2016届高考数学一轮复习教学案(基础知识+高频考点+解题训练)指数与指数函数(含解析)

合集下载

高考文科数学一轮复习经典教案(带详解)第二章第5节:指数与指数函数

高考文科数学一轮复习经典教案(带详解)第二章第5节:指数与指数函数

第5节 指数与指数函数【最新考纲】 1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象;4.体会指数函数是一类重要的函数模型.【高考会这样考】 1.考查指数函数的求值、指数函数的图像和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用.要 点 梳 理1.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(n a )n =a (a 使n a 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .3.指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质[友情提示]1. 根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.2. 指数函数的单调性是底数a 的大小决定的,因此解题时通常对底数a 按:0<a <1和a >1进行分类讨论.3. 比较指数式的大小方法:利用指数函数单调性、利用中间值.基 础 自 测1.思考辨析(在括号内打“√”或“×”) (1)4(-4)4=-4.( ) (2)(-1)24=(-1)12=-1.( ) (3)函数y =2x -1是指数函数.( ) (4)函数y =a x2+1(a >1)的值域是(0,+∞).( )解析 (1)由于4(-4)4=444=4,故(1)错.(2)(-1)24=4(-1)2=1,故(2)错.(3)由于指数函数解析式为y =a x (a >0,且a ≠1), 故y =2x-1不是指数函数,故(3)错.(4)由于x 2+1≥1,又a >1,∴ax 2+1≥a . 故y =ax 2+1(a >1)的值域是[a ,+∞),(4)错.答案 (1)× (2)× (3)× (4)×2.若函数f (x )=a x (a >0,且a ≠1)的图象经过⎝ ⎛⎭⎪⎫2,13,则f (-1)=( ) A.1B.2C. 3D.3解析 依题意可知a 2=13,解得a =33, 所以f (x )=⎝⎛⎭⎫33x ,所以f (-1)=⎝⎛⎭⎫33-1= 3.答案 C3.已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x,则f (x )( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数解析 ∵函数f (x )的定义域为R , f (-x )=3-x-⎝⎛⎭⎫13-x =⎝⎛⎭⎫13x-3x =-f (x ), ∴函数f (x )是奇函数. ∵函数y =⎝⎛⎭⎫13x在R 上是减函数, ∴函数y =-⎝⎛⎭⎫13x在R 上是增函数. 又∵y =3x在R 上是增函数, ∴函数f (x )=3x-⎝⎛⎭⎫13x在R 上是增函数.答案 B4.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A.a <b <cB.a <c <bC.b <a <cD.b <c <a解析 根据指数函数y =0.6x 在R 上单调递减可得0.61.5<0.60.6<0.60=1,而c =1.50.6>1,∴b <a <c . 答案 C5.已知函数f (x )=a x -2+2的图象恒过定点A ,则A 的坐标为( ) A.(0,1)B.(2,3)C.(3,2)D.(2,2)解析 由a 0=1知,当x -2=0,即x =2时,f (2)=3,即图象必过定点(2,3). 答案 B错误!题型分类错误!考点突破考点一 指数幂的运算【例1】 化简下列各式: (1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·(-3a -12b -1)÷⎝ ⎛⎭⎪⎫4a 23·b -312. 解 (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012 =1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷(4a 23·b -3)12=-54a -16b -3÷(a 13b -32)=-54a -12·b -32=-54·1ab3 =-5ab 4ab 2. 规律方法 1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序. 2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【变式练习1】 化简下列各式:(1)[(0.06415)-2.5]23-3338-π0; (2)(a 23·b -1)-12·a -12·b 136a ·b 5.解 (1)原式=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫641 00015-5223-⎝ ⎛⎭⎪⎫27813-1 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫410315×⎝ ⎛⎭⎪⎪⎫-52×23-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32313-1=52-32-1=0.(2)原式=a -13b 12·a -12b 13a 16b 56=a -13-12-16·b 12+13-56=1a . 考点二 指数函数的图象及应用【例2】 (1)函数f (x )=1-e |x |的图象大致是( )(2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.解析(1)f(x)=1-e|x|是偶函数,图象关于y轴对称,又e|x|≥1,∴f(x)的值域为(-∞,0],因此排除B,C,D,只有A满足.(2)曲线|y|=2x+1与直线y=b的图象如图所示,由图象可知:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案(1)A(2)[-1,1]规律方法 1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.2.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解. 【变式练习2】(1)函数f(x)=a x-1(a>0,a≠1)的图象恒过点A,下列函数中图象不经过点A的是()A.y=1-xB.y=|x-2|C.y=2x-1D.y=log2(2x)(2)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.解析(1)由题意,得点A(1,1),将点A(1,1)代入四个选项,y=1-x的图象不过点A(1,1).(2)将函数f(x)=|2x-2|-b的零点个数问题转化为函数y=|2x-2|的图象与直线y=b的交点个数问题,数形结合求解.在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示.∴当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.∴b的取值范围是(0,2).答案 (1)A (2)(0,2)考点三 指数函数的性质及应用(易错警示)【例3】 (1)若函数f (x )=⎝ ⎛⎭⎪⎫13ax 2+2x +3的值域是⎝ ⎛⎦⎥⎤0,19,则f (x )的单调递增区间是________.(2)下列各式比较大小正确的是( ) A.1.72.5>1.73 B.0.6-1>0.62 C.0.8-0.1>1.250.2D.1.70.3<0.93.1解析 (1)令g (x )=ax 2+2x +3, 由于f (x )的值域是⎝⎛⎦⎤0,19, 所以g (x )的值域是[2,+∞). 因此有⎩⎪⎨⎪⎧a >0,12a -44a =2,解得a =1,这时g (x )=x 2+2x +3,f (x )=⎝⎛⎭⎫13x 2+2x +3. 由于g (x )的单调递减区间是(-∞,-1], 所以f (x )的单调递增区间是(-∞,-1].(2)A 中,∵函数y =1.7x 在R 上是增函数,2.5<3, ∴1.72.5<1.73,错误;B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;C 中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误;D 中,∵1.70.3>1, 0<0.93.1<1, ∴1.70.3>0.93.1,错误.