最新无线传感网知识点
第一章无线传感器网络概述知识点整理(一)

第⼀章⽆线传感器⽹络概述知识点整理(⼀)第⼀章⽆线传感⽹络概述1.1 ⽆限传感器⽹络的基本感念⽆线传感器⽹络 Wireless Sdnsor Network定义:⼤量静⽌或移动的传感器节点以⾃组织和多跳的⽅式构成的⽆线⽹络。
⽬的:协作探测、处理和传输⽹络覆盖区域内感知对象的监测信息,并报告给⽤户。
传感器⽹络功能:实现数据采集、处理和传输基本要素:传感器、感知对象和⽤户Ad Hoc ⽹络:定义:是⼀种多跳的、⽆中⼼的、⾃组织⽆线⽹络,⼜称为多跳⽹,⽆基础设施⽹或⾃组织⽹。
1.2 ⽆线传感器⽹络的特征1.2.1与现有⽆线⽹络的区别(其他⽹络)(1)集成了监测、控制以及⽆线通信的⽹络系统(2)节点数⽬庞⼤(3)节点分布密集(4)节点容易出现故障(5)⽹络拓扑结构易发⽣变化(6)传感器节点具有的能量、处理能⼒、存储能⼒和通信能⼒等都⼗分有限(7)传统⽆线⽹络的⾸要设计⽬标是提供⾼服务质量和⾼效带宽利⽤,其次才考虑节约能源,⽽传感器⽹络的⾸要设计⽬标是能源的⾼效使⽤1.2.2与现场总线的区别(1)现场总线是应⽤在⽣产现场和微机化测量控制设备之间、实现双向串⾏多节点数字通信的系统(2)开放式、数字化、多点通信的底层控制⽹络(3)现场总线作为⼀种⽹络形式,专门为实现在严格的实时约束条件下⼯作⽽特别设计的(4)由于现场总线通过报告传感数据从⽽控制物理环境,与传感器⽹络⾮常相似(5)⽆线传感器⽹络关注的不是数⼗毫秒范围内的实时性,⽽是具体的业务应⽤,这些应⽤能够容许较长时间的延迟和抖动(6)传感器⽹络⾃适应协议在现场总线中并不需要,如多跳、⾃组织的特点,⽽且现场总线及其协议也不考虑节约能源问题较为流⾏的现场总线:(1)CAN(控制局域⽹络)(2)Lonworks(局部操作⽹络)(3)Profibus(过程现场总线)(4)HART(可寻址远程传感器数据通信)(5)FF(基⾦会现场总线)1.2.3传感器节点的限制1.电源能量限制(1)传感器节点体积微⼩(2)通常携带能量⼗分有限的电池(3)传感器节点消耗能量的模块包括传感器模块、处理器模块和⽆线通信模块(4)传感器节点的绝⼤部分能量消耗在⽆线通信模块⽆线通信模块存在发送、接收、空闲和睡眠4种状态空闲时监听⽆线信道的使⽤情况,检查是否有数据发送给⾃⼰睡眠时关闭通信模块在发送状态的能量消耗最⼤,接收和空闲时消耗接近,睡眠消耗最少。
无线传感网络学习心得

无线传感器网络学习心得初次接触这个课程时,我无意地在课本中看到了对于无线传感器网络的基本概述:无线传感器网络是一种全新的信息获取平台,能够实时监测和采集网络分布区域内各种检测对象的信息,并将这些信息发送到网关节点,以实现复杂的指定范围内目标检测与跟踪。
这让我联想到物联网体系的感知层与网络层,乍一想,这不就是物联网感知层与网络层的整体解决方案么?美国《商业周刊》与MIT 技术评论分别将无线传感器网络列为改变世界的10大技术之一。
作为一名物联网工程专业的大学生,了解于此,内心燃起了一团火焰,因为觉得这个将成为我们将以时代推动者的身份参与到人类21世纪的建设中。
学习无线传感器网络这个课程,分3个阶段,第一个阶段是分别讲解无线传感器网络里面的各个组成部分,包括物理层,信道接入技术,路由协议,拓扑技术,网络定位与时间同步技术等等。
第二个阶段是整合零碎的知识,总结出无线传感器网络的工作原理。
第三阶段是利用现有知识理解无线传感器网络在物联网环境下的应用并且能够根据现实需求设计出符合要求的一个整体的无线传感器网络。
第一阶段知识总结,(1)无线传感器网络物理层是数据传输的最底层,它需要考虑编码调制技术,通信速率,通信频段等问题。
信道接入技术中有IEEE 802.11MAC协议,S-MAC协议,Sift协议,TDMA技术,DMAC技术,CDMA 技术。
在物理层和信道接入技术主要有2个标准,一个是IEEE 802.15.4标准,一个是ZigBee标准,它们各有优劣,可根据现实情况采用不同标准。
(2)无线传感器网络路由协议的作用是寻找一条或或多条满足一定条件的,从源节点到目的节点的路径,将数据分组沿着所寻找的路径进行转发。
