指数函数学案
学案6:2.1.2指数函数及其性质

2.1.2指数函数及其性质学习目标1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点) 2.能画出具体指数函数的图象,并能根据指数函数的图象说明指数函数的性质.(重点)知识梳理教材整理1指数函数的定义阅读教材,完成下列问题.指数函数的定义一般地,函数(a>0,且a≠1)叫做指数函数,其中是自变量,函数的定义域是R.练一练1判断(正确的打“√”,错误的打“×”)(1)函数y=-2x是指数函数.()(2)函数y=2x+1是指数函数.()(3)函数y=(-2)x是指数函数.()教材整理2指数函数的图象和性质阅读教材,完成下列问题.R练一练2判断(正确的打“√”,错误的打“×”)(1)指数函数的图象一定在x轴的上方.()(2)当a>1时,对于任意x∈R,总有a x>1.()(3)函数f(x)=2-x在R上是增函数.()类型一:指数函数的概念例1 (1)下列一定是指数函数的是( ) A .y =a x B .y =x a (a >0且a ≠1) C .y =⎝⎛⎭⎫12xD .y =(a -2)a x(2)函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3 D .a >0且a ≠1名师指导1.在指数函数定义的表达式中,要牢牢抓住三点: (1)底数是大于0且不等于1的常数; (2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1;2.求指数函数的解析式常用待定系数法.跟踪训练1 (1)若函数f (x )是指数函数,且f (2)=9,则f (x )=________. (2)已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________. 类型二:指数函数的定义域和值域 例2 求下列函数的定义域和值域: (1)y =√1−3x ; (2)y =(23)√−|x|; (3)y =4x +2x +1+2. 名师指导1.函数y =a f (x )的定义域与y =f (x )的定义域相同.2.函数y=a f(x)的值域的求解方法如下:(1)换元,令t=f(x);(2)求t=f(x)的定义域x∈D;(3)求t=f(x)的值域t∈M;(4)利用y=a t的单调性求y=a t,t∈M的值域.3.求与指数函数有关的函数的值域时,要注意与求其它函数(如一次函数、二次函数)值域的方法相结合,要注意指数函数的值域为(0,+∞),切记准确运用指数函数的单调性.跟踪训练2 求下列函数的定义域和值域:(1)y=21x−3;(2)y=221()2x x.探究共研型类型三:指数函数的图象探究1指数函数y=a x(a>0且a≠1)的图象过哪一定点?函数f(x)=a x-1+2(a>0且a≠1)的图象又过哪一定点呢?探究2若函数y=a x+b(a>0,且a≠1)的图象不经过第一象限,则a,b满足什么条件?例3(1)在同一坐标系中画出函数y=a x,y=x+a的图象,可能正确的是()(2)函数y =a-|x |(0<a <1)的图象是( )名师指导指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系. (1)在y 轴右侧,图象从上到下相应的底数由大变小. (2)在y 轴左侧,图象从下到上相应的底数由大变小.(3)无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过x 取1时函数值的大小关系去理解,如下图所示的指数函数的底数的大小关系为0<d <c <1<b <a .跟踪训练3 定义一种运算:g ⊙h =⎩⎪⎨⎪⎧gg ≥hhg <h ,已知函数f (x )=2x ⊙1,那么函数y =f (x -1)的大致图象是( )课堂检测1.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2x C.⎝⎛⎭⎫12xD.⎝⎛⎭⎫22x2.当x ∈[-2,2)时,y =3-x -1的值域是( ) A.⎝⎛⎦⎤-89,8 B.⎣⎡⎦⎤-89,8 C.⎝⎛⎭⎫19,9D.⎣⎡⎦⎤19,93.已知1>n >m>0,则指数函数①y =m x ,②y =n x 的图象为( )4.已知函数f (x )=a -x (a >0, 且a ≠1),且f (-2)>f (-3),则a 的取值范围是________. 5.设f (x )=3x ,g(x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x ),g(x )的图象;(2)计算f (1)与g(-1),f (π)与g(-π),f (m )与g(-m )的值,从中你能得到什么结论?