故选B. 答案 (1)(-∞,-1] (2)B规律方法 1.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.易错警示 在研究指数型函数的单调性时,当底数a 与“1”的大小关系不确定时,要分类讨论.【变式练习3】 (1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.c <a <b C.a <c <bD.c <b <a(2)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________.解析 (1)由函数f (x )=2|x -m |-1为偶函数,得m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0), 故b >a >c .(2)原不等式变形为m 2-m <⎝⎛⎭⎫12x,又y =⎝⎛⎭⎫12x 在(-∞,-1]上是减函数,知⎝⎛⎭⎫12x≥⎝⎛⎭⎫12-1=2.故原不等式恒成立等价于m 2-m <2,解得-1<m <2. 答案 (1)B (2)(-1,2)错误!课后练习A 组 (时间:40分钟)一、选择题1.若a =⎝ ⎛⎭⎪⎫23x,b =x 2,c =log 23x ,则当x >1时,a ,b ,c 的大小关系是( )A.c <a <bB.c <b <aC.a <b <cD.a <c <b解析 当x >1时,0<a =⎝ ⎛⎭⎪⎫23x <23,b =x 2>1,c =log 23x <0,所以c <a <b .答案 A2.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A.a 12 B.a 56 C.a 76 D.a 32解析 原式=a2a ⎝ ⎛⎭⎪⎫1+23×12=a 2a 56=a 76. 答案 C3.设x >0,且1<b x <a x ,则( ) A.0<b <a <1 B.0<a <b <1 C.1<b <aD.1<a <b解析 ∵x >0时,1<b x ,∴b >1. ∵x >0时,b x<a x,∴x >0时,⎝ ⎛⎭⎪⎫a b x>1.∴ab >1,∴a >b ,∴1<b <a . 答案 C4.函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A.a >1,b <0 B.a >1,b >0 C.0<a <1,b >0 D.0<a <1,b <0解析 由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. 答案 D 5.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( ) A.(-∞,2] B.[2,+∞) C.[-2,+∞)D.(-∞,-2]解析 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 答案 B 二、填空题 6.不等式2x 2-x<4的解集为________. 解析 ∵2x2-x<4,∴2x2-x<22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2. 答案 {x |-1<x <2}7.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析 若a >1,则f (x )=a x +b 在[-1,0]上是增函数,∴⎩⎨⎧a -1+b =-1,1+b =0,则a -1=0,无解. 当0<a <1时,则f (x )=a x +b 在[-1,0]上是减函数, 所以⎩⎨⎧1+b =-1,a -1+b =0,解得⎩⎪⎨⎪⎧a =12,b =-2,因此a +b =-32. 答案 -328.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |, e |x -2|},则f (x )的最小值为________.解析 f (x )=⎩⎨⎧e x,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e x ≥e(x =1时,取等号), 当x <1时,f (x )=e |x -2|=e 2-x >e , 因此x =1时,f (x )有最小值f (1)=e.答案 e 三、解答题9.已知f (x )=⎝ ⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1). (1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立. 解 (1)由于a x -1≠0,则a x ≠1,得x ≠0, 所以函数f (x )的定义域为{x |x ≠0}. 对于定义域内任意x ,有 f (-x )=⎝ ⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫ax1-a x +12(-x )3 =⎝⎛⎭⎪⎫-1-1a x-1+12(-x )3=⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况, 当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0, 即1a x -1+12>0,即a x +12(a x -1)>0,则a x >1. 又∵x >0,∴a >1.因此当a 的取值范围为(1,+∞)时,f (x )>0. 10.已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.解 (1)由已知得⎝ ⎛⎭⎪⎫12-a=2,解得a =1.(2)由(1)知f (x )=⎝ ⎛⎭⎪⎫12x,又g (x )=f (x ),则4-x-2=⎝ ⎛⎭⎪⎫12x,∴⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0, 令⎝ ⎛⎭⎪⎫12x =t ,则t >0,t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x =2,解得x =-1, 故满足条件的x 的值为-1.B 组 (时间:20分钟)11.设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎨⎧f (x ),f (x )≤K ,K ,f (x )>K ,给出函数f (x )=2x +1-4x ,若对于任意的x ∈(-∞,1],恒有f K (x )=f (x ),则( )A.K 的最大值为0B.K 的最小值为0C.K 的最大值为1D.K 的最小值为1解析 对于任意的x ∈(-∞,1],恒有f K (x )=f (x ),则f (x )≤K 在(-∞,1]上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],y =-t 2+2t =-(t -1)2+1,可得y 的最大值为1,故K ≥1.答案 D12.函数f (x )=x 2-bx +c 满足f (x +1)=f (1-x ),且f (0)=3,则f (b x )与f (c x )的大小关系是________.解析 由f (x +1)=f (1-x )知y =f (x )的图象关于x =1对称,∴b =2.又f (0)=3,得c =3.则f (b x )=f (2x ),f (c x )=f (3x ).当x ≥0时,3x ≥2x ≥1,且f (x )在[1,+∞)上是增函数,∴f (3x )≥f (2x ).当x <0时,0<3x <2x <1,且f (x )在(-∞,1]上是减函数,∴f (3x )>f (2x ),从而有f (c x )≥f (b x ).答案 f (c x )≥f (b x )13.已知定义在R 上的函数f (x )=2x -12|x |,(1)若f (x )=32,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.解 (1)当x <0时,f (x )=0,故f (x )=32无解;当x ≥0时,f (x )=2x -12x ,由2x-12x =32,得2·22x -3·2x -2=0, 将上式看成关于2x 的一元二次方程,解得2x =2或2x =-12,因为2x >0,所以2x =2,所以x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1),因为22t -1>0,所以m ≥-(22t +1),因为t ∈[1,2],所以-(22t +1)∈[-17,-5],故实数m 的取值范围是[-5,+∞).。

