的不断发展,计算机视觉技术的未来发展趋势也逐渐清晰。

首先,计算机视觉技术将进一步突破图像和视频处理的性能和准确度,提高对复杂场景的理解能力。

其次,计算机视觉技术将与其他技术相结合,实现更加智能化的应用。

计算机图像识别技术的发展现状与展望

计算机图像识别技术的发展现状与展望
1 . 引 言
图像处 理 , 是 利 用 计 算 机 对 图像 进 行 处 理 、 分 析和理解 。 以识 别 各 种 不 同模 式 的 目标 和 对 象 的 技 术 。 随 着 计 算 机 技 术 与 信 息 技 术 的发 展 。 图 像 识 别 技 术 获 得 了越 来 越 广 泛 的 应 用 。 例 如 医疗 诊 断 中各 种 医学 图 片 的分 析 与 识 别 、天 气 预 报 中 的 卫 星云 图识 别 、 遥感图片识别 、 指纹识别 、 脸谱识别 等 , 图像 识 别 技 术 越 来 越 多 地 渗 透 到 我 们 的 日常 生 活 中 。 2 . 计 算 机 图 像 处 理 技 术 发 展 及应 用 ( 1 ) 计算机 图像生 成 ; ( 2 ) 图像 传 输 与 图 像 通 信 ; ( 3 ) 高 清 晰度 电视 ; ( 4 ) 机 器 人 视 觉 及 图像 测 量 ; ( 5 ) 办 公 室 自动 化 ; ( 6 ) 图像 跟 踪 及 光 学 制 导 ; ( 7 ) 医用 图像 处 理 与 材 料 分 析 中 的 图像 分析系统 。 3 . 计 算 机 图 像 处 理 技 术 的 主 要 特 点
问题。
计 算 机 图像 处 理 后 的 图 像 一 般 是 给 人 观 察 和 评 价 的 , 因 此 受 人 的 因 素影 响较 大 。 4 . 计 算 机 图像 处 理 技 术 研 究 内容
4 . 1 主 要 内容 Nhomakorabea复 或 重 建 原 来 的 图像 。 ( 4 ) 图像分割 : 图像 分 割 是 将 图 像 中 有 意义 的特 征 部 分 提 取 出来 , 这 是 进 一 步 进 行 图像 识 别 、 分 析 和 理 解 的基 础 。 目前 已研 究 出不 少 边缘 提 取 、 区域 分 割 的方 法 , 但 还 没 有 一 种 普 遍 适 用 于 各 种 图像 的 有效 方 法 。 因此 , 对 图 像 分 割 的研 究 还 在 不 断 深 入 之 中 ,是 目前 图像 处 理 中 研究 的 热 点之一 。( 5 ) 图像描述 : 图像 描述 是 图 像 识 别 和 理 解 的 必 要 前 提 。作 为 最 简 单 的二 值 图像 可采 用其 几何 特性 描 述 物 体 的 特 性: 一 般 图像 的 描述 方 法 采 用 二 维 形 状 描 述 , 它 有边 界 描 述 和 区域 描 述 两 类 方 法 :对 于特 殊 的纹 理 图像 可 采 用 二 维 纹 理 特 征描 述 。 随 着 研 究 的 深 入 发展 , 已开 始进 行 三维 物 体 描 述 的 研 究. 提出体积描述 、 表 面 描述 、 广 义 圆柱 体 描 述 等 方 法 。 ( 6 ) 图 像分类 ( 识别) : 图 像 分 类 属 于 模 式 识 别 的范 畴 , 主 要 内 容 是 图 像 经 过某 些 预 处 理 后 , 进 行 图像 分 割 和 特 征 提 取 , 从 而 进 行 分 类。 图 像 分 类 常 采 用 经 典 的模 式 识 别 方 法 。 近年 来 新 发 展 起 来 的模 糊 模 式 识 别 和人 工 神 经 网 络 模 式 分 类 在 图 像 识 别 中越 来 越受 到重 视 。 4 . 2 未 来研 究 重 点 ( 1 ) 图像压缩 : 图像 压缩 分无 损 及 有 损 压 缩 两 类 。 无 损 压 缩 由 于其 压 缩 比有 一 定 的极 限 .所 以 目前 已 经 不 是 研 究 的 热 点. 大 家 的 研 究 主要 集 中 在有 损 压 缩 上 。 所谓 的有 损 压 缩 就 是 压缩 后 图像 的某 些 信 息 会 丢 失 。 ( 2 ) 三维重建 : 随 着 计 算 机 技 术的不断发展 . 在 产 品设 计 方 面 , 已从 平 面 向三 维 空 间 发 展 。 在地 图方 面 .延 续 千 年 的 平 面 地 图 已 有 被 三 维 电 子 地 图 取 代 的趋 势 。 另外 .三 维 重 建 在 考 古 研 究 方 面 也 有 不 可 替 代 的作 用, 将 把 考 古 学 推 上 一 个 新 台 阶 。( 3 ) 虚拟现实 : 计 算 机 的运 算 速度 发展 到今 天 , 已为 虚 拟 现 实 提 供 了 可能 。 网上 虚 拟 现 实 、 可 视 电话 及 会 议 系 统 [ 4 ] 等 方 面 的 发 展 与 应 用 为 数 字 图 像 处 理 技术 的发 展 提 供 了新 的机 遇 。 5 . 应 用 前 景 展 望 图像 是 人 类 获 取 和交 换 信 息 的 主 要 来 源 . 因此 , 图 像 处 理 的应 用领 域 必 然 涉 及 人 类 生 活 和 工 作 的 方 方 面 面 。随 着 科 学 技 术 的 不 断 发 展 .数 字 图 像 处 理 技 术 的 应 用 领 域 将 随 之 不 断 扩大。 数 字 图 像 处 理 技 术 未来 应用 领 域 主要 有 以下 七 个 方 面 : ( 1 ) 航 天航 空 技 术 方 面 ; ( 2 ) 生物 医学工程 方面 ; ( 3 ) 通 信 工 程 方面 ; ( 4 ) I业 工 程 方 面 ; ( 5 ) 军事公安方面 ; ( 6 ) 文 化 艺 术 方 面 的应 用 ; ( 7 ) 其 他 方 面 的应 用 。