参考答案知识梳理教材整理1 指数函数的定义 y =a x ; x 练一练1【答案】 (1)× (2)× (3)×【解析】 (1)由指数函数的定义形式可知(1)(2)(3)均错误. 教材整理2 指数函数的图象和性质 (0,+∞) ;(0,1);增函数;减函数;y 轴 练一练2【答案】 (1)√ (2)× (3)×【解析】 (1)因为指数函数的值域是(0,+∞),所以指数函数的图象一定在x 轴的上方. (2)当x ≤0时,a x ≤1.(3)因为f (x )=2-x =⎝⎛⎭⎫12x ,所以函数f (x )=2-x在R 上是减函数. 类型一:指数函数的概念 例1 【答案】 (1)C (2)C【解析】 (1)A 中a 的范围没有限制,故不一定是指数函数;B 中y =x a (a >0且a ≠1)中变量是底数,故也不是指数函数;C 中y =⎝⎛⎭⎫12x 显然是指数函数;D 中只有a -2=1即a =3时为指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧(a -2)2=1a >0,且a ≠1,所以解得a =3.跟踪训练1 【答案】 (1)3x (2) ⎝⎛⎭⎫12,1∪(1,+∞) 【解析】 (1)由题意设f (x )=a x (a >0,且a ≠1), 则f (2)=a 2=9.又因为a >0,所以a =3. 所以f (x )=3x .(2)由题意可知{ 2a -1>0,2a -1≠1,解得a >12,且a ≠1.所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 类型二:指数函数的定义域和值域例2 解:(1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0,故函数y = √1−3x 的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1.所以√1−3x ∈[0,1),即函数y = √1−3x 的值域为[0,1). (2)要使函数式有意义,则-|x |≥0,解得x =0, 所以函数y = (23)√−|x|的定义域为{x |x =0}.因为x =0,所以y = (23)√−|x| =(23)0=1,即函数y= (23)√−|x|的值域为{y |y =1}.(3)因为对于任意的x ∈R , 函数y =4x +2x +1+2都有意义, 所以函数y =4x +2x +1+2的定义域为R . 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2 =(2x +1)2+1>1+1=2,即函数y =4x +2x +1+2的值域为(2,+∞). 跟踪训练2 解:(1)函数的定义域为{x |x ≠3}. 令t =1x−3,则t ≠0,∴y =2t >0且2t ≠1, 故函数的值域为{y |y >0,且y ≠1}. (2)函数的定义域为R ,令t =2x -x 2, 则t =-(x -1)2+1≤1,∴y =(12)t ≥ (12)1=12,故函数的值域为[12,+∞).探究共研型类型三:指数函数的图象探究1 【答案】 指数函数y =a x (a >0且a ≠1)的图象过定点(0,1);在f (x )=a x -1+2中令x -1=0,即x =1,则f (x )=3,所以函数f (x )=a x -1+2(a >0且a ≠1)的图象过定点(1,3). 探究2 【答案】 如图,由图可知0<a <1,b ≤-1.例3【答案】 (1)D (2)A【解析】(1)∵a 为直线y =x +a 在y 轴上的截距,对应函数y =x +a 单调递增, 又∵当a >1时,函数y =a x 单调递增,当0<a <1时,函数y =a x 单调递减,A 中,从图象上看,y =a x 的a 满足a >1,而直线y =x +a 的截距a <1,不符合以上两条;B 中,从图象上看,y =a x 的a 满足0<a <1,而直线y =x +a 的截距a >1,不符合以上两条;C 中,从图象上看,y =a x 的a 满足a >1,而函数y =x +a 单调递减,不符合以上两条, ∴只有选项D 的图象符合以上两条,故选D. (2)y =a-|x |=⎝⎛⎭⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.跟踪训练3 【答案】 B【解析】 f (x )=⎩⎪⎨⎪⎧ 2x x ≥01x <0,∴f (x -1)=⎩⎪⎨⎪⎧2x -1x ≥11x <1,∴其图象为B ,故选B.课堂检测 1.【答案】 A【解析】 由题意,设f (x )=a x (a >0且a ≠1),则由f (2)=a 2=2,得a =2,所以f (x )=(2)x . 2.【答案】 A【解析】 y =3-x -1,x ∈[-2,2)是减函数, ∴3-2-1<y ≤32-1,即-89<y ≤8.3.【答案】 C【解析】 由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A ,B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C. 4.【答案】 (0,1)【解析】 因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1.5. 解:(1)函数f (x ),g(x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3,f (π)=3π,g(-π)=⎝⎛⎭⎫13-π=3π, f (m )=3m ,g(-m )=⎝⎛⎭⎫13-m=3m.。