高考数学一轮复习 第二章 函数2.5指数与指数函数教学案 理

高考数学一轮复习 第二章 函数2.5指数与指数函数教学案 理

2.5 指数与指数函数考纲要求1.了解指数函数模型的实际背景.2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.1.根式(1)根式的概念(2)两个重要公式①na n =⎩⎨⎧n为奇数,|a|=⎩⎪⎨⎪⎧,a≥0,,a<0n为偶数;②(na)n=______(n>1且n∈N*)(注意a必须使na有意义).2.实数指数幂(1)分数指数幂的表示①正数的正分数指数幂的意义是mna=______(a>0,m,n∈N*,n>1).②正数的负分数指数幂的意义是mna-=______=1na m(a>0,m,n∈N*,n>1).③0的正分数指数幂是____,0的负分数指数幂无意义.(2)有理指数幂的运算性质①a r a s=____(a>0,r,s∈Q);②(a r)s=____(a>0,r,s∈Q);③(ab)r=____(a>0,b>0,r∈Q).(3)无理指数幂一般地,无理指数幂aα(a>0,α是无理数)是一个____的实数,有理指数幂的运算法则________于无理指数幂.函数y=a x(a>0,且a≠1)图象0<a<1a>1 图象特征在x轴______,过定点________当x逐渐增大时,图象逐渐下降当x逐渐增大时,图象逐渐上升性质定义域__________值域__________单调性在R上__________在R上__________函数值变化规律当x=0时,__________当x<0时,__________;当x>0时,__________当x<0时,__________;当x>0时,__________ 1.化简416x8y4(x<0,y<0)得( ).A .2x 2yB .2xyC .4x 2yD .-2x 2y2.函数y =(a 2-3a +3)a x是指数函数,则有( ). A .a =1或a =2 B .a =1C .a =2D .a >0且a ≠13.把函数y =f (x )的图象向左、向下分别平移2个单位长度得到函数y =2x的图象,则( ).A .f (x )=2x +2+2B .f (x )=2x +2-2C .f (x )=2x -2+2D .f (x )=2x -2-24.函数y =xa x|x |(0<a <1)图象的大致形状是( ).5.函数f (x )=223xx a+-+m (a >1)恒过点(1,10),则m =__________.一、指数式与根式的计算【例1】 计算下列各式的值.(1)23278-⎛⎫- ⎪⎝⎭+12(0.002)--10(5-2)-1+(2-3)0; (2)15+2-(3-1)0-9-45;111143342()a b a b-a >0,b >0).方法提炼指数幂的化简与求值(1)化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序.提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算.(2)结果要求:①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂的形式给出,则结果用分数指数幂的形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂.请做演练巩固提升4二、指数函数的图象与性质的应用【例2-1】 在同一坐标系中,函数y =2x与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( ).A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称【例2-2】 已知函数f (x )=24313ax x -+⎛⎫ ⎪⎝⎭.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.【例2-3】 k 为何值时,方程|3x-1|=k 无解?有一解?有两解? 方法提炼1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.2. 如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系及规律如下:图中直线x =1与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c >d >1>a >b ,即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.3.与指数函数有关的复合函数的单调性的求解步骤: (1)求复合函数的定义域;(2)弄清函数是由哪些基本函数复合而成的; (3)分层逐一求解函数的单调性;(4)求出复合函数的单调区间(注意“同增异减”).4.函数y =a f (x )的值域的求解,先确定f (x )的值域,再根据指数函数的单调性确定y =a f (x )的值域.请做演练巩固提升2三、指数函数的综合应用 【例3】已知f (x )=aa 2-1(a x -a -x)(a >0且a ≠1). (1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围. 方法提炼1.利用指数函数的性质解决相关的综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论.2.解决恒成立问题,一般需通过分离变量,通过转化为求函数的最值来实现. 请做演练巩固提升5忽略0<a <1或弄错x 的范围而致误【典例】 (12分)已知函数y =b +22x xa +(a ,b 是常数且a >0,a ≠1)在区间⎣⎢⎡⎦⎥⎤-32,0上有y max =3,y min =52,试求a ,b 的值.分析:先确定t =x 2+2x 在⎣⎢⎡⎦⎥⎤-32,0上的值域,再分a >1,0<a <1两种情况讨论,构建关于a ,b 的方程组求解.规范解答:∵x ∈⎣⎢⎡⎦⎥⎤-32,0, ∴t =x 2+2x =(x +1)2-1,值域为[-1,0],即t ∈[-1,0].(2分)(1)若a >1,函数y =a t在[-1,0]上为增函数,∴a t∈⎣⎢⎡⎦⎥⎤1a ,1,则b +22x x a +∈⎣⎢⎡⎦⎥⎤b +1a,b +1,依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.(7分)(2)若0<a <1,函数y =a t在[-1,0]上为减函数,∴a t∈⎣⎢⎡⎦⎥⎤1,1a ,则b +22x x a +∈⎣⎢⎡⎦⎥⎤b +1,b +1a ,(9分)依题意得⎩⎪⎨⎪⎧b +1a=3,b +1=52,解得⎩⎪⎨⎪⎧ a =23,b =32.综上,所求a ,b 的值为⎩⎪⎨⎪⎧a =2,b =2或⎩⎪⎨⎪⎧a =23,b =32.(12分)答题指导:1.在解答本题时,有两大误区:(1)误将x 的范围当成x 2+2x 的范围,从而造成失误.(2)误认为a >1,只按第(1)种情况求解,而忽略了0<a <1的情况,从而造成失误. 2.利用指数函数的图象、性质解决有关问题时,还有以下几个误区,在备考中要高度关注:(1)忽视函数的定义域而失误;(2)未能将讨论的结果进行整合而失误; (3)利用幂的运算性质化简指数式时失误; (4)在用换元法时忽视中间元的范围而失误.1.(2012天津高考)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ).A .c <b <aB .c <a <bC .b <a <cD .b <c <a2.在同一个坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0且a ≠1,则下列所给图象中可能正确的是( ).3.类比“两角和与差的正、余弦公式”的形式,对于给定的两个函数,S (x )=a x -a -x2,C (x )=a x +a -x2,其中a >0且a ≠1,下面正确的运算公式是( ).①S (x +y )=S (x )C (y )+C (x )S (y ); ②S (x -y )=S (x )C (y )-C (x )S (y ); ③C (x -y )=C (x )C (y )-S (x )S (y ); ④C (x +y )=C (x )C (y )+S (x )S (y ).A .①③B .②④C .①④D .①②③④4.计算⎝ ⎛⎭⎪⎫lg 14-lg 25÷12100-=__________.5.若函数y =a ·2x -1-a2x-1为奇函数.(1)求a 的值;(2)求函数的定义域; (3)讨论函数的单调性.参考答案基础梳理自测知识梳理1.(1)x n=a 正数 负数 两个 相反数 (2)①a a -a ②a2.(1)①na m②1m na③0 (2)①ar +s②a rs③a r b r(3)确定 同样适用 3.上方 (0,1) R (0,+∞) 递减递增 y =1 y >1 0<y <1 0<y <1 y >1 基础自测1.D 解析:416x 8y 4=1844(16)x y =148442()()x y ⎡⎤⋅-⋅-⎣⎦ =1114844442()()x y ⨯⨯⨯⋅-⋅-=2(-x )2(-y )=-2x 2y .2.C 解析:由已知,得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1,即⎩⎪⎨⎪⎧a 2-3a +2=0,a >0且a ≠1.∴a =2.3.C 解析:因为将函数y =2x 的图象向上平移2个单位长度得到函数y =2x+2的图象,再向右平移2个单位长度得到函数y =2x -2+2的图象,所以,函数f (x )的解析式为f (x )=2x -2+2.4.D 解析:当x >0时,y =a x ;当x <0时,y =-a x.故选D. 5.9 解析:f (x )=223x x a +-+m 在x 2+2x -3=0时过定点(1,1+m )或(-3,1+m ),∴1+m =10,解得m =9. 考点探究突破【例1】 解:(1)原式==2132850027⎛⎫-+ ⎪⎝⎭-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1. (3)原式=1213233211233()a b a b ab a b-=3111111226333ab +-++--=ab -1.【例2-1】A 解析:∵y =⎝ ⎛⎭⎪⎫12x =2-x,∴它与函数y =2x的图象关于y 轴对称.【例2-2】解:(1)当a =-1时,f (x )=24313x x --+⎛⎫ ⎪⎝⎭,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13g (x )在R 上单调递减.所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增, 即函数f (x )的递增区间是(-2,+∞),递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,y =⎝ ⎛⎭⎪⎫13h (x ). 由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.【例2-3】 解:函数y =|3x -1|的图象是由函数y =3x的图象向下平移一个单位长度后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同交点,所以方程有两解. 【例3】 解:(1)函数定义域为R ,关于原点对称.又∵f (-x )=aa 2-1(a -x -a x)=-f (x ), ∴f (x )为奇函数.(2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数,从而y =a x -a -x为增函数, ∴f (x )为增函数.当0<a <1时,a 2-1<0,y =a x 为减函数,y =a -x 为增函数,从而y =a x -a -x为减函数,∴f (x )为增函数.故当a >0且a ≠1时,f (x )在定义域内单调递增. (3)由(2)知f (x )在R 上是增函数, ∴f (x )在区间[-1,1]上为增函数. ∴f (-1)≤f (x )≤f (1).∴f (x )min =f (-1)=aa 2-1(a -1-a ) =aa 2-1·1-a2a=-1. ∴要使f (x )≥b 在[-1,1]上恒成立,则只需b ≤-1,故b 的取值范围是(-∞,-1]. 演练巩固提升1.A 解析:a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8=20.8,∵21.2>20.8>1,∴a >b >1,c =2log 52=log 54<1. ∴c <b <a .2.D 解析:若a >1,则y =a x是增函数,且y =sin ax 的周期T =2πa<2π;若0<a <1,则y =a x 是减函数,且y =sin a x的周期T =2πa>2π.3.A 解析:∵S (x +y )=a x +y -a-(x +y )2,S (x )C (y )+C (x )S (y )=a x -a -x 2·a y +a -y2+a x +a -x 2·a y -a -y 2=a x +y +a x -y -a y -x -a -(x +y )4+a x +y -a x -y +a y -x -a -(x +y )4=2a x +y -2a -(x +y )4=a x +y -a -(x +y )2=S (x +y ),故①正确;同理可知③也正确.故选A.4.-20 解析:(lg 14-lg 25)÷12100-=lg(14×125)÷121100=lg 1100÷1100=lg 10-2×100=-2×10=-20.5.解:∵函数y =a ·2x -1-a2x-1, ∴y =a -12x -1.(1)由奇函数的定义, 可得f (-x )+f (x )=0,即a -12-x -1+a -12x -1=0,∴2a +1-2x1-2x =0,∴a =-12.(2)∵y =-12-12x -1,∴2x-1≠0,即x ≠0.∴函数y =-12-12x -1的定义域为{x |x ≠0}.(3)当x >0时,设0<x 1<x 2,则y 1-y 2=2121x --1121x -=122122(21)(21)x x x x ---.∵0<x 1<x 2,∴1<12x <22x.∴12x -22x <0,12x -1>0,22x-1>0.∴y 1-y 2<0,因此y =-12-12x -1在(0,+∞)上单调递增.同样可以得出y =-12-12x -1在(-∞,0)上单调递增.。

