初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型
[精品]几何模型之一线三等角
![[精品]几何模型之一线三等角](https://img.taocdn.com/s3/m/f29f7add87c24028905fc307.png)
一、定义:两个相等的角一边在同一直线上,另一边在该直线的同侧或异测,第三个与之相等的角的顶点在前一组等角的顶点中所确定的线段上或线段的延长线上,另外两边分别位于一直线的同侧或异测与两等角两边相交,会形成一组相似三角形,习惯上把该组相似三角形习惯上称为“一线三等角型”相似三角形。
通俗地讲,一条直线上有三个相等的角一般就会存在相似的三角形!二、基本模型(1)一句话总结:“一线三等角”是初中数学综合题中,出现频次最多的模型,没有之一。
“一线三等角”图形的基本特征摘要:通过帮助学生感悟“一线三等角”在相似三角形判定中的重要作用,从而引导学生逐步掌握利用基本图形来描述和分析问题,建立几何直观。
关键词:一线三等角;基本图形;几何直观在教学中教师要有意识地强化对基本图形的运用,不断地运用这些基本图形去发现、描述问题,理解、记忆结果,这应该成为课堂教学中关注的目标。
在相似三角形的判定中,两组对应角分别相等,则两个三角形相似,这种判定方法应用特别多。
而“一线三等角”这种特殊图形中,正是因为存在有两组对应角分别相等,才会一定出现一对相似三角形。
任何一个复杂的几何图形都是由若干个基本图形组合而成的,将一个复杂图形中的基本图形"离析"出来,是解决问题必须具备的重要能力之一,而这种"离析"是在真正理解基本图形的基础上才能进行的。
在不同背景中,特别是“一线三等角”这种情况在矩形、等腰三角形及等腰梯形中的应用都比较广泛。
首先看“一线三直角”这一基本图形在矩形中的应用。
例,在矩形ABCD中,直角三角板MPN的直角顶点P在BC上移动时,直角边MP始终经过点A,三角板的另一直角边PN与CD交于点Q,判断△ABP与△PCQ是否相似,说明理由。
分析:在这个运动变化中,图形的变化是否会引起结论也发生变化呢?下面在运动变化中去寻找图形所体现的变与不变。
解:相似,理由如下:如图,∠B=∠C=90°又∵∠1+∠3=90°,∠2+∠3=90°∴∠1=∠2∴△ABP∽△PCQ.一线三直角基本图形:如上图,此图形的特点:∠B=∠APQ=∠C=90°,且这三个直角的顶点都在同一条直线上。
初中数学_几何模型——一线三等角教学设计学情分析教材分析课后反思

几何模型——一线三等角教学目标:1、掌握相似三角形的判定和性质,并能熟练运用其解决重要类型“一线三等角”的类型题.2、经历运用相似三角形知识解决问题的过程,体验图形运动、分类讨论、方程与函数等数学思想.3、通过问题的解决,体验探究问题成功的乐趣,积极探索,提高学习几何的兴趣.重点:相似三角形的判定性质及其应用.难点:与相似、函数有关的综合性问题的解决技巧和方法.教学方法:启发式教学方法,尝试指导教学法.一、知识梳理:(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有.二、【专题练习】1.如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.2.在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值; (2) 求证:∠BED=∠DEF.3.在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.4.如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.5.在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .QC A P三、例题分析例。
初中数学58种模型之一线三等角模型

初中数学58种模型之一线三等角模型“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形。
这个角可以是直角,也可以是锐角或者钝角。
对于“一线三等角”,有的地区叫“K型图”,也有的地区叫“M型图”。
“一线三等角”的起源DE 绕A 点旋转,从外到内,从一般位置到特殊位置.下面分几种类型讨论:一、直角形“一线三等角”——“一线三直角”结论:△ADB ∽△CEA二、锐角形“一线三等角结论:△ADB∽△CEA∽△CAB三、钝角形“一线三等角结论:△ADB∽△CEA∽△CAB下面总结几种常考类型:类型一三角齐见,模型自现类型一概述以上两例都是典型的“一线三等角”试题,由于模型的框架已搭建,因此降低了试题的起点.两道题虽涉及不同的图形变换,但解法本质一致,均为利用模型构建比例式解决问题.两道题都着重考查学生在图形变换过程中的观察理解、直观感知、推理转化等数学能力和思想.类型二隐藏局部,小修小补类型二概述上述两道题虽分别以四边形和一次函数为命题背景,但图形的共性较明显: 均将原有“一线三等角”模型中的一角进行了隐藏,而这就要求学生理性地从图形的角度进行思考与联想,发现其中最本质的特征,挖掘蕴含在图中的几何模型.两道题均较好地体现了对“四基”的综合考查,提升了学生思维的层次性和灵活性.类型三一角独处,两侧添补类型三概述上述几道题虽呈现的背景不同,但都蕴知识技能、思想方法、数学模型于图形之中.题中的“特殊角”是解题的关键,也是搭建模型框架的基础,更是学生解题思路的来源与“脚手架”.这几道题实质上都是考查学生利用模型进行数学思考的能力,同时也有效地检测了学生对数学本质属性的把握情况.类型四线角齐藏,经验来帮类型四概述本题实质上以图形的旋转为问题的切入点,较好地激发学生探索的意愿,促使学生在模拟图形运动的同时,自发地利用题中所蕴含的特殊角,展开适当的联想,寻找图形间的联系,利用数学解题经验,搭建模型框架。