指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
学案8:2.1.2 指数函数及其性质(二)

2.1.2 指数函数及其性质(二)自主学习学习目标1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.基础自测1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2. 指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1题型探究类型一 比较大小问题【例1】 比较下列各题中两个值的大小:(1)3π与33.14; (2)0.99-1.01与0.99-1.11; (3)1.40.1与0.90.3.规律方法 比较两指数大小时,若底数相同,则先构造出该底数的指数函数,然后利用单调性比较;若底数不同,则考虑选择中间量,通常选择“1”作为中间量.变式迁移1 比较⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412的大小.类型二 解简单的指数不等式【例2】 如果a 2x +1≤a x -5(a >0,且a ≠1),求x 的取值范围.规律方法 解a f (x )>a g (x )(a >0且a ≠1)此类不等式主要依据指数函数的单调性,它的一般步骤为变式迁移2 已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是____________.类型三 指数函数的最值问题【例3】 (1)函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值; (2)如果函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.规律方法 指数函数y =a x (a >1)为单调增函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最小值a s ;当x =t 时,函数有最大值a t .指数函数y =a x (0<a <1)为单调减函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最大值a s ;当x =t 时,函数有最小值a t .变式迁移3 (1)函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值与最小值之和为6,求a 的值;(2)0≤x ≤2,求函数y =4x -12-3·2x +5的最大值和最小值.课堂小结1.指数函数的定义及图象是本节的关键.通过图象可以求函数的值域及单调区间.2.利用指数函数的性质可以比较两个指数幂的大小(1)当两个正数指数幂的底数相同时,直接利用指数函数的单调性比较大小.(2)当两个正数指数幂的底数不同而指数相同时,可利用两个指数函数的图象比较它们的大小.(3)当两个正数指数幂的底数不同而且指数也不相同时,可考虑能否利用“媒介”数来比较它们的大小.3.通过本节的学习,进一步体会分类讨论思想在解题中的应用.当堂检测一、选择题1.下图分别是函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,a ,b ,c ,d 分别是四数2,43,310,15中的一个,则相应的a ,b ,c ,d 应是下列哪一组( )A.43,2,15,310B.2,43,310,15C.310,15,2,43D.15,310,43,2 2.已知a =30.2,b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a3.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( ) A .(1,+∞) B .(12,+∞) C .(-∞,1) D .(-∞,12)4.设13<(13)b <(13)a <1,则( ) A .a a <a b <b a B .a a <b a <a b C .a b <a a <b a D .a b <b a <a a5.