流体动力学基本原理
流体力学的基本原理和应用

流体力学的基本原理和应用流体力学是研究流体运动规律和性质的科学,它涉及了广泛的领域和应用。
本文将从流体力学的基本原理和应用角度探讨这一领域。
一、流体的性质流体是一种没有固定形状的物质,包括液体和气体。
流体具有两个基本性质:可压缩性和流动性。
1. 可压缩性流体的分子间距离较大,可以因为外力的作用而发生压缩变化。
液体的可压缩性较小,而气体的可压缩性较大。
2. 流动性流体的分子之间没有规则排列,可以自由流动。
流体的流动性是流体力学研究的核心内容。
二、流体力学的基本原理流体力学的基本原理主要包括质量守恒定律、动量定律和能量守恒定律。
1. 质量守恒定律质量守恒定律是指在一个封闭系统中,质量不会凭空产生或消失,质量的总量保持不变。
该定律在流体运动中起到了至关重要的作用。
2. 动量定律动量定律描述了流体在受力作用下的运动规律。
根据牛顿第二定律,流体受力等于质量乘以加速度。
通过运用动量定律,可以计算出流体的速度、压强等相关参数。
3. 能量守恒定律能量守恒定律是指在一个封闭系统中,能量的总量保持不变。
流体力学中的能量可以包括内能、动能和势能等。
能量守恒定律可以用来研究流体的热力学性质和能量转化过程。
三、流体力学的应用流体力学的原理和方法被广泛应用于各个领域。
以下是几个常见的应用领域:1. 水力工程水力工程是应用流体力学原理和方法研究和设计涉及水流运动的工程。
例如水坝、水电站和水管网络等都离不开流体力学的理论支持。
2. 空气动力学空气动力学是研究飞行器在空气中运动的科学。
它涉及了空气的流动、阻力和升力等问题,为飞机、火箭等航空器的设计提供了重要的依据。
3. 石油工程石油工程涉及到油气的开采、储存和运输等过程,流体力学的原理在研究油气井、油藏和油气管道等方面起到了至关重要的作用。
4. 生物医学工程流体力学在生物医学工程中的应用主要涉及血液流动、心血管系统和呼吸系统等生物流体的研究。
这些研究对于人类健康和医疗设备的设计都具有重要意义。
化工原理——流体动力学

由于u1<<u2,可略去
所以 u2
2 p pa
u C0
2 p pa
此例说明压强能向动能转换。
→发动机汽化器/喷雾器
p1 u12 p2 u22
22
伯努利方程应用小结:
l 应用条件:连续不可压缩流体作定态流动; l伯努利方程反映了定态流动时,流体状态参数随 空间位置的变化规律,也反映了流动流体的能量转 换关系。 l 应用时注意事项: ① 选取考察截面:均匀流定态段,垂直流向,只有 一个未知数; ②位能:位能基准面的选取,管中心或容器液面; ③压强基准可取绝对真空也可取大气压,但方程两 边应统一; ④容器液面处动能项可忽略。
理想流体截面速度分布均匀(各流线动能相等)
所以上述方程由沿流线推广为理想流体管流机械能守恒
式。(1、2表示同一时间两均匀流截面)
实际流体管流的机械能衡算 a. 与理想流体的差别 •实际流体0,流动时为克服摩擦力要消耗机械能,故 机械能不再守恒。
•均匀流段截面上,各点的动能不等,u2 沿r方向有个分布。 2
无内摩擦, 无能量损失 实际流体: 粘性流体0,有速度分布, 有能量损失。
研究范围:整个流场(管流)
工程处理: 理想流体沿轨线伯努利方程 实际流体沿管流 修正: a. 引入定态流动条件:流线=轨线 b. 引入均匀流条件:均匀流段截面上各点的总势 能相等。 均匀流:各流线都是平行直线并与截面垂直,定态 条件下该截面上的流体没有加速度。
P1
u12 2
P2
u2 2 2
hf
不计阻力损失,u1A1=u2A2,u12<<u22 所以
u22 P1 P2 Rgi
2
u2
2Rgi
流体静力学和流体动力学的比较

流体静力学和流体动力学的比较流体静力学和流体动力学是研究流体行为的两个重要分支领域。
两者虽然都与流体有关,但在研究的对象、方法以及应用方面存在一些差异。
本文将对流体静力学和流体动力学进行比较,并探讨它们在不同领域中的应用。
一、流体静力学流体静力学是研究静止流体的力学性质和运动规律的学科。
它主要研究流体在静止状态下的压力、密度、体积和表面张力等特性,并运用压力定律和浮力原理等基本原理来解释流体的行为。
1. 定义:流体静力学是研究物质在静止状态下的压力和力的分布情况,即研究流体静力平衡的学科。
2. 基本原理:流体静力学基于压力定律和浮力原理。