一线三等角中点相似模型证明

一线三等角中点相似模型证明在初中数学学习中,一线三等角中点相似模型是一个重要的知识点。
它不仅是数学学科中的基础概念,也是日常生活中的实用知识型模型。
一线三等角中点相似模型包含了三个关键要素,即一线、三等角和中点相似。
其中,一线指在一个三角形中连接两个角的线段,三等角指三角形中三个角的度数相等,中点相似则是指两个图形中对应线段的长度相等。
理解这个模型需要我们首先了解一些基础概念。
在三角形中,连接一个角的两边的线段称为这个角的平分线,平分线的中点称为这个角的顶点角平分线中点。
而三角形中线则是一条连接两个角的中点的线段。
在一个三角形中,三个顶点连成一条线段即为三角形的一条边。
有了这些基础概念之后,我们可以开始理解一线三等角中点相似模型的证明过程。
在证明这个模型时,我们需要使用到的基本公式是:在一个三角形中,连接一个角的两边的长度的比等于另外一个角的两边的长度的比,那么这个角的平分线上任意一点到两边的距离之比等于这两边的长度之比。
首先,证明一线三等角中点相似模型的前提是三角形ABC和DEF中,∠A=∠D,∠B=∠E,∠C=∠F。
我们需要构造中线DG与CB、EH与AC的交点K,LK为EF的平行线,并证明LK=AB/BG=AC/CH。
我们先考虑LK=AB/BG的证明。
因为LK∥EF,我们可以通过小学奥数中的对应角相等的定理,得出∠LBL~∠ABC,∠LKF~∠ACB。
由于LK是EF的平行线,所以LK=EF×BL/AC=AB/BG,得证。
接下来,我们需要证明LK=AC/CH。
由于AC是三角形ABC的中线,所以AC=2CH。
而LK=EF×BL/AC,因为∠LBL~∠ABC,所以BL=AC/AB。
代入LK中得LK=EF/AB×AC/CH=AC/CH,得证。
综上可知,LK=AB/BG=AC/CH,所以三角形ABC与DEF是相似的。
由于ABC与DEF相似,因此它们的相应线段比例相等。
因为CB与EF平行且有相同比例,在DG与EH交于K的情况下,由于ABC与DEF相似,所以三角形ABE与CDG也相似。
[一线,模型,初中]“一线三等角”模型在初中数学中的应用
![[一线,模型,初中]“一线三等角”模型在初中数学中的应用](https://img.taocdn.com/s3/m/16e8df11bb4cf7ec4bfed0b4.png)
“一线三等角”模型在初中数学中的应用相似三角形在初中几何的教学中发挥着不可小觑的作用,在中考考题中常有涉及和渗透,笔者在初三的教学中发现掌握相似三角形的基本图形,对培养学生分析问题和解决问题的能力有一定的促进作用。
本文以相似三角形中的“一线三等角”这一基本图形为载体,研究这一基本图形背景下的相关题型,并进行了收集与整理,希望对学生灵活应用这一模型有所帮助。
一、弄清基本模型定义和解题原理二、应用举例1.在“动点问题”中的应用例1:如图2,正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,设BM的长为x cm,CN的长为y cm.求点M在BC上的运动过程中y的最大值。
分析:由图可知∠B=∠C=∠AMN=90°,Rt△ABM与Rt△MCN成“一线三等角”模型,所以Rt△ABM∽Rt△MCN,从而,所以,.所以y的最大值为。
【变式】如“例1”的条件,将问题改为“当BM=cm时,四边形ABCN的面积最大,最大面积为 cm2.”分析:四边形ABCN的面积为,BC,AB的长都为1,是定值,只有CN在变化,要使四边形ABCN的面积最大,则CN最大,即转化为“例1”的问题.2.与反比例函数联手例2:(2015?孝感)如图3,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.-4B.4C.-2D.2分析:看到反比例函数图像上的点A,并且要求的点B也在反比例函数图像上,从而联想反比例函数解析式中“k”的几何意义解决问题.过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据“一线三等角”模型,很容易得到△ACO∽△ODB,从而==4,然后用反比例函数解析式中“k”的几何意义即可.3.在“直角三角形存在性问题”中的应用点的存在性问题始终是中考考查的热点和难点,对学生的思维能力和模型思想等基本数学素养有着较高的要求,所以一直困扰着学生.数学解题研究中一直很关注一题多解的研究,多一种解决问题的方法,能让学生步入考场有更多的选择,直角三角形的存在性问题多数教师在讲解的时候是引导学生利用解析式法“”和勾股定理解决.笔者在教学中发现,利用“一线三等角”模型解决直角三角形的存在性问题也是一种通用方法,即便这个点在抛物线上也能使用(当点在抛物线上时,利用勾股定理会出现四次情形,初中学生无法解决),能为学生解决这类问题提供了一种新的选择。