若函数f (x )=⎩⎪⎨⎪⎧ a x , x >14-a 2x +2, x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)二、填空题6.当x ∈[-1,1]时,函数f (x )=3x -2的值域是____________.7.a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是____________.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是__________.三、解答题9.解不等式a x +5<a 4x -1 (a >0,且a ≠1).10.已知函数f (x )=⎝⎛⎭⎫12x -1+12·x 3. (1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.【参考答案】基础自测1.C 2.C 3.A 4.C题型探究【例1】 解 (1)构造函数y =3x .∵a =3>1,∴y =3x 在(-∞,+∞)上是增函数.∵π>3.14,∴3π>33.14.(2)构造函数y =0.99x .∵0<a =0.99<1,∴y =0.99x 在(-∞,+∞)上是减函数.∵-1.01>-1.11,∴0.99-1.01<0.99-1.11.(3)分别构造函数y =1.4x 与y =0.9x .∵1.4>1,0<0.9<1,∴y =1.4x 与y =0.9x在(-∞,+∞)上分别为增函数和减函数.∵0.1>0,∴1.40.1>1.40=1.∵0.3>0,∴0.90.3<0.90=1,∴1.40.1>1>0.90.3,∴1.40.1>0.90.3.变式迁移1 解 将⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412分成如下三类:(1)负数⎝⎛⎭⎫-233; (2)大于0小于1的数⎝⎛⎭⎫3412;(3)大于1的数⎝⎛⎭⎫4313,223.∵⎝⎛⎭⎫4313<413,而413=223, ∴⎝⎛⎭⎫-233<⎝⎛⎭⎫3412<⎝⎛⎭⎫4313<223. 【例2】 解 (1)当0<a <1时,由于a 2x +1≤a x -5,∴2x +1≥x -5,解得x ≥-6.(2)当a >1时,由于a 2x +1≤a x -5,∴2x +1≤x -5,解得x ≤-6.综上所述,x 的取值范围是:当0<a <1时,x ≥-6;当a >1时,x ≤-6.变式迁移2 (12,+∞) 解析 a 2+a +2=(a +12)2+74>1. ∴y =(a 2+a +2)x 在R 上是增函数.∴x >1-x ,解得x >12. ∴x 的取值范围是(12,+∞). 【例3】 解 (1)①若a >1,则f (x )在[1,2]上递增,最大值为a 2,最小值为a .∴a 2-a =a 2,即a =32或a =0(舍去). ②若0<a <1,则f (x )在[1,2]上递减,最大值为a ,最小值为a 2.∴a -a 2=a 2,即a =12或a =0(舍去), 综上所述,所求a 的值为12或32. (2)设t =a x ,则原函数可化为y =(t +1)2-2,对称轴为t =-1.①若a >1,∵x ∈[-1,1],∵t =a x 在[-1,1]上递增,∴0<1a≤t ≤a ; ∴y =(t +1)2-2当t ∈[1a,a ]时递增. 故当t =a 时,y max =a 2+2a -1.由a 2+2a -1=14,解得a =3或a =-5(舍去,∵a >1).②若0<a <1,t =a x 在[-1,1]上递减,t ∈[a ,1a], y max =a -2+2a -1-1=14,解得a =13或a =-15(舍去). 综上,可得a =13或3. 变式迁移3 解 (1)∵f (x )=a x 在[1,2]上是单调函数,∴f (x )在1或2时取得最值.∴a +a 2=6,解得a =2或a =-3,∵a >0,∴a =2.(2)y =12·22x -3·2x +5=12(22x -6·2x )+5 =12(2x -3)2+12. ∵x ∈[0,2],1≤2x ≤4,∴当2x =3时,y 最小值=12, 当2x =1时,y 最大值=52. 当堂检侧1.C2.B 【解析】c <0,b =53>3,1<a <3,∴b >a >c .3.B 【解析】函数y =(12)x 在R 上为减函数, ∴2a +1>3-2a ,∴a >12. 4.C 【解析】由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .5.D 【解析】因为f (x )在R 上是增函数,故结合图象知 ⎩⎪⎨⎪⎧ a >14-a 2>04-a 2+2≤a,解得4≤a <8.6.⎣⎡⎦⎤-53,1 7.c >a >b 【解析】y =0.8x 为减函数,∴0.80.7>0.80.9,且0.80.7<1,而1.20.8>1,∴1.20.8>0.80.7>0.80.9.8.