根据压力定律,流体内部各点的压力相等;根据浮力原理,物体在液体中会受到向上的浮力,浮力的大小等于被液体排开的液体重量。
3. 应用:流体静力学在多个领域有着广泛的应用,如建筑工程中的水压力计算、水坝设计中的压力分析、气象学中的大气压强测量等。
二、流体动力学流体动力学是研究流体在运动状态下的力学性质和运动规律的学科。
它主要研究流体在受力作用下的流动、速度分布、压力变化等特性,并运用质量守恒定律、动量守恒定律和能量守恒定律等基本方程来描述和解释流体的行为。
1. 定义:流体动力学是研究流体力学问题中流体的粘性、压力、密度、流速、温度等物理量变化规律的学科。
2. 基本原理:流体动力学基于质量守恒定律、动量守恒定律和能量守恒定律。
质量守恒定律指出,流体以不可压缩或可压缩形式在闭合系统中质量保持不变;动量守恒定律表明,系统中受到的总力等于流体流出力和外力之和;能量守恒定律指出,流体在流动过程中能量的总和保持不变。
3. 应用:流体动力学在工程学、天文学、气象学等领域有广泛的应用。
例如,航空航天领域中的飞行器气动性能分析、地质学中的地下水流动模拟、化学工程中的流体混合与传热等。
流体静力学和流体动力学虽然在研究流体行为的过程中使用了不同的理论和方法,但二者之间也存在一定的联系和共性。
流体动力学基本原理的内容及成立条件

流体动力学基本原理的内容及成立条件一、流体动力学的基本概念流体动力学是研究流体在运动中所表现出来的各种力学现象的科学。
它是研究流体的物理性质、运动规律和应用的基础。
流体包括气体和液体,其特点是没有固定的形状,在受到外力作用时能够变形。
二、流体动力学基本方程1.连续性方程连续性方程描述了质量守恒原理,即在任意给定时刻,单位时间内通过任意给定截面积内的质量保持不变。
2.动量守恒方程动量守恒方程描述了牛顿第二定律,即物体受到外力作用时会发生加速度变化。
3.能量守恒方程能量守恒方程描述了能量守恒原理,即系统内总能量保持不变。
三、成立条件为了使上述基本方程成立,需要满足以下条件:1.连续性假设:假设流体是连续不断的介质,在微观尺度下不存在空隙或孔隙。
这个假设在实际应用中通常是成立的。
2.牛顿第二定律适用:流体的运动速度相对于光速较慢,所以牛顿第二定律可以适用于流体运动。
3.稳态假设:假设流体的物理状态在空间和时间上是恒定不变的。
这个假设在实际应用中通常是成立的。
4.不可压缩性假设:假设流体密度不随时间和位置而变化。
这个假设在实际应用中通常是成立的。
5.粘性效应:粘性是流体内部分子之间相互作用力导致的,它会影响流体的运动规律。
当流体处于高速运动状态时,粘性效应可以忽略不计;但当流体处于低速运动状态时,粘性效应就会显著影响流体运动规律。
四、结论综上所述,流体动力学基本原理包括连续性方程、动量守恒方程和能量守恒方程。
为了使这些基本方程成立,需要满足一定条件,如连续性假设、牛顿第二定律适用、稳态假设、不可压缩性假设以及粘性效应等。
这些基本原理和条件对于研究流体的物理性质、运动规律和应用具有重要意义。
第三章 流体动力学基础

1、在水位恒定的情况下: (1)A®A¢不存在时变加速 度和位变加速度。 (2)B®B¢ 不存在时变加速 度,但存在位变加速度。 2、在水位变化的情况下: (1)A®A¢ 存在时变加速度, 但不存在位变加速度。 (2)B®B¢ 既存在时变加速 度,又存在位变加速度。
图3-19
第二节 流体质点运动特点和有旋流
图3-13
非均匀流——流线不是平行直线的流 动, 。 非均匀流中流场中相应点的流速大 小或方向或同时二者沿程改变,即沿流 程方向速度分布不均。例:流体在收缩 管、扩散管或弯管中的流动。(非均匀 流又可分为急变流和渐变流)
4.渐变流与急变流
非均匀流中如流动变化缓 慢,流线的曲率很小接近平行, 过流断面上的压力基本上是静 压分布者为渐变流(gradually varied flow),否则为急变流。
图3-17
(3)三元流
三元流(threedimensional flow):流动 流体的运动要素是三 个空间坐标函数。例 如水在断面形状与大 小沿程变化的天然河 道中流动,水对船的 绕流等等,这种流动 属于三元流动。(图 3-18)
图3-18
三.描述流体运动的方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以 流场中每一流体质点作为描述流体运动 的方法,它以流体个别质点随时间的运 动为基础,通过综合足够多的质点(即 质点系)运动求得整个流动。——质点 系法