路由协议中有Flooding 协议,Gossiping协议,SPIN协议,DD协议,Rumor协议,SAR协议,LEACH 协议,PEGASIS协议等协议。
(3)动态变化的拓扑结构是无线传感器网络最大特点之一,拓扑控制策略为路由协议、MAC协议、数据融合、时间同步和目标定位等多方面都奠定了基础。
zigbee无线传感网络课程设计

zigbee无线传感网络课程设计一、课程目标知识目标:1. 让学生掌握zigbee无线传感网络的基本概念、原理和应用场景。
2. 了解zigbee协议栈的结构、功能及其工作流程。
3. 掌握zigbee网络拓扑结构、节点类型及其配置方法。
技能目标:1. 学会使用zigbee开发工具进行网络编程和调试。
2. 能够搭建简单的zigbee无线传感网络,并进行数据采集、处理和传输。
3. 培养学生运用zigbee技术解决实际问题的能力。
情感态度价值观目标:1. 培养学生对物联网技术的兴趣,激发学习热情。
2. 增强学生的团队协作意识,培养合作解决问题的能力。
3. 培养学生关注社会热点问题,了解zigbee技术在现实生活中的应用,提高社会责任感。
课程性质:本课程属于信息技术领域,旨在让学生了解和掌握zigbee无线传感网络的基本知识,培养实际操作能力和创新思维。
学生特点:本课程针对的是高年级学生,他们在前期课程中已具备一定的编程基础和网络知识,具有较强的学习能力和实践操作能力。
教学要求:教师应注重理论与实践相结合,引导学生通过实际操作掌握zigbee 技术,鼓励学生开展团队合作,提高解决问题的能力。
在教学过程中,关注学生的情感态度价值观培养,使其在学习过程中形成正确的价值观。
通过分解课程目标为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. zigbee基本概念与原理- 无线传感网络概述- zigbee技术特点与应用场景- zigbee协议栈结构与工作原理2. zigbee网络结构与配置- zigbee网络拓扑结构- 节点类型及其功能- 网络配置与优化方法3. zigbee编程与调试- 开发工具与环境介绍- zigbee协议栈编程- 程序调试与故障排除4. 数据采集、处理与传输- 传感器节点数据采集- 数据处理与融合- 无线数据传输技术5. zigbee应用案例与实战- 现实生活中的zigbee应用案例- 实战项目:搭建简单的zigbee无线传感网络- 数据分析与优化教学内容安排与进度:第一周:介绍无线传感网络与zigbee基本概念、原理第二周:学习zigbee网络结构与配置方法第三周:掌握zigbee编程与调试技巧第四周:学习数据采集、处理与传输技术第五周:分析zigbee应用案例,进行实战项目设计与实施第六周:项目总结与成果展示,数据分析与优化教材章节关联:《信息技术》第四章:无线传感网络《信息技术》第五章:zigbee技术及应用《信息技术》实践教程:zigbee编程与实战案例三、教学方法为了提高教学效果,激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:通过系统讲解zigbee无线传感网络的基本概念、原理、协议栈结构等内容,为学生奠定扎实的理论基础。
无线传感器网络的基本知识点

I无线传感器网络概述一、无线传感器网络的概念无线传感器网络的3个基本要素为传感器、感知对象和观察者。
无线网络是传感器之间、传感器与观察者之间的通信方式,用于在传感器与观察者之间建立通信路径;协作地感知、采集、处理、发布感知信息是无线传感器网络的基本功能。
一组功能有限的传感器协作地完成大的感知任务是无线传感器网络的重要特点。
传感器主要由感知单元、传输单元、存储单元和电源组成,完成感知对象的信息采集、存储和简单的计算后,传输给观察者以提供环境的决策依据。
观察者是无线传感器网络的用户,是感知信息的接收和应用者。
观察者可以是人,也可以是计算机或其它设备。
感知对象是观察者感兴趣的监测目标,也是无线传感器网络的感知对象。
一个无线传感器网络可以感知网络分布区域内的多个对象,一个对象也可以被多个无线传感器网络所感知。