(-∞,-1)【解析】∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12得x ∈∅; 当x =0时,f (0)=0<-12不成立;因此当x <0时,由2x -1<-12得x <-1.综上可知x ∈(-∞,-1).9.解 当a >1时,原不等式可变为x +5<4x -1.解得x >2;当0<a <1时,原不等式可变为x +5>4x -1.解得x <2.故当a >1时,原不等式的解集为(2,+∞); 当0<a <1时,原不等式的解集为(-∞,2).10.(1)解 由2x -1≠0,得x ≠0.∴函数的定义域为(-∞,0)∪(0,+∞).(2)解 由于函数f (x )的定义域关于原点对称,f (-x )=⎝⎛⎭⎫12-x -1+12·(-x )3 =-⎝⎛⎭⎫2x 1-2x +12x 3=⎝⎛⎭⎫12x -1+12·x 3 =f (x ),所以f (x )为偶函数.(3)证明 当x >0时,12x -1>0,x 3>0, ∴f (x )>0,又∵f (x )为偶函数,∴x <0时,f (x )>0,综上所述,对于定义域内的任意x 都有f (x )>0.。
2023年高三数学指数学案

平陆中学高三年级理科数学学案《指数与指数函数》学习目标1. 能够准确熟练进行知识点梳理;2. 能够熟练进行指数运算,保证每一步骤的正确性;3. 会画指数函数及指数型函数的图象,并且会根据图象熟练总结指数函数的性质,进而可以运用性质解决几类问题;4. 能够分析与指数函数相关的复合函数的性质,达到解决问题的目的。
学习重点理解指数函数的图象和性质学习难点掌握指数函数的应用以及求解相关复合函数的性质的方法 学习过程一.知识梳理1.根式 (1)根式的概念①若 ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子 叫做根式,这里 叫做根指数, 叫做被开方数. ②a 的n 次方根的表示:x n=a ⇒ x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mn= (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:a -m n = = (a >0,m ,n ∈N *,且n >1). ③0的正分数指数幂等于 ,0的负分数指数幂 .(2)有理数指数幂的运算性质 ①a r a s = (a >0,r ,s ∈Q ). ②(a r )s = (a >0,r ,s ∈Q ). ③(ab )r = (a >0,b >0,r ∈Q ). 3.指数函数的图象及性质判断正误(正确的打“√”,错误的打“×”) (1)4(π-4)4=π-4.( )(2)n a n 与(na )n 都等于a (n ∈N *).( ) (3)(-1)24=(-1)12=-1.( ) (4)函数y =3·2x 与y =2x+1都不是指数函数.( )(5)若a m >a n ,则m >n .( )(教材习题改编)有下列四个式子: ① 3(-8)3=-8;②(-10)2=-10; ③4(3-π)4=3-π;④2 018(a -b )2 018=a -b .其中正确的个数是( ) A .1 B .2 C .3D .4(2018·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A .y =1-x B .y =|x -2| C .y =2x -1D .y =log 2(2x )函数f (x )=1-e x 的值域为________.(教材习题改编)若指数函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________.三.典例分析例题一. 化简下列各式:(1)0.027-13-⎝⎛⎭⎫17-2+⎝⎛⎭⎫27912-(2-1)0; (2)⎝⎛⎭⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【方法总结】例题二. 若方程|3x -1|=k 有一解,则k 的取值范围为________.【方法总结】1.指数函数图象的画法及应用(1)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.2. 指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度:(1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质. 例题三.