一、流体质点的运动 特点 刚体的运动是由 平移和绕某瞬时轴 的 转动两部分组成,如 图3-20(a)。
图3-20(a)
流体质点的运动, 一般除了平移、转 动外,还要发生变 形(角变形和线变 形),如图3-20(b)。
图3-20(b)
二、角速度的数学表达式 流体质点的旋转用角速度表征,习 惯上是把原来互相垂直的两邻边的角速 度平均值定义为该转轴的角速度。
流体力学的基本原理

流体力学的基本原理流体力学是研究流体静力学和流体动力学的学科,旨在了解和分析流体的行为和特征。
它的研究对象包括气体和液体,在工程学、物理学和地球科学等领域都有着广泛的应用。
本文将探讨流体力学的基本原理,以期帮助读者全面了解这一领域的知识。
一、流体力学的基本概念流体力学研究的是流体的运动,而流体的运动可以分为两种情况:一种是静态流体,即流体处于静止状态;另一种是动态流体,即流体具有速度场分布的运动状态。
流体力学通过数学方法和实验研究对流体的运动行为进行预测和描述。
二、连续介质假设在进行流体力学的研究中,我们通常采用连续介质假设。
连续介质假设认为流体是由无数微观粒子组成的,这些粒子之间的相互作用力可以忽略不计。
基于这个假设,我们可以应用微分方程和积分方程进行流体的运动描述和分析。
三、质量守恒定律质量守恒定律是流体力学中的基本原理之一。
根据这一定律,一个封闭系统内的质量总是不变的。
换句话说,对于一个流体流动系统来说,流入系统的质量必须等于流出系统的质量。
这个原理被广泛应用于流体力学中的流量分析和控制。
四、动量守恒定律动量守恒定律是另一个重要的流体力学基本原理。
它描述了流体中动量的守恒关系。
根据动量守恒定律,流体在受到外力作用时会产生加速度,并且流体内各点之间的压力差会引起流体的运动。
这个原理在研究流体力学中的压力分布、速度场和流体流动方向等方面起着重要作用。
五、能量守恒定律能量守恒定律是流体力学的另一个基本原理。
根据这一定律,流体在运动过程中能量总是守恒的。
能量守恒定律可以用来描述流体在不同状态中的能量变化和转化。
例如,在研究流体的产热和传热过程中,我们可以利用能量守恒定律来分析和计算。
六、流体力学的应用流体力学的研究不仅仅是理论分析,还有着广泛的应用价值。
在建筑工程中,流体力学可以用于分析和设计水力结构,例如水坝和水渠。
在航空航天工程中,流体力学可以用于研究和改进飞机和火箭的气动性能。
在地球科学中,流体力学可以用来模拟大气和海洋的环流系统,以及地球内部的岩浆运动。
流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。
本文将介绍流体的性质以及流体力学的基本原理。
一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。
流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。
流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。
2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。
而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。
3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。
流体中的每一点都承受来自其周围流体的压力。
4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。
当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。
二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。
以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。
流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。
2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。