二、无线传感器网络的特点(1)硬件资源有限(2)电源容量有限(3)无中心(4)自组织(5)多跳路由(6)动态拓扑(7)节点数量众多,分布密集三、无线传感器网络的学术界研究进展1、网络技术(不太懂)2、通信协议无线传感器网络协议要有不同于传统Ad Hoc和因特网通信协议的原因如下:(1)传感器网络中的传感器节点数量远大于Ad Hoc网络中的节点数;(2)感知节点出现故障的频率要大于Ad Hoc网络;(3)感知节点要比因特网和Ad Hoc网络中的节点简单;(4)感知节点的能量有限;(5)因特网的数据报头对于传感器网络来说太长,例如,每个节点必须有一个永久的地址。
美国一些大学提出了有效的协议如下:包括谈判类协议(如SPIN-PP协议、SPIN-EC协议、SPIN-BC协议、SPIN-RL协议)、定向发布类协议、能源敏感类协议、多路径类协议、传播路由类协议、介质存取控制类、基于Cluster的协议、以数据为中心的路由算法。
3、感知数据查询处理技术四、无线传感器网络的研究热点1、MAC层协议无线传感器网络的MAC层协议必须达到如下2目标。
传感器知识点

传感器技术复习指南1.传感器:能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。
也叫变换器、检测器、探测器。
2.组成:敏感元件:指传感器中能直接感受(或响应)和检出被测对象的待测信息(非电量)的部分。
3.转换元件:指传感器中能将敏感元件所感受(或响应)出的信息直接转换成有用信号(一般为电信号)的部分。
4.其他辅助元件:包括信号调节与转换电路及其所需的电源。
信号调节与转换电路:能把传感元件输出的电信号转换为便于显示、记录、处理、和控制的有用电信号的电路。
5.分类:按工作原理(应变式、热电式、压电式)、被测量、敏感材料、能量的关系、其他(用途、学科、功能和输出信号的性质)分。
6.数学模型(从传感器的静态输入—输出关系和动态输入—输出关系建立)(1)静态模型:多项式(2)动态模型:微分方程和传递函数7.传感器(或测量设备)的输入—输出关系特性是传感器的基本特性。
衡量传感器静态特性的主要技术指标:线性度、测量的范围和量程、迟滞、重复性、灵敏性、分辨力和阈值、稳定性、漂移、静态误差.8.动态:阶跃响应和频率响应.9.标定:对新研制或生产的传感器进行全面的技术检定。
方法:利用标准仪器产生已知的非电量(如标准力、压力、位移等)作为输入量,输入到待标定的传感器中,然后将传感器的输出量与输入的标准量进行比较,获得一系列校准数据或曲线。
10.校准:将传感器在使用中或储存后进行的性能复测。
11.提高传感器性能的方法:非线性校正、温度补偿、零位法、微差法、闭环技术、平均技术、差动技术,以及采用屏蔽、隔离与抑制干扰措施等。
12.精确度:随机误差和系统误差都小;精密度:随机误差小;准确度:系统误差小。
储备知识:(1) 精确度:是精密度与准确度两者的总和,精确度高表示精密度和准确度都比较高。
在最简单的情况下,可取两者的代数和。
机器的常以测量误差的相对值表示。
与精确度有关指标:精密度、准确度和精确度(精度)(2)精密度:说明测量传感器输出值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度。
无线传感器网络教学创新与实践

无线传感器网络教学创新与实践摘要:高校的无线传感器网络教育对于培养信息化人才而言不可或缺,融入了教学创新理念的高校无线传感器网络教学更是如虎添翼,而教学创新理念在高校无线传感器网络教学当中实际应用是一个非常值得研究的课题。
本文章首先对教学创新理念与无线传感器网络教学相关进行了简单概述,其次对无线传感器网络教学现状以及无线传感器网络教学的具体内容进行了分析,并且对教学创新理念在无线传感器网络教学中的应用优势进行了探讨,最后针对教学创新理念在无线传感器网络教学中的实际应用进行了研究。
关键词:无线传感网络;课程教学;教学创新引言:伴随着现代科学技术的发展,教学创新理念逐渐走进了高校无线传感器网络教学的课堂,而作为信息化教育重中之重的无线传感器网络教学,其中的教学创新理念运用能够极大的提升高校无线传感器网络教学整体的水平,大大增强无线传感器网络教学的直观性和能动性,为高校无线传感器网络教学工作的高效顺利进行提供了极大的保障。