(1) 比较指数幂的大小已知a =⎝⎛⎭⎫1223,b =2-43,c =⎝⎛⎭⎫1213,则下列关系式中正确的是( ) A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2) 解简单的指数方程或不等式设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)(3)研究指数型函数的性质函数y =(12)x 2+2x -1的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞) 【方法总结】四.巩固练习1. 化简下列各式:(1)(0.027)23+⎝⎛⎭⎫27125-13-⎝⎛⎭⎫2790.5; (2)⎝⎛⎭⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.2. (1) 函数f (x )=1-e |x |的图象大致是( )(2) 若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.3.已知函数y =9x +m ·3x -3在区间[-2,2]上单调递减,则m 的取值范围为________.五.课堂小结六.作业㈠.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值. ㈡基础达标1.化简4a 23·b -13÷⎝⎛⎭⎫-23a -13b 23的结果为( )A .-2a 3bB .-8a bC .-6a bD .-6ab2.(2017·高考北京卷)已知函数f (x )=3x-⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数3.(2018·湖北四市联考)已知函数f (x )=2x -2,则函数y =|f (x )|的图象可能是( )4.若2x 2+1≤⎝⎛⎭⎫14x -2,则函数y =2x 的值域是( )A .[18,2)B .[18,2]C .(-∞,18]D .[2,+∞)5.若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]6.化简:⎝⎛⎭⎫2350+2-2×⎝⎛⎭⎫214-12-(0.01)0.5=________. 7.(2018·陕西西安模拟)若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎝⎛⎭⎫x 0,13,则函数f (x )在[0,3]上的最小值等于________.8.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 9.已知函数f (x )=⎝⎛⎭⎫23|x |-a.(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值.10.已知函数f (x )=a |x +b |(a >0,a ≠1,b ∈R ). (1)若f (x )为偶函数,求b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求a ,b 应满足的条件.1.(2018·河南濮阳检测)若“m >a ”是函数“f (x )=⎝⎛⎭⎫13x+m -13的图象不过第三象限”的必要不充分条件,则实数a 能取的最大整数为( ) A .-2 B .-1 C .0 D .12.(2017·高考全国卷Ⅰ)设x ,y ,z 为正数,且2x =3y =5z ,则( ) 3.若不等式(m 2-m )2x -⎝⎛⎭⎫12x<1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是________.4.已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.5.已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0. 6.已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2).(1)若λ=32,求函数f (x )的值域;(2)若函数f (x )的最小值是1,求实数λ的值.。
2020-2021高中数学人教版第一册学案:4.2.1指数函数的概念含解析

新教材2020-2021学年高中数学人教A版必修第一册学案:4.2.1指数函数的概念含解析4.2指数函数4.2.1指数函数的概念[目标] 1。
能说出指数函数的定义;2。