苏教版版高考数学一轮复习第二章函数指数与指数函数教学案

苏教版版高考数学一轮复习第二章函数指数与指数函数教学案

1.根式(1)n次方根的概念1若x n=a,则x叫做a的n次方根,其中n>1且n∈N*.式子错误!叫做根式,这里n叫做根指数,a叫做被开方数.2a的n次方根的表示x n=a⇒(2)根式的性质1(错误!)n=a(n∈N*,n>1).2错误!=错误!2.有理数指数幂(1)幂的有关概念30的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的运算性质1a r a s=a r+s(a>0,r,s∈Q);2(a r)s=a rs(a>0,r,s∈Q);3(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1在R上是增函数在R上是减函数错误!1.指数函数图象的画法画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),错误!.2.指数函数的图象与底数大小的比较如图是指数函数(1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b>0.由此我们可得到以下规律:在第一象限内,指数函数y=a x(a >0,a≠1)的图象越高,底数越大.3.指数函数y=a x(a>0,a≠1)的图象和性质跟a的取值有关,要特别注意应分a>1与0<a <1来研究.[答案](1)×(2)×(3)×(4)×二、教材改编1.函数f(x)=21—x的大致图象为()A B C DA[f(x)=21—x=错误!错误!,又f(0)=2,f(1)=1,故排除B,C,D,故选A.]2.若函数f(x)=a x(a>0,且a≠1)的图象经过点P错误!,则f(—1)=________.错误![由题意知错误!=a2,所以a=错误!,所以f(x)=错误!错误!,所以f(—1)=错误!错误!=错误!.]3.化简错误!(x<0,y<0)=________.[答案] —2x2y4.已知a=错误!错误!,b=错误!错误!,c=错误!错误!,则a,b,c的大小关系是________.c<b<a[∵y=错误!错误!是减函数,∴错误!错误!>错误!错误!>错误!错误!,则a>b>1,又c=错误!错误!<错误!错误!=1,∴c<b<a.]考点1指数幂的运算指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.考点2指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.(1)函数f(x)=a x—b的图象如图,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)若曲线y=|3x—1|与直线y=m有两个不同交点,则实数m的取值范围是________.(1)D(2)(0,1)[(1)由f(x)=a x—b的图象可以观察出,函数f(x)=a x—b在定义域上单调递减,所以0<a<1.函数f(x)=a x—b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.故选D.(2)曲线y=|3x—1|的图象是由函数y=3x的图象向下平移一个单位长度后,再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,而直线y=m的图象是平行于x轴的一条直线,它的图象如图所示,由图象可得,如果曲线y=|3x—1|与直线y=m有两个公共点,则m的取值范围是(0,1).][母题探究]1.(变条件)若本例(2)条件变为:方程3|x|—1=m有两个不同实根,则实数m的取值范围是________.(0,+∞)[作出函数y=3|x|—1与y=m的图象如图所示,数形结合可得m的取值范围是(0,+∞).]2.(变条件)若本例(2)的条件变为:函数y=|3x—1|+m的图象不经过第二象限,则实数m 的取值范围是________.(—∞,—1] [作出函数y=|3x—1|+m的图象如图所示.由图象知m≤—1,即m∈(—∞,—1].]应用指数函数图象的技巧(1)画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),错误!.(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.1.函数f(x)=1—e|x|的图象大致是()A BC DA[f(x)=1—e|x|是偶函数,图象关于y轴对称,又e|x|≥1,∴f(x)≤0,符合条件的图象只有A.]2.函数y=a x—b(a>0,且a≠1)的图象经过第二、三、四象限,则a b的取值范围是________.(0,1)[因为函数y=a x—b的图象经过第二、三、四象限,所以函数y=a x—b单调递减且其图象与y轴的交点在y轴的负半轴上.令x=0,则y=a0—b=1—b,由题意得错误!解得错误!故a b∈(0,1).]3.已知实数a,b满足等式2019a=2020b,下列五个关系式:10<b<a;2a<b<0;30<a<b;4b<a<0;5a=b.其中不可能成立的关系式有________(填序号).34[作出y=2019x及y=2020x的图象如图所示,由图可知a>b>0,a=b=0或a<b<0时,有2019a=2020b,故34不可能成立.]考点3指数函数的性质及应用指数函数性质的应用主要是利用单调性解决相关问题,而指数函数的单调性是由底数a决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论.比较指数式的大小(1)已知a=20.2,b=0.40.2,c=0.40.6,则()A.a>b>cB.a>c>bC.c>a>bD.b>c>a(2)设函数f(x)=x2—a与g(x)=a x(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,则M=(a—1)0.2与N=错误!错误!的大小关系是()A.M=NB.M≤NC.M<ND.M>N(1)A(2)D[(1)由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b>c.因为a=20.2>1,b=0.40.2<1,所以a>b.综上,a>b>c.(2)因为f(x)=x2—a与g(x)=a x(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,所以a>2,所以M=(a—1)0.2>1,N=错误!0.1<1,所以M>N.故选D.]指数式的大小比较,依据的就是指数函数的单调性,原则上化为同底的指数式,并要注意底数范围是(0,1)还是(1,+∞),若不能化为同底,则可化为同指数,或利用中间变量比较,如本例(1).解简单的指数方程或不等式(1)已知函数f(x)=a+错误!的图象过点错误!,若—错误!≤f(x)≤0,则实数x的取值范围是________.(2)方程4x+|1—2x|=11的解为________.(1)错误!(2)x=log23[(1)∵f(x)=a+错误!的图象过点错误!,∴a+错误!=—错误!,即a=—错误!.∴f(x)=—错误!+错误!.∵—错误!≤f(x)≤0,∴—错误!≤错误!—错误!≤0,∴错误!≤错误!≤错误!,∴2≤4x+1≤3,即1≤4x≤2,∴0≤x≤错误!.(2)当x≥0时,原方程化为4x+2x—12=0,即(2x)2+2x—12=0.∴(2x—3)(2x+4)=0,∴2x=3,即x=log23.当x<0时,原方程化为4x—2x—10=0.令t=2x,则t2—t—10=0(0<t<1).由求根公式得t=错误!均不符合题意,故x<0时,方程无解.](1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x).(3)有些含参指数不等式,需要分离变量,转化为求有关函数的最值问题.与指数函数有关的复合函数的单调性(1)函数f(x)=的单调减区间为________.(2)函数f(x)=4x—2x+1的单调增区间是________.(1)(—∞,1] (2)[0,+∞)[(1)设u=—x2+2x+1,∵y=错误!错误!在R上为减函数,所以函数f(x)=的减区间即为函数u=—x2+2x+1的增区间.又u=—x2+2x+1的增区间为(—∞,1],所以f(x)的减区间为(—∞,1].(2)设t=2x(t>0),则y=t2—2t的单调增区间为[1,+∞),令2x≥1,得x≥0,又y=2x 在R上单调递增,所以函数f(x)=4x—2x+1的单调增区间是[0,+∞).][逆向问题] 已知函数f(x)=2|2x—m|(m为常数),若f(x)在区间[2,+∞)上单调递增,则m的取值范围是________.(—∞,4] [令t=|2x—m|,则t=|2x—m|在区间错误!上单调递增,在区间错误!上单调递减.而y=2t在R上单调递增,所以要使函数f(x)=2|2x—m|在[2,+∞)上单调递增,则有错误!≤2,即m≤4,所以m的取值范围是(—∞,4].]求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.指数函数性质的综合应用(1)函数f(x)=a+错误!(a,b∈R)是奇函数,且图象经过点错误!,则函数f(x)的值域为()A.(—1,1)B.(—2,2)C.(—3,3)D.(—4,4)(2)若不等式1+2x+4x·a>0在x∈(—∞,1]时恒成立,则实数a的取值范围是________.(1)A(2)错误![(1)函数f(x)为奇函数,定义域是R,则f(0)=a+错误!=01,函数图象过点错误!,则f(ln 3)=a+错误!=错误!2.结合12可得a=1,b=—2,则f(x)=1—错误!.因为e x>0,所以e x+1>1,所以0<错误!<2,所以—1<1—错误!<1,即函数f(x)的值域为(—1,1).(2)从已知不等式中分离出实数a,得a>—错误!.因为函数y=错误!错误!和y=错误!x在R上都是减函数,所以当x∈(—∞,1]时,错误!错误!≥错误!,错误!错误!≥错误!,所以错误!错误!+错误!错误!≥错误!+错误!=错误!,从而得—错误!≤—错误!.故实数a的取值范围为a>—错误!.]指数函数的综合问题,主要涉及单调性、奇偶性、最值问题,应在有关性质的基础上,结合指数函数的性质进行解决,而指数函数性质的重点是单调性,注意利用单调性实现问题的转化.1.函数y=的值域是()A.(—∞,4)B.(0,+∞)C.(0,4] D.[4,+∞)C[设t=x2+2x—1,则y=错误!错误!.因为0<错误!<1,所以y=错误!错误!为关于t的减函数.因为t=(x+1)2—2≥—2,所以0<y=错误!错误!≤错误!错误!=4,故所求函数的值域为(0,4].]2.已知实数a≠1,函数f(x)=错误!若f(1—a)=f(a—1),则a的值为________.错误![当a<1时,41—a=21,所以a=错误!;当a>1时,代入可知不成立,所以a的值为错误!.]3.设函数f(x)=错误!若f(a)<1,则实数a的取值范围是________.(—3,1)[当a<0时,不等式f(a)<1可化为错误!错误!—7<1,即错误!错误!<8,即错误!错误!<错误!错误!,∴a>—3.又a<0,∴—3<a<0.当a≥0时,不等式f(a)<1可化为错误!<1.∴0≤a<1,综上,a的取值范围为(—3,1).]。