图像识别技术的发展趋势分析

图像识别技术的发展趋势分析

图像识别技术的发展趋势分析图像识别技术是计算机视觉领域的一个重要研究方向,通过对图像进行处理和分析,使计算机能够识别和理解图像中的内容。

随着人工智能的快速发展,图像识别技术也迅猛进步,并在各个领域展现出广阔的应用前景。

一、深度学习驱动图像识别技术的崛起深度学习作为一种机器学习算法的变体,对图像识别技术的发展起到了革命性的作用。

传统的图像识别算法主要依赖于手工设计的特征提取方法,这种方法存在着先验知识选择的难题以及特征表示的局限性。

而深度学习通过构建具有很多层的神经网络,可以自动地从数据中学习到更具有代表性的特征,极大地提高了图像识别的准确率和鲁棒性。

二、图像识别技术在安防领域的应用随着社会的进步和经济的发展,人们对于安全问题的关注度不断提高,而图像识别技术在安防领域的应用则成为刚需。

先进的图像识别技术可以应用于监控摄像头中,通过对图像内容进行分析和识别,实现人脸识别、人体行为分析、异常行为检测等功能。

这些技术的应用可以大大提高监控系统的效能,实现智能化的安全监控。

三、图像识别技术在医疗领域的应用随着医疗科技的进步,图像识别技术在医疗领域也发挥了重要作用。

通过对医学影像图像的处理和分析,可以帮助医生准确诊断疾病、评估疾病的严重程度以及制定合理的治疗方案。

在乳腺癌、肺癌等常见疾病的早期诊断方面,图像识别技术可以提供辅助诊断的手段,帮助医生提高诊断准确率和敏感性。

四、图像识别技术在智能交通领域的应用智能交通系统是未来城市的发展方向之一,而图像识别技术在智能交通领域也有着广泛的应用前景。

例如,智能交通信号控制系统可以通过对交通图像进行分析,实时调整红绿灯的时间,优化交通拥堵情况。

同时,图像识别技术还可以实现车辆识别、行人识别、交通事故检测等功能,提高交通安全和效率。

五、图像识别技术的挑战与发展方向虽然图像识别技术已经取得了长足的发展,但仍然面临着一些挑战。

首先,大规模图像数据的获取和管理是一个难题,对于深度学习等算法来说,需要大量的标注图像数据进行训练才能取得良好的效果。

图像识别技术的发展现状与未来应用

图像识别技术的发展现状与未来应用

图像识别技术的发展现状与未来应用在当代科技领域中,图像识别技术的迅猛发展引起了全球的高度关注。

随着计算机视觉和人工智能的快速发展,图像识别技术正孕育着无限的潜力和广阔的应用前景。

本文将探讨图像识别技术的发展现状以及未来的应用领域。

一、图像识别技术的发展现状随着计算机计算能力的增强和数据存储技术的飞速发展,图像识别技术取得了突破性进展。

当前,图像识别技术主要基于深度学习和卷积神经网络,能够处理大量的图像数据,并从中提取特征信息。

图像识别技术不仅能够识别物体、场景、文字等基本元素,还能进行人脸识别、表情识别、光照识别等高级图像分析。

例如,人脸识别技术已广泛应用于安防领域。

通过图像识别技术,计算机可以识别出图像中的人脸,并与数据库中的信息进行比对,实现人脸身份的快速验证。

此外,图像识别技术还在医疗、交通、金融等行业中得到了广泛应用。