1.教学创新理念与无线传感器网络教学相关概述作为物联网工程专业的一门专业核心课,无线传感器网络(Wireless Sensor Networks,WSN)课程涉及计算机、微电子、传感器、网络、通信、数据分析处理等诸多领域,是一门面向实际应用、交叉性强、跨度大、知识点涵盖范围广的综合型课程,实践性较强[1]。
目前在讲授时大多以讲述理论为主、实验为辅的方式进行,实验课只能完成一些简单的基础实验和验证性实验,无法真正提高学生动手实践能力和自主创新能力。
以多跳中继无线传输方式将所感知信息传送到用户终端,在环境监测、卫生医疗、工农业控制和军事国防等领域有广泛的应用前景[2]。
美国《商业周刊》将无线传感器网络列为 21 世纪最有影响的 21 项技术之一;在《MIT 技术评论》评出的深远影响人类未来生活十大新兴技术之中,传感器网络位列第一;我国《国家中长期科学与技术发展规划(2006-2020 年)》和“新一代宽带移动无线通信网”重大专项中均将无线传感网列入重点研究领域[3]。
传感器网络知识点汇总 物院版

传感器网络的基本要素:传感器,感知对象,用户。
传感器网络定义无线传感器网络是大量的静止或移动的传感器以(自组织)和(多跳)的方式构成的无线网络,目的是(协作地探测)(处理和传输网络覆盖区域内感知对象的监测信息),并报告给用户。
WSN与Ad-hoc的区别项目WSN Ad-hoc网络功能以获取感知信息为主要目的的信息采集网络解决人与人、设备与设备之间信息传输结点能力小型化、低成本、低功耗,处理能力低,通信速率与通信距离有限处理与存储能力、通信能力、可靠性相对强大网络形态大规模、密度高小型网络,密度高后冲突增大拓扑结构一到多、多到一(结点到用户,结点间一般不存在通信)任意的点到点业务特征由用户发起查询或结点检测到异常或周期报告,业务量低传输话音、数据、视频等业务,业务量高关注问题以数据为中心,电池供电,能量有限,所以限制其网络协议算法设计强调简单、高效以通信为目的,与能量无关,以网络容量、QoS、业务传输的有效性为主相同点不依托任何网络基础设施的情况下展开工作;都可以依靠结点之间的自组织行为协调对信道资源的使用以及在网路拓扑动态变化的情况下实现多跳路由转发等功能。
传感器节点的限制条件电源能量有限通信能力受限计算和存储能力受限组网特点自组织性以数据为中心应用相关性动态性网络规模大可靠性传感器网络终端结点结构(简答)传感模块通信模块计算与存储模块电源WSN网络体系结构从无线联网的角度来看,传感器网络结点的体系由分层的网络通信协议,网络管理平台,应用支撑平台三部分组成。
传感器网络的体系结构平面结构,分级结构。
传感器定义一般来说能够把特定的被测信息(物理量,化学量,生物量)按一定规律转换成某种可用信号(电信号,光信号等)的器件或装置,我们把它称为传感器传感器组成敏感元件转换元件基本转换电路常见传感器类型被测量与输出电量的转换原理划分,可分为能量转换型和能量控制型两大类按测量原理分类,主要有物理、化学和生物原理按被测量的性质不同划分为位移传感器、力传感器、温度传感器等按输出信号的性质可分为开关型(二值型)、数字型、模拟型。
《无线传感网络》之红外人体感应模块的教学设计

《无线传感网络》之红外人体感应模块的教学设计韦冬雪(南宁职业技术学院,广西南宁530008)【摘要】随着信息和技术的发展,企业对人才要求不断提高,传统的课堂授课模式已经不能满足未来发展的需要,结合新时代的技术和高职院校学生特点,高职院校的课堂教学设计越来越注重信息技术和教育理念的整合,改革传统的教学模式势在必行。
文章通过设计红外人体感应模块的教学方案,采用任务驱动、项目教学法,将理论与实践操作相结合,同时在教学过程中融入课程思政理念,探索适合于高职学生特点的教学方式,提高学生学习和应用知识的能力。