2016届高考数学文一轮复习学案7指数与指数函数

2016届高考数学文一轮复习学案7指数与指数函数

学案7 指数与指数函数导学目标:1.了解指数函数模型的实际背景.2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念,并掌握指数函数的单调性与函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.自主梳理1.指数幂的概念(1)根式如果一个数的n次方等于a(n>1且n∈N*),那么这个数叫做a的n次方根.也就是,若x n=a,则x叫做________,其中n>1且n∈N*.式子na叫做________,这里n叫做________,a叫做____________.(2)根式的性质①当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号________表示.②当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号________表示,负的n次方根用符号________表示.正负两个n次方根可以合写成________(a>0).③(na)n=____.④当n为偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.⑤当n为奇数时,na n=____.⑥负数没有偶次方根.⑦零的任何次方根都是零.2.有理指数幂(1)分数指数幂的表示①正数的正分数指数幂是mna=________(a>0,m,n∈N*,n>1).②正数的负分数指数幂是m na-=____________=______________(a>0,m ,n ∈N *,n>1).③0的正分数指数幂是______,0的负分数指数幂无意义. (2)有理指数幂的运算性质①a r a s=________(a>0,r ,s ∈Q). ②(a r )s =________(a>0,r ,s ∈Q). ③(ab)r =________(a>0,b>0,r ∈Q). 3.指数函数的图象与性质1.下列结论正确的个数是( ) ①当a<0时,232)(a =a 3;②n a n=|a|;③函数y =21)2(-x -(3x -7)0的定义域是(2,+∞); ④若100a=5,10b=2,则2a +b =1. A .0B .1C .2D .32.函数y =(a 2-3a +3)a x是指数函数,则有( ) A .a =1或a =2 B .a =1 C .a =2D .a>0且a ≠13.如图所示的曲线C1,C2,C3,C4分别是函数y=a x,y=b x,y=c x,y=d x的图象,则a,b,c,d的大小关系是( )A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<c<dD.b<a<1<d<c4.若a>1,b>0,且a b+a-b=22,则a b-a-b的值等于( )A. 6 B.2或-2C.-2 D.25.(2011·六安模拟)函数f(x)=a x-b的图象如图,其中a、b为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0探究点一 有理指数幂的化简与求值例1 已知a ,b 是方程9x 2-82x +9=0的两根,且a<b ,求:(1)a -1+b-1(ab)-1;3327a a ÷3a -8·3a 15.变式迁移1 化简3421413223)(ab b a ab b a (a 、b>0)的结果是( )A.b aB .abC.a bD .a 2b探究点二 指数函数的图象及其应用 例2 已知函数y =(13)|x +1|.(1)作出函数的图象(简图); (2)由图象指出其单调区间;(3)由图象指出当x 取什么值时有最值,并求出最值.变式迁移2 (2009·山东)函数y =e x+e-xe x -e-x 的图象大致为( )探究点三 指数函数的性质及应用例3 如果函数y =a 2x +2a x-1(a>0且a ≠1)在区间[-1,1]上的最大值是14,求a 的值.变式迁移3 (2011·龙岩月考)已知函数f(x)=(12x -1+12)x 3.(1)求f(x)的定义域; (2)证明:f(-x)=f(x); (3)证明:f(x)>0.分类讨论思想的应用例 (12分)已知f(x)=a a 2-1(a x -a -x)(a>0且a ≠1).(1)判断f(x)的奇偶性; (2)讨论f(x)的单调性;(3)当x ∈[-1,1]时f(x)≥b 恒成立,求b 的取值范围. 【答题模板】解 (1)函数定义域为R ,关于原点对称. 又因为f(-x)=a a 2-1(a -x -a x)=-f(x),所以f(x)为奇函数.[3分] (2)当a>1时,a 2-1>0,y =a x为增函数,y =a -x为减函数,从而y =a x-a -x为增函数, 所以f(x)为增函数.[5分] 当0<a<1时,a 2-1<0,y =a x为减函数,y =a -x为增函数,从而y =a x-a -x为减函数, 所以f(x)为增函数.故当a>0,且a ≠1时,f(x)在定义域内单调递增.[7分] (3)由(2)知f(x)在R 上是增函数,∴在区间[-1,1]上为增函数, ∴f(-1)≤f(x)≤f(1),∴f(x)min =f(-1)=a a 2-1(a -1-a)=a a 2-1·1-a 2a=-1.[10分]∴要使f(x)≥b 在[-1,1]上恒成立,则只需b ≤-1, 故b 的取值范围是(-∞,-1].[12分] 【突破思维障碍】本例第(2)(3)问是难点,讨论f(x)的单调性对参数a 如何分类,分类的标准和依据是思维障碍之一.【易错点剖析】在(2)中,函数的单调性既与a x -a -x有关,还与a a 2-1的符号有关,若没考虑a a 2-1的符号就会出错,另外分类讨论完,在表达单调性的结论时,要综合讨论分类的情况,如果没有一个总结性的表达也要扣分,在表达时如果不呈现a 的题设条件中的范围也是错误的.1.一般地,进行指数幂的运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于用运算性质进行乘、除、乘方、开方运算,可以达到化繁为简的目的.2.比较两个指数幂大小时,尽量化同底数或同指数,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.3.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c<d<1<a<b.在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小;即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.(满分:75分)一、选择题(每小题5分,共25分) 1.函数y =x2的值域是( ) A .[0,+∞)B .[1,+∞)C .(-∞,+∞)D .[2,+∞)2.(2011·金华月考)函数y =xax|x|(0<a<1)的图象的大致形状是( )3.(2010·重庆)函数f(x)=4x+12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称4.定义运算=⎩⎪⎨⎪⎧a(a ≤b),b(a>b),则函数f(x)=x的图象是( )5.若关于x 的方程|a x-1|=2a(a>0,a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1) C .(1,+∞)D .(0,12)6.(2011·嘉兴月考)函数f(x)=⎩⎪⎨⎪⎧-x +3a ,x<0,a x,x ≥0(a>0且a ≠1)是R 上的减函数,则a 的取值范围是________.7.(2010·江苏)设函数f(x)=x(e x+ae -x),x ∈R 是偶函数,则实数a =________.8.若函数f(x)=a x-1(a>0且a ≠1)的定义域和值域都是[0,2],则实数a 的值为________. 三、解答题(共38分)9.(12分)(2011·衡阳模拟)已知定义域为R 的函数f(x)=-2x+b 2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的取值范围.10.(12分)(2010·北京丰台区期末)已知函数f(x)=3x,f(a +2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a 的值.(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.11.(14分)(2011·东莞模拟)函数y =1+2x+4xa 在x ∈(-∞,1]上y>0恒成立,求a 的取值范围.答案自主梳理1.(1)a 的n 次方根 根式 根指数 被开方数 (2)①n a ②n a -n a ±na ③a ⑤a 2.(1)①n a m ②nm a 11n am③0 (2)①ar +s②a rs ③a r b r3.(1)R (2)(0,+∞)(3)(0,1) (4)y>1 0<y<1 (5)0<y<1 y>1 (6)增函数 (7)减函数自我检测1.B [只有④正确.