专题02 全等模型-一线三等角(K字)模型(解析版)

专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2023·江苏·八年级假期作业)探究:如图①,在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD m ⊥于点D ,CE m ⊥于点E ,求证:ABD CAE ≌ .应用:如图②,在ABC 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.【答案】探究:证明过程见详解;应用:DE BD CE =+,理由见详解;拓展:50【分析】探究:90BAC ∠=︒,AB AC =,可知ABC 是等腰直角三角形,BD m ⊥,CE m ⊥,可知90BDA AEC ∠=∠=︒,可求出BAD ACE ∠=∠,根据角角边即可求证;应用:AB AC =,,,D A E 三点都在(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点例3.(2022·陕西七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC 中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.【答案】(1)7;(2)S△BCD=8;(3)S△BCD=6.【分析】(1)∠B=∠E=∠ACD=90°,据同角的余角相等,可得∠ACB=∠D,由已知条件可证△ABC≌△CED,运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=_____︒,BAD ∠=_____︒,AED =∠_____︒;点D 从B 向C 运动时,BDA ∠逐渐变_____(填“大”或“小”);(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由.【答案】(1)25,25,65,小(2)当2DC =时,ABD DCE ≌△△,理由见解析;(3)当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形.【分析】(1)先求出ADC ∠的度数,即可求出EDC ∠的度数,再利用三角形的外角性质即可求出AED ∠的度数,根据点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,即可得到答案;(2)根据全等三角形的判定条件求解即可;(3)先证明当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,然后分这两种情况讨论求解即可;【详解】(1)解:∵115BDA ∠=︒,∴18011565ADC ∠=︒-︒=︒,∵40ADE ∠=︒,∴25EDC ADC ADE ∠︒=∠-∠=,∵ADC ADE EDC B BAD ∠=∠+∠=∠+∠,∴25BAD EDC ∠=∠=︒,∴65AED EDC C ︒∠=∠+∠=;∵点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,∴点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25,25,65,小;(2)解:当2DC =时,ABD DCE ≌△△,理由:∵40B C ∠=∠=︒,∴140DEC EDC ∠+∠=︒,又∵40ADE ∠=︒,∴140ADB EDC ∠+∠=︒,∴ADB DEC ∠=∠,又∵2AB AC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110°或80°时,ADE V 的形状是等腰三角形,理由:∵40C ADE ∠=∠=︒,AED C EDC ∠=∠+∠,∴AED ADE ∠>∠,∴当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
初中中考数学专题复习——一线三角三等角型
“一线三等角”基本图形解决问题三角形相似在整个初中数学中有着重要的地位,在学习三角形相似形时,我们从复杂图形中分离出基本数学模型,对分析问题、解决问题有化繁为简的效果。
在近几年的中考题中,经常可以看到“一线三等角”的数学模型,所谓“一线三等角”是指在一条直线上出现了三个角相等。
所以,只要见到一条直线上出现了三个等角,往往都存在这样的模型,也会存在相似三角形,当出现了有相等边的条件之后,相似就转化为全等了,综合性题目往往就会把相似和全等的转化,作为出题的一种形式,需要大家注意。