在医疗领域,图像识别技术可以帮助医生进行早期癌症检测;在交通领域,图像识别技术可以监控路况、车牌识别等;在金融领域,图像识别技术可以用于银行卡的识别和支付验证。

二、图像识别技术的未来应用随着科技的不断进步和社会的快速发展,图像识别技术的应用领域将不断拓展,未来的发展潜力巨大。

首先,图像识别技术在智能交通领域的应用前景广阔。

目前,许多国家正积极推进无人驾驶技术的研发和应用。

图像识别技术可以通过感知设备识别道路、交通标志和其他车辆,实现自动驾驶汽车的智能决策和行驶。

同时,图像识别技术还可以应用于交通事故监测、拥堵预测等方面,为城市交通管理和安全保障提供有效的技术支持。

其次,图像识别技术在医疗领域的应用也具有广阔前景。

随着人口老龄化的加剧和医疗资源的不均衡分布,图像识别技术可以帮助解决医疗领域的难题。

通过图像识别技术,医生可以对大量的医学影像数据进行自动分析和诊断,提高诊断准确率和效率。

此外,图像识别技术还可以应用于手术辅助、疾病预警等方面,为健康管理和疾病防控提供有力支持。

再次,图像识别技术在智能家居和智能工业领域也有广泛应用的前景。

图像识别的技术现状及展望

图像识别的技术现状及展望

图像识别的技术现状及展望摘要:本文对图像识别技术的应用现状进行了研究,分析了图像识别技术的优点和重要性,介绍了有关图像识别的内容和过程,对图像识别的重要内容和关键步骤进行了全面探讨,主要包括图像分割、分类和图像的匹配等内容,对各种算法的特点和图像识别技术在未来社会人工智能的发展方向进行了分析。

关键词:图像识别;技术现状;展望在社会经济不断发展的背景下,信息技术也得到了高速发展,图像识别技术在此背景下应运而生,它在我国各个领域中都有着非常广阔的发展空间,为了提高图像识别的应用效果,部分学者对图像识别过程等内容进行了研究,通过优化图像识别结构和关键步骤等方式,发挥了图像识别技术在社会经济中的价值,从而进一步完善我国的智能化体系。

一、图像识别技术发展背景如今,大数据时代的到来,给人们的生活和工作都带来便利,尤其移动互联网和智能手机的快速发展,带来了海量图片信息,相关研究发现,我国每天网上图片上传量约为6000万张。

在国内,微信朋友圈中也是以图片分享为驱动,由于这种方式不会受到地域和语言等多种因素的限制,所以图片逐渐取代了复杂和难以理解的繁琐和微妙的文字,成为网络信息发展的主流。

在用户读取信息的习惯上说,与文字相比,图片可以为用户提供更加生动和有趣的艺术感信息,丰富用户的想象力,还具有一定的降压效果。

在图片来源上说,智能手机为给我们的生活和工作带来了方便,其还具有拍摄和截屏等多种功能,可以帮助我们更快地用图片对具体的信息采集和记录。

目前,图片已经网络发展中的主要信息载体,但是它给人们带来便利的同时的,也会带来一定的问题。

当信息由文字记载的时候,用户能够通过关键词,对其中的内容进行搜索,然后轻易找到所需的内容,对其进行任意编辑。

但是,如果在此过程中,信息是由图片记载的时候,用户并不能对图片中的内容进行更好地检索,严重影响了用户在图片中找出关键内容的效率,这在一定程度上降低了我们的信息检索效率[1]。