它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。
贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。
3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。
对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。
流体运动的动力学定律

流体运动的动力学定律流体运动是自然界中一种常见的现象,它涉及到许多物理定律和原理。
在流体力学领域,有一些基本的动力学定律可以帮助我们理解和描述流体运动的规律。
本文将介绍一些重要的流体力学定律,并探讨其应用。
1. 质量守恒定律质量守恒定律是流体力学中最基本的定律之一。
它表明在任何封闭系统中,质量是不会被创造或者消失的,只会发生转移或者转化。
在流体运动中,质量守恒定律可以用以下公式表示:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是单位体积内的质量,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示散度运算符。
这个方程表明质量的变化率等于流入和流出的质量之差。
2. 动量守恒定律动量守恒定律是描述流体运动中动量守恒的重要定律。
它可以用以下公式表示:ρ(∂v/∂t + v·∇v) = -∇P + ∇·τ + ρg其中,P是压力,τ是应力张量,g是重力加速度。
这个方程表明流体的动量变化率等于压力梯度、应力梯度和重力之和。
3. 能量守恒定律能量守恒定律是描述流体运动中能量守恒的基本定律。
它可以用以下公式表示:ρC(∂T/∂t + v·∇T) = ∇·(k∇T) + Q其中,C是比热容,T是温度,k是热导率,Q是单位体积内的热源。
这个方程表明流体的能量变化率等于热传导、热源产生和流体运动对温度的影响之和。
4. 流体静力学定律流体静力学定律描述了静止流体中的压力分布和压力的传递规律。
根据这个定律,静止流体中的压力在任何方向上都是相等的,并且压力沿着流体中的任意路径传递。
这个定律可以用来解释液体中的浮力现象和液体的压强。
5. 流体动力学定律流体动力学定律描述了流体运动中的压力分布和流速的关系。
根据这个定律,流体中的压力随着流速的增加而减小,在流速较大的地方压力较低,在流速较小的地方压力较高。
这个定律可以用来解释流体在管道中的流动、喷泉的原理等。
综上所述,流体运动的动力学定律是研究流体力学的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非惯性坐标系问 题与惯性坐标系问题 相比,关键在于质量 力不同。在惯性坐标 系中质量力用 f表示, 比较简单,如重力场 中 f =-gk。在非惯性 系中,质量力应包括 附加惯性力:
7
f f ao ωr ωωr 2ω V
带负号的四项依次是: 平移惯性力, 旋转切向惯性力, 旋转向心惯性力, 哥氏惯性力。 单位质量的惯性力是 加速度的量纲。
g 2g
ggg
16
工程流体力学 Engineering Fluid Mechanics
第4章 流体动力学基本原理
§4.8 动量矩守恒原理—动量矩方程
积分形式动量矩方程
输运公式为
dN dt
t
nd
A
nn VdA
n r V, N r Vd n表示单位质量流体的动量矩;
N 为整个系统内流体的动量矩。
H0
根据上式可建立定常不可压伯努利方程
p
g
V 2
2g
z 2r2 2g
H0
p1
g
V12
2g
z1
2 r12 2g
p2
g
V22
2g
z2
2r22 2g
15
直线等加速运动坐标系中沿流线的动量方程
在此非惯性系中,质量力需附加惯性力项,其在流线方向的 分量可由下式得到:
ao axi ay j azk
工程流体力学
(第四章 流体动力学基本原理)
哈尔滨工程大学 动力与能源工程学院
1
工程流体力学 Engineering Fluid Mechanics
第4章 流体动力学基本原理
§4.6 流线法向动量方程
伯努利方程表达了沿流线方向的压力,速 度等的变化规律,现在我们讨论垂直于流线方 向的压力速度变化关系问题。为此我们换一种 思考问题途径,即直接对流体质点运用牛顿第 二定律建立方程。
如图示,最一般的非