本文将重点对这一基本图形进行探讨。
通过对题目的有效分解,打破同学们对综合题的畏惧心理,让同学们加深对于题目条件的使用:条件用完,即使题目没有求解完毕,也得到相应的分数,提高问题解决的能力,在这个师生共同探讨的过程中鼓励学生尝试解题,并加强题后反思,培养他们解题的能力。
一、知识梳理:(1)四边形ABCD 是矩形,三角板的直角顶点M 在BC 边上运动,直角边分别与射线BA 、射线CD 交于E 、F ,在运动过程中,△EBM ∽△MCF.(2)如图1:已知三角形ABC 中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有 △ABD ∽△DEC. 如图2:已知三角形ABC 中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有△DBE ∽△ECF.(图1) (图2) 二、【例题解析】【例1】(2014四川自贡)阅读理解: 如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2,在矩形ABCD 中,AB=5,BC=2,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ;321FD B M C拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.【练习】1、已知矩形ABCD中, AB=3,AD=2,点P是AB上的一个动点,且和点A,B 不重合,过点P作PE垂直DP,交边BC于点E,设,PA=x,BE=y,求y关于x的函数关系式,并写出x的取值范围 .2、如图,已知正方形ABCD,将一块等腰直角三角尺的锐角顶点与A重合,并将三角尺绕点旋转,当M点旋转到BC的垂直平分线PQ上时,连接ON,若ON=8,求MQ的长.3. 如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与BC 重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y,(1)求y关于x的函数关系式(2)若m=8,求x为何值时,y有最大值,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?AB E【例2】等边△ABC 边长为6,P 为BC 边上一点,∠MPN =60°,且PM 、PN 分别于边AB 、AC交于点E 、F .(1)如图1,当点P 为BC 的三等分点,且PE ⊥AB 时,判断△EPF 的形状;(2)如图2,若点P 在BC 边上运动,且保持PE ⊥AB ,设BP =x ,四边形AEPF 面积的y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)如图3,若点P 在BC 边上运动,且∠MPN 绕点P 旋转,当CF =AE =2时,求PE 的长.图1 图2 图3分析过程:(1)△EPF 为等边三角形. (2)设BP=x ,则CP =6-x. 由题意可 △BEP 的面积为238x . △CFP 的面积为23(6)2x -.△ABC 的面积为93. 设四边形AEPF 的面积为y. ∴ 93y =-238x 23(6)2x --=25363938x x -+-. 自变量x 的取值范围为3<x <6. (3)可证△EBP ∽△PCF.∴BP BECF CP=.设BP=x , 则 (6)8x x -=. 解得 124,2x x ==.∴ PE 的长为4或23.【练习】.如图,在△ABC 中,AB =AC =5cm ,BC =8,点P 为BC 边上一动点(不与点B 、C 重合),过点P 作射线PM 交AC 于点M ,使∠APM =∠B ; (1)求证:△ABP ∽△PCM ;(2)设BP =x ,CM =y .求 y 与x 的函数解析式,并写出自变量的取值范围. (3)当△APM 为等腰三角形时,求PB 的长.(4) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.A P M【例3】在ABC ∆中,O BC AC C ,3,4,90===∠o是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q ,(不与点B,C 重合),已知AP=2,求CQ【练习】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点,(与A,C 不重合),DF DE DF ,⊥与射线BC 相交于点F. (1)、当点D 是边AB 的中点时,求证:DF DE = (2)、当m DBAD=,求DF DE 的值【例4】如图,抛物线y=ax 2+bx+c 经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.答案:(1)y=x2+2x ﹣3;(2)S 有最大值827,点P 的坐标为(23-,415-); (3)M 的坐标为(0,23)或(0,27-)或(0,﹣1)或(0,﹣3).课后作业:1. 已知:如图,在△ABC 中,5==AC AB ,6=BC ,点D 在边AB 上,AB DE ⊥,点E 在边BC 上.又点F 在边AC 上,且B DEF ∠=∠. (1) 求证:△FCE ∽△EBD ; (2) 当点D 在线段AB 上运动时,是否有可能使EBD FCE S S ∆∆=4. 如果有可能,那么求出BD 的长.如果不可能请说明理由.2. 如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E 。