【关键词】无线传感网络;人体红外感应;教学设计【中图分类号】G712 【文献标识码】A【文章编号】1008-1151(2021)02-0083-03 Teaching Design of Infrared Human Sensor Module in Wireless Sensor NetworkAbstract: With the development of information and technology, enterprises' requirements for talents continue to increase. The traditional classroom teaching mode can no longer meet the needs of future development. Combining the technology of the new era and the characteristics of students in higher vocational colleges, the classroom teaching design of higher vocational colleges pays more and more attention to the integration of information technology and educational concepts, it is imperative to reform the traditional teaching model. Through the design of infrared human body sensing module teaching scheme, adopting task-driven, project teaching method, combining theory with practice, and integrating curriculum ideological and political ideas into the teaching process, this paper explores teaching methods suitable for the characteristics of higher vocational students, so as to improve students' ability of learning and applying knowledge.Key words: wireless sensor network; human infrared sensing; teaching design引言《无线传感网络》课程是高职物联网应用技术专业的核心专业课程,是一门理论和实践相结合的综合性专业课程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章无线传感网概述1.无线传感器网络的概念:无线传感器网路是一种由多个无线传感器节点和几个汇聚节点构成的网络,能够实时的检测、感知和采集节点部署区域的环境或感兴趣的的感知对象的各种信息,并对这些信息进行处理后一无线的方式发送出去。
2.WSN的特点及优势1)WSN与Ad hoc共有的特征:自组织;分布式;节点平等;安全性差2)WSN特有的特征:计算能力不高;能量供应不可代替;节点变化性强;大规模网络3.无线传感器网络架构:1)协议:物理层,数据链路层,网络层,传输层,应用层物理层:负责载波频率产生、信号的调制解调等工作,提供简单但健壮的信号调制和无线收发技术。
数据链路层:(1)媒体访问控制。
(2)差错控制。
网络层:负责路由发现和维护,是无线传感器网络的重要因素。
传输层:负责将传感器网络的数据提供给外部网络,也就是负责网络中节点间和节点与外部网络之间的通信。
应用层:主要由一系列应用软件构成,主要负责监测任务。
这一层主要解决三个问题:传感器管理协议、任务分配和数据广播管理协议,以及传感器查询和数据传播管理协议。
2)管理平台:(1)能量管理平台(2)移动管理平台(3)任务管理平台(1)管理传感器节点如何使用资源,在各个协议层都需要考虑节省能量。
(2)检测传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪其邻居的位置。
(3)在一个给定的区域内平衡和调度检测任务。
4.无线传感器网络所面临的挑战:低能耗,实时性,低成本,安全和抗干扰,协作第二章无线传感网物理层设计1.WSN物理层频率的选择:一般选用工业,科学和医疗频段。