这就需要加强对计算机图像识别技术的有效应用。

计算机图像识别技术的现状和改进建议

计算机图像识别技术的现状和改进建议

计算机图像识别技术的现状和改进建议1. 引言1.1 介绍计算机图像识别技术的发展计算机图像识别技术是一种利用计算机视觉技术和人工智能算法对图像进行分析、理解和识别的技术。

随着计算机技术的不断发展,图像识别技术已经取得了巨大的进步。

从最初简单的边缘检测、颜色识别到如今的物体识别、人脸识别等复杂任务,计算机图像识别技术已经成为人工智能领域的重要分支之一。

计算机图像识别技术的发展可以追溯到上世纪50年代,当时科学家们开始研究如何让计算机像人类一样“看到”图像。

随着深度学习和神经网络等算法的不断进步,计算机图像识别技术取得了突破性的发展。

如今,计算机图像识别技术已广泛应用于人脸识别、智能监控、医学影像分析等领域,为各行业带来了巨大的便利和效益。

随着人工智能技术的不断演进和应用需求的不断增加,计算机图像识别技术将继续发展壮大,为人类社会的进步和发展做出更大的贡献。

1.2 探讨现阶段计算机图像识别技术的应用范围现阶段计算机图像识别技术的应用范围非常广泛,涵盖了许多不同领域。

医疗领域是一个重要的应用领域之一。

医疗图像识别技术可以用于医学影像的自动分析和诊断,帮助医生准确快速地识别疾病病变。

智慧医疗领域也逐渐兴起,通过图像识别技术实现智能体征监测、智能病房管理等功能。

在交通领域,计算机图像识别技术被广泛应用于智能交通监控系统、智能驾驶辅助系统等方面。

这些系统可以通过识别交通标志、车辆、行人等信息,实现交通流量监测、交通事故预警等功能,提高交通安全性和效率。

零售行业也是计算机图像识别技术的重要应用领域之一。

通过智能货架、人脸识别支付等技术,实现对商品的实时监控和管理,提升购物体验和效率。

计算机图像识别技术的应用范围在不断扩大和深化,未来有望在更多领域发挥重要作用。

2. 正文2.1 现阶段计算机图像识别技术的主要方法1.传统机器学习方法:传统的图像识别方法主要包括特征提取、特征匹配和分类器等步骤。

特征提取通常采用SIFT、HOG等算法,特征匹配则利用模式识别技术进行匹配,最后通过分类器对图片进行分类识别。

人工智能图像识别技术的发展现状与未来趋势分析

人工智能图像识别技术的发展现状与未来趋势分析

人工智能图像识别技术的发展现状与未来趋势分析近年来,人工智能技术的快速发展引起了全球范围内的广泛关注。

其中,图像识别技术作为人工智能技术的重要应用领域之一,也成为了各行各业的研究和发展热点。

本文将围绕人工智能图像识别技术的发展现状和未来趋势进行深入分析。

人工智能图像识别技术的发展现状可以追溯到上世纪50年代,但多数进展仍然发生在最近几年。

随着深度学习技术的崛起,图像识别技术取得了重大突破。

深度学习的一个重要方法是卷积神经网络(CNN),它通过构建复杂的层级结构和特征提取器,使得计算机可以像人类一样识别和理解图像。

凭借CNN的强大处理能力,图像识别的准确度和效率得到了极大提升,应用场景也日益丰富。

目前,人工智能图像识别技术已经在许多领域得到广泛应用。

在医疗领域,图像识别技术可以用于疾病诊断和治疗计划的制定。

医生可以通过计算机辅助诊断系统,快速准确地识别出X光、CT和MRI等图像中的异常病灶,从而提高疾病的检测率和治疗效果。

在交通管理领域,图像识别技术可以用于智能交通监控和违法行为的识别。

基于监控摄像头的图像识别系统能够准确判断交通违法行为,并及时发出警示,提高交通管理的效率和安全性。

此外,人工智能图像识别技术还广泛应用于智能家居、智能安防等领域,为人们的生活带来了更多便利和安全保障。

未来,人工智能图像识别技术的发展将朝着更加准确和高效的方向发展。

一方面,随着硬件技术的不断进步,处理图像的计算机的算力不断增强,更多复杂的算法和模型可以被应用和实现。

这将进一步促进图像识别的准确度和速度的提高。

同时,随着数据量的不断增加,人工智能图像识别技术还将更好地应对大规模数据的处理和分析。

另一方面,人工智能图像识别技术将强化与其他技术的融合,实现多领域的应用。

例如,与语音识别技术的结合可以实现人机交互的智能化,与虚拟现实技术的结合可以创造更加沉浸式的体验。

这些技术的融合将进一步拓展图像识别技术的应用场景。