2025年数学中考专题四:三角形经典题目
数学中考专题四:三角形经典题目解题方法一线三等角模型“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形。
这个角可以是直角,也可以是锐角或者钝角。
对于“一线三等角”,有的地区叫“K型图”,也有的地区叫“M型图”。
“一线三等角”的起源DE 绕 A 点旋转,从外到内,从一般位置到特殊位置.下面分几种类型讨论:一、直角形“一线三等角”——“一线三直角”结论:△ADB ∽△CEA二、锐角形“一线三等角∽△∽△结论:△ADB CEA CAB三、钝角形“一线三等角∽△∽△结论:△ADB CEA CAB下面总结几种常考类型:类型一 三角齐见,模型自现类型一概述以上两例都是典型的“一线三等角”试 题,由于模型的框架已搭建,因此降低了试题的起 点. 两道题虽涉及不同的图形变换,但解法本质一 致,均为利用模型构建比例式解决问题. 两道题都 着重考查学生在图形变换过程中的观察理解、直观 感知、推理转化等数学能力和思想.类型二 隐藏局部,小修小补类型二概述上述两道题虽分别以四边形和一次函数为命题背景,但图形的共性较明显: 均将原有 “一线三等角”模型中的一角进行了隐藏,而这就要求学生理性地从图形的角度进行思考与联想,发现其中最本质的特征,挖掘蕴含在图中的几何模 型.两道题均较好地体现了对“四基”的综合考查, 提升了学生思维的层次性和灵活性.类型三 一角独处,两侧添补类型三概述上述几道题虽呈现的背景不同,但都蕴 知识技能、思想方法、数学模型于图形之中.题中的 “特殊角”是解题的关键,也是搭建模型框架的基础,更是学生解题思路的来源与“脚手架”. 这几道题实质上都是考查学生利用模型进行数学思考的能力,同时也有效地检测了学生对数学本质属性的把握情况.类型四 线角齐藏,经验来帮类型四概述本题实质上以图形的旋转为问题的切入点,较好地激发学生探索的意愿,促使学生在模拟图形运动的同时,自发地利用题中所 蕴含的特殊角,展开适当的联想,寻找图形间的联系,利用数学解题经验,搭建模型框架。
全等模型:一线三等角(K字)2023-2024学年八年级数学上册常见几何模型解读(浙教版)解析版
全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅ ,已知:在ABC 中,【答案】(1)见解析;(2)成立,见解析【分析】(1)根据AAS 可证明ADB CEA ≌,可得AE BD AD CE ==,,可得DE BD CE =+.(2)由已知条件可知180BAD CAE α∠+∠=︒−,180DBA BAD α∠+∠=︒−,可得DBA CAE ∠=∠,结合条件可证明ADB CEA ≌,同(1)可得出结论.【详解】证明:(1)如图1,∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠,在ADB 和CEA 中,BDA CEA CAE ABDAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADB CEA ≌△△,∴AE BD AD CE ==,,∴DE AE AD BD CE =+=+;(2)如图2,∵BDA BAC α∠=∠=,∴180DBA BAD BAD CAE ∠∠∠∠α+=+=︒−,∴DBA CAE ∠=∠,在ADB 和CEA 中,BDA CEA CAE ABDAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADB CEA ≌△△,∴AE BD AD CE ==,,∴DE AE AD BD CE =+=+.【点睛】本题主要考查了全等三角形的判定和性质,由条件证明三角形全等得到AE BD AD CE ==,是解题的关键.例2.(2023春·上海·七年级专题练习)在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE △的面积之和.【答案】(1)DE =BD+CE(2)DE =BD+CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD+∠EAC =∠BAD+∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD+CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD+∠EAC =∠BAD+∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD+CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【详解】(1)解:DE =BD+CE ∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD+∠EAC =∠BAD+∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD+AE =BD+CE ,故答案为:DE =BD+CE .