①中a<0时,232)(a >0,a 3<0,所以232)(a ≠a 3;②中,n 为奇数时且a<0时,n a n=a ;③中定义域为[2,73)∪(73,+∞).]2.C [∵y =(a 2-3a +3)a x是指数函数,∴a 2-3a +3=1,解得a =2或a =1(舍去).]3.D [y 轴左、右的图象对应函数的底数按逆时针方向增大.所以c>d>1,1>a>b>0.] 4.D [(a b-a -b )2=(a b+a -b )2-4=4, ∵a>1,b>0,∴a b>1,0<a -b<1,∴a b-a -b=2.] 5.D [由f(x)=a x -b 的图象可以观察出,函数f(x)=ax -b在定义域上单调递减,所以0<a<1;函数f(x)=a x -b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.]课堂活动区例1 解题导引 1.指数幂的化简原则 (1)化负数指数为正指数; (2)化根式为分数指数幂; (3)化小数为分数. 2.指数幂的化简结果要求为有关有理指数幂的化简结果不要同时含有根号和分数指数幂,也不要既有分母又含有负指幂,即尽量化成与题目表示形式一致且统一的最简结果.解 ∵a ,b 是方程的两根,而由9x 2-82x +9=0解得x 1=19,x 2=9,且a<b ,故a =19,b =9,(1)化去负指数后求解. a -1+b-1(ab)-1=1a +1b 1ab =a +b ab 1ab=a +b. ∵a =19,b =9,∴a +b =829,即原式=829.(2)原式=3127⨯a ·3123⨯-a÷ (21)38(⨯-a·21315⨯a)=)2534(2167+---a=21-a.∵a =19,∴原式=3.变式迁移1 C [原式=31312316123ba ab ba b a -∙∙=3123113116123--++-+∙ba=ab -1=a b.]例2 解题导引 在作函数图象时,首先要研究函数与某一基本函数的关系,然后通过平移、对称或伸缩来完成.解 (1)方法一 由函数解析式可得 y =(13)|x +1|=⎩⎪⎨⎪⎧(13)x +1, x ≥-1,3x +1,x<-1.其图象由两部分组成:一部分是:y =(13)x (x ≥0)――→向左平移1个单位y =(13)x +1(x ≥-1);另一部分是:y =3x (x<0)――→向左平移1个单位y =3x +1(x<-1). 如图所示.方法二 ①由y =(13)|x|可知函数是偶函数,其图象关于y 轴对称,故先作出y =(13)x的图象,保留x ≥0的部分,当x<0时,其图象是将y =(13)x(x ≥0)图象关于y 轴对折,从而得出y=(13)|x|的图象. ②将y =(13)|x|向左移动1个单位,即可得y =(13)|x +1|的图象,如图所示.(2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函数. (3)由图象知当x =-1时,有最大值1,无最小值.变式迁移2 A [y =e x+e -xe x -e -x =1+2e 2x -1,当x>0时,e 2x-1>0,且随着x 的增大而增大,故y =1+2e 2x -1>1且随着x 的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减.又函数y 是奇函数,故只有A 正确.]例3 解题导引 1.指数函数y =a x(a>0且a ≠1)的图象与性质与a 的取值有关,要特别注意区分a>1与0<a<1来研究.2.指数函数与二次函数复合而成的初等函数的性质可通过换元的方法转化为指数函数或二次函数的性质.解 设t =a x ,则y =f(t)=t 2+2t -1=(t +1)2-2.(1)当a>1时,t ∈[a -1,a],∴y max =a 2+2a -1=14,解得a =3,满足a>1;(2)当0<a<1时,t ∈[a ,a -1],∴y max =(a -1)2+2a -1-1=14,解得a =13,满足0<a<1. 故所求a 的值为3或13. 变式迁移3 (1)解 由2x -1≠0⇒x ≠0,所以定义域为(-∞,0)∪(0,+∞).(2)证明 f(x)=(12x -1+12)x 3可化为f(x)=2x +12(2x -1)·x 3, 则f(-x)=2-x +12(2-x -1)(-x)3 =2x +12(2x -1)x 3=f(x), 所以f(-x)=f(x).(3)证明 当x>0时,2x >1,x 3>0,所以(12x -1+12)x 3>0. 因为f(-x)=f(x),所以当x<0时,f(x)=f(-x)>0.综上所述,f(x)>0.课后练习区1.B [由y =x 2中x ≥0,所以y =x 2≥20=1,即函数的值域为[1,+∞).]2.D [函数的定义域为{x|x ∈R ,x ≠0},且y =xa x |x|=⎩⎪⎨⎪⎧ a x ,x>0-a x ,x<0.当x>0时,函数是一个指数函数,其底数a 满足0<a<1,所以函数递减;当x<0时,函数图象与指数函数y =ax 的图象关于x 轴对称,函数递增.]3.D [函数定义域为R ,关于原点对称,∵f(-x)=4-x +12-x =1+4x2x =f(x), ∴f(x)是偶函数,图象关于y 轴对称.]4.A [当x<0时,0<2x <1,此时f(x)=2x ;当x ≥0时,2x ≥1,此时f(x)=1.所以f(x)=1⊕2x =⎩⎪⎨⎪⎧ 2x (x<0),1(x ≥0).] 5.D [方程|a x -1|=2a 有两个不等实根可转化为函数y =|a x -1|与函数y =2a 有两个不同交点,作出函数y =|a x -1|的图象,从图象观察可知只有0<2a<1时,符合题意,即0<a<12.] 6.[13,1) 解析 据单调性定义,f(x)为减函数应满足:⎩⎪⎨⎪⎧0<a<1,3a ≥a 0,即13≤a<1. 7.-1 解析 设g(x)=e x +ae -x,则f(x)=xg(x)是偶函数. ∴g(x)=e x+ae -x 是奇函数. ∴g(0)=e 0+ae -0=1+a =0,∴a =-1. 8. 3解析 当a>1时,f(2)=2,∴a 2-1=2,a =3,经验证符合题意;当0<a<1时,f(0)=2,即1-1=2,无解.∴a = 3.9.解 (1)∵f(x)是定义域为R 的奇函数,∴f(0)=0,即-1+b 2+a=0,解得b =1,…………………………………………………(2分) 从而有f(x)=-2x +12x +1+a. 又由f(1)=-f(-1)知-2+14+a =--12+11+a, 解得a =2.经检验a =2适合题意,∴所求a 、b 的值分别为2、1.……………………………………………………………(4分)(2)由(1)知f(x)=-2x +12x +1+2=-12+12x +1. 由上式易知f(x)在(-∞,+∞)上为减函数.…………………………………………(6分) 又因f(x)是奇函数,从而不等式f(t 2-2t)<-f(2t 2-k)=f(-2t 2+k).……………………………………………………………………………(8分) 因为f(x)是减函数,由上式推得t 2-2t>-2t 2+k.即对一切t ∈R 有3t 2-2t -k>0.从而判别式Δ=4+12k<0,解得k<-13.………………………………………………(12分) 10.解 方法一 (1)由已知得3a +2=18⇒3a =2⇒a =log 32.…………………………(4分) (2)此时g(x)=λ·2x -4x ,设0≤x 1<x 2≤1,因为g(x)在区间[0,1]上是单调递减函数,所以g(x 1)-g(x 2)=)22)(22(1221x x x x ---λ>0恒成立,……………………………(8分) 即λ<1222x x +恒成立.由于00222212+>+x x =2,所以,实数λ的取值范围是λ≤2.……………………………………………………………………………………………(12分) 方法二 (1)由已知得3a +2=18⇒3a=2⇒a =log 32. ……………………………………………………………………………………………(4分)(2)此时g(x)=λ·2x -4x ,因为g(x)在区间[0,1]上是单调减函数,所以有g ′(x)=λln2·2x -ln4·4x =2x ln2(-2·2x +λ)≤0成立,…………………………(8分)所以只需要λ≤2·2x恒成立.所以实数λ的取值范围是λ≤2.…………………………(12分)11.解 由题意得1+2x +4x a>0在x ∈(-∞,1]上恒成立,即a>-1+2x 4x 在x ∈(-∞,1]上恒成立.………………………………………………(6分) 又因为-1+2x 4x =-(12)2x -(12)x , 设t =(12)x , ∵x ≤1,∴t ≥12且函数f(t)=-t 2-t =-(t +12)2+14(t ≥12) 在t =12时,取到最大值. ∴(12)x =12即x =1时,-1+2x 4x 的最大值为-34,………………………………………(12分)∴a>-34.…………………………………………………………………………………(14分)。