ISM(医疗)频段的主要优点是无需注册的公用频段、具有大范围可选频段、没有特定标准、灵活使用。
欧洲使用433MHZ,美国使用915MHZ频段2.WSN结构采用的是无线射频通信第三章数据链路层1.MAC协议分类:1)按节点的接入方式:侦听(间断侦听:DEANAdeng),唤醒(低功耗前导载波侦听MAC协议),调度(主要使用在广播中)2)按信道占用数划分:单信道(主要采用),双信道,多信道3)信道分配方式:竞争型(S-MAC,T-MAC,Sift),分配型(SMACS,TRAMA),混合型(ZMAC),跨层型2.分配型MAC协议采用TDMA,CDMA,SDMA,FDMA等技术3.数据链路层的关键问题:能量效率问题,可扩展性,公平性,信道共享,网络性能的优化4.记忆竞争的S-MAC协议,具有以下特点:(1)周期性的侦听和睡眠(2)使用虚拟载波侦听和物理载波侦听进行冲突避免(3)自适应侦听(4)将长消息分成子段进行消息传递5.基于竞争的T-MAC协议:为了改进S-MAC协议不能根据网络负载调整自己的调度周期的缺点,T-MAC协议根据一种自适应占空比的原理,通过动态地调整侦听与睡眠时间的比值,从而实现节省能耗的目的。
主要解决了早睡的问题6.基于竞争的Sift协议:为了解决多个相邻节点都会发现同一事件并传输相关信息而导致空间竞争现象,它采用CSMA机制,竞争窗口的大小原本是设定好的,采用非均匀概率来决定是否发送数据,特点如下:(1)无线传感传感器网络中基于空间中的竞争(2)基于时间的报告方式(3)感知事件的节点密度的自适应调整7.基于分配的SMAC协议:该协议假设每个节点都能够在多个载波频点上进行切换,将每个双向信道定义为两个时间段。
SMAC协议是一种分布式协议,允许一个节点集发现邻居并进行信道分配。
SMAC协议可避免全局时间同步,从而减少复杂性8.基于分配的TRAMA协议:该协议采用了流量自适应的分布式选举算法,节点交换两跳内的邻居信息,传输分配时指明在时间顺序上哪些节点是目的节点,然后选择在每个时隙上的发送节点和接收节点,TRAMA将一个物理信道分成多个时隙,通过对这些时隙的复用为数据和控制信息提供信道。
9.混合型MAC协议:ZMAC采用CSMA机制作为基本方法,在竞争加剧时使用TDMA机制来解决信道冲突问题。
ZMAC协议引入了时间帧的概念,每个时间帧又分为若干时隙,在ZMAC协议中,网络部署每个节点执行一个时隙分配的DRAND算法。
ZMAC协议是一种混合型MAC协议,可以根据网络中的信道竞争情况动态地调整MAC协议所采用的机制,在CSMA和TDMA机制之间进行切换,在网络数量较少时工作在CSMA机制下;在网络数据量较大时,工作在TDMA机制下,使用拓扑信息和同步时钟信息来改善协议性能11.跨层MAC协议:MINA网络架构,在MINA架构中节点分为三种类型:大量静止的低容量传感器节点;少量手持移动节点;静止的大容量基站节点。
第四章网络层1.相对于传统网络层,无线传感器具有以下特征:大规模分布式应用,以数据为中心,基于局部拓扑信息,基于应用,数据的融合2.网络层关键问题:节能,高扩展性,容错性,数据融合技术,通信量分布不均3.网络路由协议:1)基于数据的路由协议:SPIN、DD路由协议2)基于集群结构协议:LEACH、TEEN、APTEEN路由协议3)基于地理位置的路由协议:GEAR、GAF路由协议第五章传输层协议1、传输层协议相对传统传输层协议:降低传输层协议的能耗,进行有效的拥塞控制,保证网络的可靠性2、传输层的关键问题:拥塞控制,丢包恢复,优先级策略3、传输层协议分类:1)基于拥塞控制的传输层协议:PECR、CODE协议2)记忆可靠性传输协议:FSFQ、ESRT协议3)跨层传输协议:RCTP协议4、WSN传输层研究的主要内容:传输层是是最靠近用户数据的一层,主要负责在源和目标之间提供可靠的、性价比合理的数据传输功能。
为了实现传输层对上层透明,可靠的数据传输服务,传输层主要研究端到端的流量控制和拥塞的避免,保证数据能够有效无差错地传输到目的节点。
主要包括以下几点: 1.降低传输层协议的能耗 2.进行有效的拥塞控制3.保证网络的可靠性第六章通信标准1、IEEE 802.15.4(LP WPAN):能量消耗小、结构简单、容易实现的无线通信网络协议,它主要致力于解决无线连接在能量值和网络吞吐量低的网络中应用。