记住指数函数的图象与性质;3.会用指数函数的图象与性质解答有关问题.[重点] 指数函数的概念、图象、性质.[难点] 指数函数性质的概括总结.知识点一指数函数的概念[填一填]一般地,函数y=a x(a〉0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.[答一答]1.下列函数是指数函数吗?①y=3x+1;②y=3x+1;③y=3×2x;④y=5x+2-2.提示:它们都不满足指数函数的定义,所以都不是指数函数.2.指数函数定义中为什么规定a〉0且a≠1?提示:①如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义.②如果a〈0,例如y=(-4)x,这时对于x=错误!,错误!,…,在实数范围内的函数值不存在.③如果a=1,则y=1x是一个常量,无研究的必要.为了避免上述各种情况,所以规定a〉0且a≠1.知识点二指数函数的图象和性质[填一填][答一答]3.观察同一直角坐标系中函数y=2x,y=3x,y=4x,y=(错误!)x,y=(错误!)x,y=(错误!)x的图象如图所示,能得到什么规律?提示:(1)当a>1时,a的值越大,图象越靠近y轴,递增速度越快.(2)当0<a〈1时,a的值越小,图象越靠近y轴,递减的速度越快.(3)底数互为倒数时,图象关于y轴对称,即y=a x与y=错误!x 图象关于y轴对称.4.怎样快速画出指数函数y=a x(a〉0,且a≠1)的图象?提示:由指数函数y=a x(a>0,且a≠1)的性质知,指数函数y=a x(a〉0,且a≠1)的图象恒过点(0,1),(1,a),(-1,错误!),只要确定了这三个点的坐标,即可快速地画出指数函数y=a x(a〉0,且a≠1)的图象.类型一指数函数的概念[例1](1)下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=πxC.y=-4x D.y=a x+2(a>0,a≠1)(2)若y=(a2-3a+3)a x是指数函数,则()A .a =1或2B .a =1C .a =2D .a >0且a ≠1(3)已知函数f (x )为指数函数,且f 错误!=错误!,则f (-2)=________。
指数函数学案

3.1.2 指数函数学习目标:1、理解指数函数的概念,明确其图象形状。
2、通过指数函数的图象,研究指数函数的性质。
3、应用指数函数的性质解决简单的问题。
B 案使用说明:认真阅读课本,完成以下题目,做好疑难标记准备讨论。
1、认真阅读课本P85左边的“百万富翁”和“细胞分裂”的故事,体会“指数爆炸”的事实。
2、一般地,函数叫做指数函数。
思考:什么样的函数才是指数函数? 训练1:判断下列函数是否为指数函数 ①y=4x ②y=x 4 ③y=—4x④y=(—4)x⑤y=πx⑥y=xx⑦y=2x+22、a 为何值时,y=(a 2—3)·a x 是指数函数?3、在同一坐标系中作出y=2x 与y=(21)x 的图象。
x … —3 —2 —1 0 1 2 3 … y=2x… … y=x21……C 案使用说明:1、将自学中遇到的问题组内交流标记好疑难点。
2、组内解决不了的问题直接提出来作为全班展示。
[合作探究一] 在B 案第3个问题中已作出y=2x和y=(21)x 的图象,请在此基础上再做出y=3x和y=(31)x 的图象。
总结:根据图象总结指数函数的图象与性质a>10<a<1图象性质(1)定义域 值域 (2)图象经过定点(3)x>0时y x<0时y x>0时y x<0时y (4)单调性1、当a>0且a ≠1时,y=a x 与y=(a1)X 的图象对称。
2、指数函数中为何规定a>0且a ≠1? 例1 求下列函数的定义域 (1)y=33-x(2)y=x5-11变式训练:解不等式 (1)(31)8—2x>3—2x(2)a 2x —7>a 4x —1(a>0且a ≠1)小结:(1)解指数不等式,需化为a f(x)<ag(x)形式。
(2)正确运用指数函数单调性(3)要有分类讨论的意识[合作探究二] 例2 比较大小:(1)1.7321.743(2)0.8-1 0.8-2(3)1.70.30.93.1 (4)1.70.31.50.3小结:(1)灵活运用“0,1”作辅助,比较大小(2)同一坐标系中y=a x,a 取不同值时图象的变化规律变式:根据下图比较大小则a 、b 、c 、d 、l 的大小关系为当堂检测:1、函数y=(a 2—3a+3)·a x 是指函数,则有A 、a=1或2B 、a=1C 、a=2D 、a>0且a ≠12、如果函数f(x)=(1—2a)x在实数集R 上是减函数,则a 的取值范围是A 、(21,+∞)B 、(0,21) C 、(—∞,21) D 、(—21,21)3、函数y=a x在[0,1]上最大值与最小值和为3,则a 等于A 、21 B 、2 C 、4 D 、414、比较大小:(1)0.9a 0.9a-1 1.1a-2 1.1a-2.1(2)已知a=0.80.7,b=0.80.9,c=1.20.8则a 、b 、c 大小关系是A 案1、求定义域 (1)y=x3—1(2)y=x)21(—12、已知f (x )定义域为(0,1),则函数f (3—x)的定义域为 。
指数函数学案

2.2.2 指数函数(1)南大附中 张子超学习目标:1、掌握指数函数的概念(能理解对a 的限定)。
2、会作出指数函数的图像,能归纳出指数函数的几个基本性质。