(2)DE =BD+CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD+∠EAC =∠BAD+∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD+AE =BD+CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC•h =12,S △ABF =12BF•h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF+S △ABD =S △FBD+S △ACE =4,∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.【答案】(1)△ACP 与△BPQ 全等,理由见解析;(2)PC ⊥PQ ,证明见解析;(3)存在,当t =1s ,x =2cm/s或t =94s ,x =289cm/s 时,△ACP 与△BPQ 全等.【分析】(1)利用SAS 定理证明ACP BPQ ∆≅∆;(2)根据全等三角形的性质判断线段PC 和线段PQ 的位置关系;(3)分ACP BPQ ∆≅∆,ACP BQP ∆≅∆两种情况,根据全等三角形的性质列式计算.【详解】(1)△ACP 与△BPQ 全等,理由如下:当t =1时,AP =BQ =2,则BP =9﹣2=7,∴BP =AC ,又∵∠A =∠B =90°,在△ACP 和△BPQ 中,AP BQ A B CA PB =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS );(2)PC ⊥PQ ,证明:∵△ACP ≌△BPQ ,∴∠ACP =∠BPQ ,∴∠APC+∠BPQ =∠APC+∠ACP =90°.∴∠CPQ =90°,即线段PC 与线段PQ 垂直;(3)①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴9﹣2t =7,解得,t =1(s ),则x =2(cm/s );②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,则2t =12×9,解得,t =94(s ),则x =7÷94=289(cm/s ),故当t =1s ,x =2cm/s 或t =94s ,x =289cm/s 时,△ACP 与△BPQ 全等.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分 类讨论思想的灵活运用是解题的关键.例4.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =.(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =−+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.【答案】(1)见详解;(2)点M 的坐标为(1,3);(3)R (203,0)【分析】(1)先判断出∠ACB=∠ADC ,再判断出∠CAD=∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(2)过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,判断出MF=NG ,OF=MG ,设M (m ,n )列方程组求解,即可得出结论;(3)过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,先求出OP=4,由y=0得x=1,进而得出Q (1,0),OQ=1,再判断出PQ=SQ ,即可判断出OH=5,SH=OQ=1,进而求出直线PR 的解析式,即可得出结论.【详解】(1)证明:∵∠ACB =90°,AD ⊥l ,∴∠ACB =∠ADC .∵∠ACE =∠ADC+∠CAD ,∠ACE =∠ACB+∠BCE ,∴∠CAD =∠BCE ,∵∠ADC =∠CEB =90°,AC =BC .