惯性坐标系o′x′y′z′相对 于惯性坐标系oxyz作下 列运动;坐标原点o′的 平移运动,ro′是 t 的函 数;坐标系绕某轴作 旋转运动,而且可能
是变角速度的旋转运
动,ω是 t 的函数。
6
工程流体力学 Engineering Fluid Mechanics
§4.7 非惯性坐标系中的动量方程
3
因为
drdAV 2 ( p dp)dA pdA dW cos
r
cos dz
dr
dW gdrdA
故有
V2 d p
g
r
dr
z
g
这就是沿流线的主 法线方向的微分形式的 动量方程,它适于定常、 理想不可压流动。
4
此时,若再补充一个伯努利常数在各条流线上是同一个常数的
条件,即
d p V2
8
因此,我们可以写出o′x′y′z′动坐标系中的动量方程:
f ao ωr ωωr 2ω Vd pndA
A
A1
Vn1
VdA
A2
Vn 2式中V′、r′、τ′、A′
分别为动系中的相
对速度、向径、控
制体体积、控制面
面积。
9
旋转坐标系中沿流线的动量方程 这类问题在透平机械(风机,泵,气轮机等)中
dr
g
2g
z
0
将其与法向动量方程
V2 d p
gr
dr
z
g
联立,得到
dV V 0 dr r
积分得
V c r
作为一种应用,在弯曲管道中,内侧流速较高,外侧流速较低,
就是例证。
5
工程流体力学 Engineering Fluid Mechanics
第4章 流体动力学基本原理
§4.7 非惯性坐标系中的动量方程 积分形式动量方程
dl l
V Adl AV V dl
t
l
dz 2r dr 1 p 1 V V V dl g dl g l g t g l
1
g
p l
1
g
V 2
l
2
dz dl
2r g
dr dl
1
g
V t
14
上式沿流线积分可建立定常流动的伯努利方程
1
g
dp
V 2
2g
z 2r2 2g
d dt
r Vd
t
r Vd
A
r Vn Vd A
对上式应用质点系的动量矩定理:流体系统内流体动量矩的时间变化
率等于作用在系统上的所有外力矩的矢量和。
t
r
Vd
A
r
Vn
Vd
A
r
fd
A
r
pndA
定常流动时: r Vn VdA r fd r pndA
A
A
17
叶轮机械的基本方程
dl dxi dyj dzk
所以
ao
dl dl
ax
dx dl
ay
dy dl
az
dz dl
在沿流线的动量方程推导中,对于定常不可压理想流体,有
1
dp dl
d V2
dl
2
g
dz dl
ax
dx dl
ay
dy dl
az
dz dl
0
积分可得 p V 2 z ax x ay y az z const
动量矩方程可以表示为
(绝对速度)
r Vn Vd A (ri Fi )
A
所有外力矩的矢量和
(法向分速度)
(牵连速度) (切向分速度)
取图中虚线包容的体积为控制体:
2
哥氏力与相对速度方向垂直,在流线方向的分量
为零。
11
建立沿流管动量方程
g Adlcos Adl2r dr
dl
pA
pA
pA
l
dl
p
dA dl
dl
AV 2
AV 2 AV 2
dl
l
V Adl
t
12
消去抵消量有
g Adz Adl2r dr pA dl
dl l
经常遇到的。其推导过程与惯性系中大体相同,关键 是质量力要附加上惯性力(离心力与哥氏力)。
旋转坐标系中沿流线动量方程
在旋转坐标系中流体微团的相对运动
10
离心力
Adl2rer
在流线方向的分量
Adl
2r
cos
er
,
dl
Adl
2r
dr dl
所以定常不可压理想流体的伯努利方程中会有 2rdr
的积分项 1 2r2
p dA dl AV 2 dl V Adl
dl
l
t
对微分项作适当展开有
g Adz Adl2r dr A p dl p dA dl
dl l
dl
p dA dl AV V dl V AV dl
dl
l
l
V Adl V Adl
t
t
13
进一步简化
g Adz Adl2r dr A p dl
这里我们只讨论定常流动,此时流线和迹 线是相同的。
2
工程流体力学 Engineering Fluid Mechanics
§4.6 流线法向动量方程
如图示,在流线 BB'上M点取一圆柱形 流体微团,其柱轴与 流线主法线相重合, M点曲率半径为r,微 元圆柱两端面积为dA, 微元柱长度为dr,则 对此流体微团在r方 向建立动量方程为