3、能运用指数函数的性质解题。
教学过程:一、情境引入情境(一):庄子曰:一尺之棰,日取其半 ,万世不竭。
若设木棒长度为y ,经历天数为x ,那么x 与y 的关系是什么?情境(二):某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……一个细胞分裂x 次后,得到细胞的个数为y ,则y 与x 的关系是什么呢?二、数学建构思考:上面情境中的关系式与2x y =有什么不同?1、指数函数的定义:2、在定义中为什么要规定 (a >0且a ≠1)?3、指数函数的图象在同一坐标系画出(1)x y 2=,(2)xy )21(=的图象,4、观察并总结函数y =a x三、例题讲解例1,比较下列数的大小。
(1)2.35.25.1,5.1 (2)5.12.15.0,5.0 (3)2.13.08.0,5.1练一练1,比较下列各题中数值的大小(1)7.08.03,3 (2)5.3201.1,01.1 (3)1.33.09.0,7.12,在横线上填上适当的符号(<,>,=)(1)2.34.05____5-;(2)7.529.0____9.0;(3)2.13.28.1____7.2-;(4)7.27.25.0____2- 例2,解不等式82<x变一:812<x , 变二:22>x例3,解不等式93222+-<x x 。
变一:932)21(2-<x x , 变二:384+-<x x例4,求下列函数的定义域(1)221-=x y (2)x y )21(1-=四、形成性检测1、比较大小并填上适当的符号(1)2.37.23.1___3.1;(2)5.62.53.0___3.0;(3)2.23.06.0___7.3 2、解不等式8)21(2<-x3、求函数x y )31(3-=。
指数函数教案(优秀5篇)

指数函数教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!指数函数教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2《指数函数》学案(一)
姜永章 刘欢 张志华 2012.10.13 一、课标点击 (一)学习目标:
1、理解指数的定义并掌握指数函数的图象和性质;
2、能够利用指数函数的图象和性质解决有关问题。
(二)学习重、难点:
重点:指数函数的图象和性质
难点:指数函数的图象和性质的应用 (三)教学方法
自主探究,合作交流。
二、学习探究 问题1:
1、某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的
细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么?
2、质量为1的一种放射性物质不断地衰变为其他物质,每经过一年剩留的质量约为原来的50%,求这种物质的剩留量y 与时间 x 的函数关系。
观察你写的两个函数解析式,它们的共同特征是什么?你能写出这类解析的一般形式吗?
学习探究(一)
1、指数函数的定义: 。
2、小练习
指出下列函数哪些是指数函数:
① x y 4=; ② x y 4-=; ③ x y )4(-=; ④ x y π=; ⑤24x y =; ⑥x y 32•=; ⑦(21)x y a =-(12
1
≠>a a 且)
3、思考与讨论:
(1)为什么指数函数的定义中要规定a>0,且a ≠1呢?
(2)如何判断一个函数是否为指数函数?
问题2、
作函数x y 2=与x y )2
1
(=的图象,并观察图象指出它们的性质。
学习探究(二)
1
2、思考与讨论:
(1)底数大小与函数单调性的关系?
(2)指数函数,0(>=a a y x 且1≠a ),x 取何值时,1>y ?x 取何值时,10<<y ?
(3)在同一坐标系中作出函数x y 2=,x y )21(=,x y 3=,x y )3
1
(=的图象,并
观察指数函数图象的位置与底数大小的关系?
3、小练习:
曲线 43,21,,C C C C 分别是指数函数
x x x x d y c y b y a Y ====,,,的图象,则 a,b,c,d 与1的大小关系是 ( ).
(A)a<b<1<c<d (B)b<a<1<c<d (c)a<b<1<d<c (D)b<a<1<d<c
三、典例示范
【例1】已知)(x f y =是指数函数,且4)2(=f ,求函数)(x f y =的解析式。
【例2】利用指数函数的性质,比较下列各题中两个值的大小: (1)α7.1与17.1+α; (2)1.08.0-与2.08.0-;
(3)3.08.1与1.39.0 (4)已知b a )7
4
()74(>,比较b a ,的大小。
四、变式拓展:
1、已知7.08.0=a ,9.08.0=b ,8.02.1=c ,按大小顺序排列c b a ,,
五、归纳总结
结合本节课的学习谈谈你的收获和体会。
六、课后作业:93页 A 2 B 1,2,3。