然而,人工智能图像识别技术的发展也面临一些挑战和难题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机图像识别技术的发展现状与展望
摘要:计算机图像处理技术与国民经济发展有着密切的关系,在这一领域我们要力争赶上直至超过发达国家,在计算机图像处理技术的研发方面,必须随时掌握国际动态,才能把握好方向。

关键词:计算机图像识别
前言:人类在社会实践活动中,是通过身体各感觉器官来接受信息,感知世界的,其中80%左右的信息是通过视觉系统获取的,人眼将获得的图像送大脑处理后并据此作出反映。

在已经进入信息时代的今天,如何快速有效地获得所需要的信息,将直接影响到人们的思维和决策。

毫无疑问,通过图像是我们获得信息的重要途径,而对图像的处理技术先进与否将决定其价值,利用计算机进行图像处理可以使我们快速准确地获得所需信息。

可喜的是,随着计算机技术的不断发展,图像处理技术已经发生了很大发展,让我们的生产生活进入了丰富多彩的时代,我国在计算机图像处理技术上还需要下很大的力气,才能赶上时代的步伐。

本文将就计算机图像处理技术的发展历程及趋势作些探讨。

1 计算机图像处理
计算机图像处理是将图像信号转换成数字信号并利用计算机对其进行处理。

由于计算机的处理速度及快,且数字信号具有失真小、易保存、易传输、抗干扰能力强等特点,因而计算机图像处理的应用十分广泛,包括航空、航海、航天、遥测技术、工业自动化检测、安全识别、娱乐等各大领域。

2 计算机图像处理技术的发展历程
二十世纪20年代 Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到3个小时之内。

50年代,在美国出现了以电子管计算机配合滚筒式、平板式绘图仪等仅具有输出功能的设备的图像处理。

60年代至70年代,计算机图像处理技术得到了快速发展,计算机图像处理已经可以用来改善图像质量,或是从图像中获得有效信息,并且能对图像进行体积压缩,便于传输和保存。

此时的计算机图像处理已经就用到了卫星遥感、医学等方面。

1964年美国喷气推进实验室对航天探测器徘徊者7号发回的月球照片由计算机进行图像处理,成功地绘制出月球表面地图,为人类探索宇宙奥妙奠定
了基础;1972年由英国工程师发明的用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。

其基本原理是根据人的头部截面的投影,经计算机处理来重建截面图像,由此而打开了人类医学的新大门。

由于计算机图像处理是以计算机软硬件为基础的,所以计算机图象处理技术真正大发展是在八十年代后,随着计算机技术的高速发展而迅猛发展起来。

时至今日,计算机图象处理在医疗卫生、通讯、交通运输、办公自动化、地球物理、大气环境、卫星遥感及工业自动化领域的应用越来越多,大到科研、国防军事,小至人们生产生活的方方面面。

现在人们可以实现声音、文字、图像相结合的多媒体通讯。

具体地讲是将电话、电视和计算机技术综合在数字通信网上进行信息传输,其中以图像处理和传输最为复杂和困难,此问题正在被解决;在工业和工程领域中计算机图像处理技术也有着广泛的应用,如自动装配线中检测零件的质量,印刷电路板疵病检查等;在军事方面计算机图像处理和识别已用于导弹的精确末制导,各种侦察照片的判读等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等;在文化艺术方面,目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,文物资料照片的复制和修复,运动员动作分析和评分等等。

3 计算机图像处理技术的未来
计算机图像处理技术未来发展大致可归纳为:
(1)计算机图像处理的发展将向高清晰度及实时图像处理的理论及技术研究,高速传输、高分辨率、三维成像或多维成像、多媒体化、智能化等方向发展。

(2)应致力于将图像处理的功能集成固化在芯片上,使应用更方便。

(3)更新的理论研究与更快的算法研究。

在图像处理领域,近几年来,引入了一些新的理论并提出了一些新的算法,如小波分析(Wavelet)、分形几何(Fractal)、形态学(Morphology)、遗传算法(GA, Genetic Algorithms)、人工神经网络等(Artificial neural networks)。