南方新高考2016高考数学大一轮总复习第二章第6讲指数与指数函数课件理

南方新高考2016高考数学大一轮总复习第二章第6讲指数与指数函数课件理

【解答过程】令 t=ax,则 y=t2+2t-1=(t+1)2-2, 当 a>1 时,因为 x∈[-1,1],则 t∈[1a,a], 所以函数在[1a,a]上是增函数, 所以当 t=a 时,函数取到最大值 14=a2+2a-1, 解得 a=3 或-5,故 a=3.
【题后总结】对于含 ax,a2x 的表达式,通常可以令 t= ax 进行换元,但换元过程中一定要注意新元的范围,换元后 转化为我们熟悉的一元二次关系.
【学以致用】已知 9x-10·3x+9≤0,求函数 y=(14)x-1- 4(21)x+2 的最大值和最小值.
解析:由 9x-10·3x+9≤0 得(3x-1)(3x-9)≤0,解得 1≤3x≤9.
所以 0≤x≤2. 令(12)x=t,则14≤t≤1,y=4t2-4t+2=4(t-21)2+1. 当 t=12即 x=1 时,ymin=1; 当 t=1 即 x=0 时,ymax=2.
2
1
【跟踪训练 4】(2014·上海)若 f(x)= x3 x 2 ,则满足 f(x)<0
的 x 的取值范围是
.
2
1
解析:f(x)<0⇒ x3 x 2 ,结合幂函数图象,如下图,可
得 x 的取值范围是(0,1).
三 指数函数的综合应用
【例 3】已知函数 f(x)=e|x-a|(a 为常数).若 f(x)在区间[1, +∞)上是增函数,则 a 的取值范围是__________.
【跟踪训练 5】函数 y=ax(a>0,且 a≠1)在[1,2]上的最大
值比最小值大2a,则 a 的值是
..
解析:当 a>1 时,y=ax 在[1,2]上单调递增,故 a2-a =2a,得 a=23;
当 0<a<1 时,y=ax 在[1,2]上单调递减,故 a-a2=a2, 得 a=12.

(完整word版)高三数学一轮复习指数与指数函数教案

(完整word版)高三数学一轮复习指数与指数函数教案

浙江省衢州市仲尼中学高三数学一轮复习教案:指数与指数函数教材分析:本节在根式的基础上将指数概念扩充到有理指数幂,并给出了有理指数幂的运算性质 在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法. 学情分析:学生基础较为薄弱,大部分学生知道运算性质,但是运用却不灵活。

关键是对知识理解的不够透彻。

只有在理解的基础上,通过运算,才能使学生熟练掌握本节知识。

教学目的:1.理解分数指数幂的概念.2.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化. 教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解. 教学过程: 一、知识梳理:1.根式的定义2.根式的运算性质:①当n 为任意正整数时,(n a )n=a.②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a .⑶根式的基本性质:n m npmp a a =,(a ≥0) 用语言叙述上面三个公式:⑴非负实数a 的n 次方根的n 次幂是它本身.⑵n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变. 3.引例:当a >0时 ①5102552510)(a a a a===②3124334312)(a a a a === ③32333232)(a a a ==④21221)(a a a ==上述推导过程主要利用了根式的运算性质,整数指数幂运算性质(2).因此,我们可以得出正分数指数幂的意义.4.正数的正分数指数幂的意义n m nm a a= (a >0,m ,n ∈N *,且n >1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定. 规定:(1)nm nm aa1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.5.有理指数幂的运算性质: a r ·a s =a r +s (a r )s =a rs(a >0,r ,s ∈Q )(a ·b )r =a r ·b r(a >0,b >0,r ∈Q )二、讲解例题:例1求值:4332132)8116(,)41(,100,8---. 解:422)2(8232332332====⨯827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--课内练习求下列各式的值: (1)2523(2)2732(3)(4936)23(4)(425)23-(5)432981⨯(6)23×35.1×612解:(1)23223)5(25==53=125 (2)233323323)3(27⨯===32=9(3)34321676)76()76(])76[()4936(33323223223=====⨯(4)125852)52()25()25(])25[()425(333323223223======-⨯--(5)41324432442123244213224432)33(3333])3[(3981⨯=⨯=⨯=⨯=⨯⨯⨯=66141324143333)3()3(=⨯=⨯(6)23×35.1×612=2×321×(23)31×(3×22)61=2×321×331×231×361×231=(2×231-×231)×(321×331×361)=231311+-×3613121++=2×3=6要求:学生板演练习,做完后老师讲评.例2计算下列各式:433225)12525)(2();0()1(÷->a aa a分析:(1)题把根式化成分数指数幂的形式,再计算 (2)题先把根式化成分数指数幂的最简形式,然后计算 解:课内练习:用分数指数幂表示下列各式:65653221223212322)1(a a a a a a a a a ===•=•--.555555555555)55(5)12525)(2(412545125412341324123413241233243-=-=-=÷-÷=÷-=÷---(1)32x (2)43)(b a +(a+b>0) (3)32)(n m - (4)4)(n m -(m>n) (5)56q p ⋅(p>0) (6)mm 3解:(1) 3232x x = (2) 4343)()(b a b a +=+ (3) 3232)()(n m n m -=-(4) 244)()(n m n m -=-=(m-n)2 (5) 2532526215656)()0(q p q p q p p q p ⋅==⋅=⋅φ (6)252133m mm m m =⋅=-要求:学生板演练习,做完后老师讲评.三、小结本节课要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质. 四、课后作业:1.用分数指数幂表示下列分式(其中各式字母均为正数)(C)(1)43a a ⋅(2)a a a (3)322b a ab +(4)4233)(b a +解:(1)43a a ⋅=12741314131a aa a ==⋅+(2) a a a =[a ·(a ·a 21)21]21=a 21·a 41·a 81=a 87814121a =++(3)322b a ab +=(ab 2+a 2b )31(4)4233)(b a +=(a 3+b 3)42=(a 3+b 3)212.求下列各式的值:(C) (1)|2|21(2)(4964)21-(3)1000043-(4)(27125)32-解:(1)12121=(112)21=11212⨯=11(2)(4964)21-=(2278)21-=(78))21(2-⨯·(78)-1=87(3)1000043-=(104)43-=10)43(4-⨯=10-3=0.001(4) (27125)32-=(3335)32-=[(35)3] 32-=(35))32(3-⨯=(35)-2=259._______5则.25,45已知).2(;)12(3256)71(027.0.)1(计算:(B).320143231===-+-+----y x y x4.化简: (A) (1)3327-a a÷31638a a -÷313--a a ;(2).11111333233++-++----a a a a a a a a 解:(1)原式=312327)(-•aa ÷2131638)(a a•-÷323432312)(--÷÷=aa a a =1.(2)原式=)1()1()1(11)(1)(1)31(1)1(313231313131331312313313231+----+=++-++----a a a a a a a a a a a a a 31a ==3a.板书设计指数幂的概念与性质1.正分数指数幂意义 例题一: 例题二:a nm =n ma (a >0,m ,n ∈N*,n >1)2.规定 (1)anm -=nm a1(a >0,m ,n ∈N *,n >1),。

高考数学一轮复习第8讲指数与指数函数学案 理

高考数学一轮复习第8讲指数与指数函数学案 理

第8讲指数与指数函数
考试
说明
1、了解指数函数模型的实际背景。

2。

理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算、
3、理解指数函数概念及其单调性,掌握指数函数图像通过的特别点。