∴△ACD ≌△CBE ,∴CD =BE ,(2)解:如图2,过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,交FM 的延长线于G ,由已知得OM =ON ,且∠OMN =90°,∴由(1)得△OFM ≌△MGN ,∴MF =NG ,OF =MG ,设M (m ,n ),∴MF =m ,OF =n ,∴MG =n ,NG =m ,∵点N 的坐标为(4,2)∴42m n n m +=⎧⎨−=⎩解得13m n =⎧⎨=⎩∴点M 的坐标为(1,3);(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,对于直线y =﹣4x+4,由x =0得y =4,∴P (0,4),∴OP =4,由y =0得x =1,∴Q (1,0),OQ =1,∵∠QPR =45°,∴∠PSQ =45°=∠QPS .∴PQ =SQ .∴由(1)得SH =OQ ,QH =OP .∴OH =OQ+QH =OQ+OP =4+1=5,SH =OQ =1.∴S (5,1),设直线PR 为y =kx+b ,则451b k b =⎧⎨+=⎩,解得435b k =⎧⎪⎨=−⎪⎩.∴直线PR 为y =35-x+4. 由y =0得,x =203,∴R (203,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
一线三等角相似模型
在物理学中,可以利用一线三等角 相似模型来研究物理现象和规律, 如光的反射和折射、波的传播等。
04 一线三等角相似模型的证 明方法
直接证明法
定义
直接证明法是通过直接使用已知条件和定理来证明结论的 方法。
步骤
首先,根据已知条件,明确一线三等角的定义和性质;然后, 通过比较两个三角形中的角度和边长,利用相似三角形的性质
03
注意事项
反证法需要熟练掌握反证法的原理和 推理技巧,以及能够灵活运用已知条 件。
综合法与分析法
定义
综合法是从已知条件出发,逐步推导出结论的方法;分析法是从结论出发,逐步推导出已知条件的方法。
步骤
在综合法中,首先明确已知条件和目标结论;然后,根据已知条件逐步推导所需结论;最后,总结推导过程。在分析 法中,首先明确目标结论和已知条件;然后,根据结论逐步推导所需条件;最后,总结推导过程。
,逐步推导出所需的结论。
注意事项
直接证明法需要熟练掌握相似三角形的性质和定理,以及 灵活运用已知条件。
反证法
01
定义
反证法是通过假设结论不成立,然后 推导出矛盾,从而证明结论成立的方 法。
02
步骤
首先,假设结论不成立;然后,根据 已知条件和反证法的原理,推导出与 已知条件相矛盾的结论;最后,根据 矛盾的结论,得出结论成立。
相似变换的性质
相似变换具有一些重要的性质,如保持角度不变、线 段长度比例不变等。
相似变换的应用
相似变换在几何学、物理学、工程学等领域有着广泛 的应用,如建筑设计、机械制造、航天技术等。
相似多边形的性质与应用
1 2
相似多边形的定义
相似多边形是指各对应角相等、各对应边成比例 的多边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年初中数学突破中考压轴题几
何模型之相似三角形中的一线
三等角模型
2
———————————————————————————————— 作者:
———————————————————————————————— 日期:
3
一线三等角
相似三角形判定的基本模型
A字型 X字型 反A字型 反8字型
母子型 旋转型 双垂直 三垂直
相似三角形判定的变化模型
C
B
E
D
A
一线三等角型相似三角形
三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的
顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:
4
等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,
图形虽然变化但是求证的方法不变。此规律需通过认真做题,细细体会。
典型例题
【例1】如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°
(1)求证:△BDE∽△CFD
(2)当BD=1,FC=3时,求BE
【例2】如图,等腰△ABC中,AB=AC,D是BC中点,∠EDF=∠B,
求证:△BDE∽△DFE
【例3】如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM
交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM;
(2)设BP=x,CM=y.求 y与x的函数解析式,并写出函数的定义域.
(3)当△APM为等腰三角形时, 求PB的长.
【例4】(1)在ABC中,5ACAB,8BC,点P、Q分别在射线CB、AC上(点P不与点C、点B重
合),且保持ABCAPQ.
①若点P在线段CB上(如图),且6BP,求线段CQ的长;
②若xBP,yCQ,求y与x之间的函数关系式,并写出函数的
定义域;
C
A
D
B
E
F
C
D
E
A
B
F
A
B P C
M
A
B C
P
Q
5
(2)正方形ABCD的边长为5(如图12),点P、Q分别在直线..CB、DC上
(点P不与点C、点B重合),且保持90APQ.
当1CQ时,写出线段BP的长(不需要计算过程,请直接写出结果).