这些理论及算法,将会成为今后图像处理理论与技术的研究热点。

(4) 我国计算机图像处理技术现状
经过多年的发展,特别是改革开放30年来,我国在计算机图像处理技术上有了突飞猛进的发展,相关研究部门机构已取得了丰硕的成果,在理论研究和实践应
用上已逐步赶上或接近发达国家的水平:在数据获取能力方面,成功研制出了一系列传感器,发射了众多对地观测卫星,组成了风云、海洋、资源和环境减灾四大民用系列对地观测卫星体系;采集了大量影像数据,可以覆盖全国陆地、海域以及周边国家和地区一千多万平方公里的地球表面;组建起了多学科多门类交叉研究的队伍,在理论研究、硬件研发、软件开发方面投入了大量人力物力并取得了众多成果;建立了较为完善的科学管理制度及标准规范。

虽然我们现在还有很多工作要做,但随着国民经济的进一步发展,我们在计算机图像处理这一领域将有能力有实力赶上甚至超过发达国家,走在世界前列,计算机视觉是一门用计算机实现或模拟人类视觉功能的新兴学科,其主要研究目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力不仅包括对三维环境中物体形状、位置、姿态、运动等几何信息的感知,而且还包括对这些信息的描述、存储、识别与理解。

目前,计算机视觉已在人类社会的许多领域得到成功应用。

例如,在图像、图形识别方面有指纹识别、染色体识字符识别等;在航天与军事方面有卫星图像处理、飞行器跟踪、成像精确制导、景物识别、目标检测等;在医学方面有图像的脏器重建、医学图像分析等;在工业方面有各种监测系统和生产过程监控系统等。

应用前景展望是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。

随着科学技术的不断发展,数字图像处理技术的应用领域也将随之不断扩大。

数字图像处理技术未来应用领域主要有以下七个方面:数字图像处理技术在航天航空技航天航空技术方面!术方面的应用,除对月球、火星照片的处理之外另一方面JPL是在飞机遥感和卫星遥感技术中。

图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面上空时,再高速传送下来,然后由处理中心分析判读。

这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。

现在世界各国都在利用各类卫星所获取的图像进行资源调查、灾害检测、资源勘察、农业规划、城市规划。

在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。

数字图像处理技术在生物医学工生物医学工程方面"技术之外,还有程方面的应用十分广泛,且很有成效。

除了CT一类是对医用显微图像的处理分析,如染色体分析、癌细胞识别等。

4 人工智能的发展潜力巨大
人工智能作为一个整体的研究才刚刚开始,离我们的目标还很遥远,但人工智能在某些方面将会有大的突破。

(1)自动推理是人工智能最经典的研究分支,其基本理论是人工智能其它分支的共同基础。

一直以来自动推理都是人工智能研究的最热门内容之一,其中知识系统的动态演化特征及可行性推理的研究是最新的热点,很有可能取得大的突破。

(2)机器学习的研究取得长足的发展。

许多新的学习方法相继问世并获得了成功的应用,如增强学习算法、reinforcement learning等。

也应看到,现有的方法处理在线学习方面尚不够有效,寻求一种新的方法,以解决移动机器人、自主agent、智能信息存取等研究中的在线学习问题是研究人员共同关心的问题不久。

(3)自然语言处理是AI技术应用于实际领域的典型范例,经过A I研究人员的艰苦努力,这一领域已获得了大量令人瞩目的理论与应用成果。

许多产品已经进入了众多领域。

智能信息检索技术在Internet技术的影响下,近年来迅猛发展,已经成为了AI的一个独立研究分支。

由于信息获取与精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将A I技术应用于这一领域的研究是人工智能走向应用的契机与突破口。

从近年的人工智能发展来看,这方面的研究已取得了可喜的进展。

人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术的发展方向。

今天,已经有很多人工智能研究的成果进入人们的日常生活。

将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

参考文献:
[1]李红俊韩冀皖数字图像处理技术及其应用计算机测量与控制
2002.10(9).
[2]W.K.Pratt.DIGITALIMAGEPROCESSING.John wiley& Sons,inc.,1978.
杨枝灵王开数字图像获取、处理及实践应用人民邮VisualC++ .
[3]电出版社,聂颖刘榴娣数字信号处理器在可视电话中的应用光电工程. 2003.。

相关文档
最新文档