1)四种传输频率:20kbps 40kbps 100kbps 250kbps2)两种网络拓扑结构:星状、点状3)两种地址格式:16位(由协调器分配)、64位(全球统一)4)采用可选的时隙保障(GTS)机制5)采用CSMA/CA冲突避免的载波多路侦听技术6)支持ACK反馈机制,确保可靠传输7)硬件根据设备所具有的通信能力和硬件条件分为:全功能设备(FFD)精简功能设备(RFD)2、IEEE802.15.4协议栈:1)物理层:三个载波频段(工业、科学、医学)分别对应2400MHz、250kbps,868MHz、20kbps,915MHZ、40kbps2)链路层:LLC、MAC3.ZigBee在IEEE 802.15.4基础上扩展了网络层和应用层,协议栈如下:定义了三种设备:ZigBee协调器、ZigBee路由器、ZigBee终端设备4、无线局域网技术:1)工作于2.5GHZ或5GHz频段2)3)由无线网卡,无线接入点AP,无线网桥,无线网关组成5、6、蓝牙技术:采用分散式网络结构以及快跳频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM频段,其数据率为1Mbps,采用时分双工传输方案实现全双工传输7、超宽带:是一种具备低功耗电与高速传输的无线个人局域网络通信技术,适合需要高质量服务的无线通信应用,可以用在无线个人局域网络、家庭网络连接和短距离雷达等邻域。
它不采用连续的正弦波,而是利用脉冲信号传送信息8、UWB多条网络链路层协议模型:MAC子层协议模型和LLC子层协议模型第七章时间同步技术1、时间同步技术概述:使网络中的节点的本地时间基本保持一致1)2)按照网络应用的深度可分为:时序确定,相对同步,绝对同步3)参考时间来源:外同步,内同步4)5)关键问题:传输时延不可预测,高能效,可扩展,健壮6)7)技术:DMTS同步、RBS同步、TPSN同步、FTSP同步2、传统协议比较:P132第八章节点定位技术1、衡量节点定位技术好坏:定位区域与精度,实时性,能耗2、三边定位技术测量两节点之间的距离的算法:根据接受信号强度定位(RSSI),根据信号传播时间测距(TOA),根据到达时间差测距(TDOA)3、基于非测距定位技术的基本原理:基于连通性的定位,基于跳数的定位第十二章仿真技术1、WSN仿真方法必须具备以下关键特性:可伸缩性,完整性,可信性,桥梁作用,具有能量模型2、仿真模拟工具主要有:NS2、OPNET、TOSSIM3、仿真软件比较:课本P220第十三章硬件开发1、传感器节点体系结构:有传感器模块,处理器模块,无线通信模块,能量供应模块组成2、传感器节点硬件平台的设计中需要从以下几个方面考虑1.微型化:无线传感器节点应该在体积上足够小,保证对目标系统本身的特性不会造成影响,或者所造成的影响可忽略不计。
2.低功耗:由于设备的体积有限,通常携带的电池能量有限。
有的部署区域环境复杂,人员不能到达。
3.扩展性和灵活性:无线传感器网络节点需要定义统一、完整的外部接口,在需要添加新的硬件时可以在现有节点上直接添加,而不需要开发新的节点。
同时,节点可以按照功能拆分成多个组件,组件之间通过标准接口自由组合。
4.稳定性和安全性:硬件的稳定性要求节点的各个部件都能够在给定的外部环境变化范围内正常工作。
5.低成本:低成本是传感器节点的基本要求。
只有低成本,才能大量地布置在目标区域中,表现出传感器网络的各种优点。
第十四章无线传感网络的操作系统1、嵌入式系统往往不完全拥有支持一个成熟操作系统必须的资源。
WSN对操作系统提出特殊的要求:减小系统开销;需要较低能耗;各模块间协调,支持并发控制;实时性;自适应性;可信赖性;可升级2、三种常见的WSN操作系统比较:1)TinyOS:采用事件驱动模式,同时能对处理器和外设进行能量的控制,任务调度方式采用先进先出方式,静态管理内存,实时性较低 2)MANTIS OS:采用线程驱动的模式进行编程,同时能对处理器和外设进行能量的控制,任务调度方式采用优先级方式,静态管理内存,实时性较高3)SOS:采用事件驱动模式,只能对处理器能量进行控制,任务调度方式采用优先级方式,静态管理内存,实时性较高。