点评:此题是典型的图形变式题,记住口诀:“图形改变,方法不变”。动点在线段上时,通过哪两个三角形相似求
解,当动点在线段的延长线上时,还是找原来的两个三角形,多数情况下这两个三角形还是相似的,还是可以沿用
原来的方法求解。
【例5】已知:菱形ABCD,AB=4m, ∠B=60°,点P、Q分别从点B、C出发,沿线段BC、CD以1m/s的速度向终
点C、D运动,运动时间为t秒
(1)连接AP、AQ、PQ,试判断△APQ的形状,并说明理由。
(2)当t=1秒时,连接AC,与PQ相交于点K.求AK的长。
(3) 当t=2秒时,连接AP、PQ,将∠APQ逆时针旋转,使角的两边与AB、AD、AC分别交于点E、N、F,连接EF.若
AN=1,求S△EPF.
A
B
C
D
P
Q
K
A
B
C
D
P
Q
DCBA
A
B C
备
A
B C
D
图
6
【应用】
1.如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,BC=1,AB=5,点P为x轴上的一个动
点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)直接写出点B的坐标 .
(2)当点P在线段OA上运动时,使得∠CPD=∠OAB,且BD: AD=3:2
,求点P的坐标.
2、已知在梯形ABCD中,AD∥BC,AD<BC,且BC =6,AB=DC=4,点E是AB的中点.
(1)如图,P为BC上的一点,且BP=2.求证:△BEP∽△CPD;
(2)如果点P在BC边上移动(点P与点B、C不重合),且满足∠EPF=∠C,PF交直线CD于点F,同时交直
线AD于点M,那么
①当点F在线段CD的延长线上时,设BP=x,DF=y,求y关于x的函数解析式,并写出函数的定义域;②
当BEPDMFSS49时,求BP的长.
模型训练:
1. 如图,在△ABC中,8ACAB,10BC,D是BC边上的一个动点,点E在AC边上,且CADE.
(1) 求证:△ABD∽△DCE;
(2) 如果xBD,yAE,求y与x的函数解析式,并写出自变量x的定义域;
(3) 当点D是BC的中点时,试说明△ADE是什么三角形,并说明理由.
A
B C
D
E
E D C B A P (第25E
D
C B
A
(备用
7
2. 已知:如图,在△ABC中,5ACAB,6BC,点D在边AB上,
ABDE,点E在边BC上.又点F在边AC上,且BDEF
.
(1) 求证:△FCE∽△EBD;
(2) 当点D在线段AB上运动时,是否有可能使EBDFCESS4.
如果有可能,那么求出BD的长.如果不可能请说明理由.
3. 如图,在△ABC中,AB=AC=5,BC=6,P是BC上一点,且BP=2,将一个大小与∠B相等的角的顶点放在P 点,
然后将这个角绕P点转动,使角的两边始终分别与AB、AC相交,交点为D、E。
(1)求证△BPD∽△CEP
(2)是否存在这样的位置,△PDE为直角三角形?
若存在,求出BD的长;若不存在,说明理由。
C P E A B
D
A
B C
D
E
F
8
4. 如图,在△ABC中,AB=AC=5,BC=6,P是BC上的一个动点(与B、C不重合),PE⊥AB与E,PF⊥BC交AC
与F,设PC=x,记PE=1y,PF=2y
(1)分别求1y、2y关于x的函数关系式
(2)△PEF能为直角三角形吗?若能,求出CP的长,若不能,请说明理由。
5. 已知在等腰三角形ABC中,4,6ABBCAC,D是AC的中点, E是BC上的动点(不与B、C重合),
连结DE,过点D作射线DF,使EDFA,射线DF交射线EB于点F,交射线AB于点H.
(1)求证:CED∽ADH;
(2)设,ECxBFy.
①用含x的代数式表示BH;
②求y关于x的函数解析式,并写出x的定义域.
6. 已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.
(1)如图8,P为AD上的一点,满足∠BPC=∠A.
①求证;△ABP∽△DPC
②求AP的长.
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同
时交直线DC于点Q,那么
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;
②当CE=1时,写出AP的长(不必写出解题过程)
C P E A B
F
H
A
B
C
D
E
F
C
D
A
B
P
9