会画底数2,3,10, ,

指数函数的图像。

4。

体会指数函数是一类重要的函数模型。

考情
分析
考点
考查方向考例
指数幂的运算根式化简、指数幂运算
指数函数的图像指数函数图像的判断
指数函数的性质指数函数性质的应用
【重温教材】必修1第48页至第61页
【相关知识点回顾】完成练习册第19【知识聚焦】
【知识回顾反馈练习】完成练习册第20页【对点演练】
【探究点一】指数幂的化简与求值:【练习册】020页例1及变式题
【探究点二】指数函数的图像及应用:【练习册】020页例2及变式题
【探究点三】指数函数的性质及应用:【练习册】021页例3,例4,例5及变式题及强化演练
1。

设x,y,z为正数,且2x=3y=5z,则( )
A。

2x<3y<5z B、5z<2x<3y C、3y<5z〈2x D、3y<2x<5z
2、已知x,y∈R,且x〉y〉0,则( )

1

>0 B、sin x-sin y>0 C。

\f(1,2)x-错误!y<0D、。

高三数学高考考前复习指数与指数函数教案

高三数学高考考前复习指数与指数函数教案

学习必备欢迎下载第二章指数函数与对数函数及函数的应用一、知识网络基本初等函数 ( Ⅰ )函数的应用指数函数对数函数幂函数函数的零点整数指数幂函数与方程定义有理指数幂指数对数运算性质二分法无理指数幂指数函数对数函数函数模型及其应用互为反函数几类不同增长的函数模型定义定义用已知函数模型解决问题图像与性质图像与性质建立实际问题的函数模型二、课标要求和最新考纲要求1、指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

2、对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3、知道指数函数y a x与对数函数y log a x 互为反函数(a>0,a≠1)。

4、函数与方程(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。

(2)理解并掌握连续函数在某个区间上存在零点的判定方法。

能利用函数的图象和性质判别函数零点的个数 .5、函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征。

知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

(3)能利用给定的函数模型解决简单的实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届高考数学一轮复习教学案指数与指数函数[知识能否忆起]一、根式1.根式的概念根式的概念符号表示备注如果x n=a,那么x叫做a的n次方根n>1且n∈N*当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数na 零的n次方根是零当n是偶数时,正数的n次方根有两个,这两个数互为相反数±na(a>0) 负数没有偶次方根2.两个重要公式(1)na n=⎩⎪⎨⎪⎧a,n为奇数,|a|=⎩⎪⎨⎪⎧a a≥0,-a a<0,n为偶数;(2)(na)n=a(注意a必须使na有意义).二、有理数指数幂1.幂的有关概念(1)正分数指数幂:a m n=na m (a >0,m ,n ∈N *,且n >1);(2)负分数指数幂:a -m n=1am n=1na m(a >0,m ,n ∈N *,且n >1);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质 (1)a r a s =a r +s (a >0,r ,s ∈Q); (2)(a r )s =a rs (a >0,r ,s ∈Q); (3)(ab )r =a r b r (a >0,b >0,r ∈Q). 三、指数函数的图象和性质函数y =a x (a >0,且a ≠1)图象0<a <1a >1图象特征在x 轴上方,过定点(0,1)性 质定义域 R 值域(0,+∞)单调性减函数增函数函数值变化规律 当x >0时,y >1当x <0时,y >1;当x >0时,0<y <1当x <0时,0<y <1; 当x =0时,y =1[小题能否全取]1.(教材习题改编)化简[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .9解析:选B原式=(26)12-1=7. 2.(教材习题改编)函数f (x )=1-2x 的定义域是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:选A ∵1-2x ≥0,∴2x ≤1,∴x ≤0.3.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4)D .(4,0)解析:选A 当x =1时,f (x )=5.4.若函数y =(a 2-3a +3)·a x 是指数函数,则实数a 的值为________. 解析:∵a 2-3a +3=1,∴a =2或a =1(舍). 答案:25.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 解析:由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a <2. 答案:(-2,-1)∪(1,2)1.分数指数幂与根式的关系:分数指数幂与根式可以相互转化,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而简化计算过程.2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论.指数式的化简与求值典题导入[例1] 化简下列各式(其中各字母均为正数).(1)a 23·b -1-12·a -12·b 136a ·b 5;(2)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫21027-23-3π0+3748.[自主解答] (1)原式=a -13b 12·a -12b 13a 16b56=a -13-12-16·b 12+13-56=1a.(2)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫6427-23-3+3748=53+100+916-3+3748=100.由题悟法指数式的化简求值问题,要注意与其他代数式的化简规则相结合,遇到同底数幂相乘或相除,可依据同底数幂的运算规则进行,一般情况下,宜化负指数为正指数,化根式为分数指数幂.对于化简结果,形式力求统一.以题试法1.计算:(1)(0.027)-13-⎝ ⎛⎭⎪⎫-17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫14-12·4ab -130.1-2a 3b -312.解:(1)原式=⎝⎛⎭⎪⎫271 000-13-(-1)-2⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫25912-1 =103-49+53-1=-45. (2)原式=412·432100·a 32·a -32·b 32·b -32=425a 0·b 0=425.指数函数的图象及应用典题导入[例2] (2012·四川高考)函数y =a x -a (a >0,且a ≠1)的图象可能是( )[自主解答] 法一:令y =a x -a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.法二:当a >1时,y =a x -a 是由y =a x 向下平移a 个单位,且过(1,0),排除选项A 、B ;当0<a <1时,y =a x -a 是由y =a x 向下平移a 个单位,因为0<a <1,故排除选项D. [答案] C由题悟法1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.2.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.以题试法2.(1)(2012·北京模拟)在同一坐标系中,函数y =2x与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称(2)方程2x =2-x 的解的个数是________.解析:(1)∵y =⎝ ⎛⎭⎪⎫12x =2-x ,∴它与函数y =2x 的图象关于y 轴对称.(2)方程的解可看作函数y =2x 和y =2-x 的图象交点的横坐标,分别作出这两个函数图象(如图).由图象得只有一个交点,因此该方程只有一个解. 答案:(1)A (2)1指数函数的性质及应用典题导入[例3] 已知函数f (x )=⎝ ⎛⎭⎪⎫23|x |-a .则函数f (x )的单调递增区间为________,单调递减区间为________.[自主解答] 令t =|x |-a ,则f (x )=⎝ ⎛⎭⎪⎫23t ,不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增,又y =⎝ ⎛⎭⎪⎫23t 是单调递减的,因此f (x )的单调递增区间是(-∞,0], 单调递减区间是[0,+∞). [答案] (-∞,0] [0,+∞)在本例条件下,若f (x )的最大值等于94,则a =______.解析:由于f (x )的最大值是94,且94=⎝ ⎛⎭⎪⎫23-2,所以g (x )=|x |-a 应该有最小值-2, 从而a =2. 答案:2由题悟法求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.以题试法3.(1)(2012·福州质检)已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a(2)(2012·上海高考)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析:(1)由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .(2)结合函数图象求解.因为y =e u 是R 上的增函数,所以f (x )在[1,+∞)上单调递增,只需u =|x -a |在[1,+∞)上单调递增,由函数图象可知a ≤1.答案:(1)A (2)(-∞,1][典例] 函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x +1在x ∈[-3,2]上的值域是________.[常规解法] y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x +1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x +1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x -122+34, 因为x ∈[-3,2],所以14≤⎝ ⎛⎭⎪⎫12x ≤8.当⎝ ⎛⎭⎪⎫12x =12时,y min =34;当⎝ ⎛⎭⎪⎫12x =8时,y max =57.所以函数y 的值域为⎣⎢⎡⎦⎥⎤34,57.[答案] ⎣⎢⎡⎦⎥⎤34,57——————[高手支招]——————————————————————————1.解答本题可利用换元法,即令t =⎝ ⎛⎭⎪⎫12x ,把函数化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,然后求在这个闭区间上的二次函数的最大值和最小值即可确定函数的值域.2.对于含a x 、a 2x 的表达式,通常可以令t =a x 进行换元,但换元过程中一定要注意新元的范围,换元后转化为我们熟悉的一元二次关系.——————————————————————————————————————[巧思妙解] 因为x ∈[-3,2],若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.则y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34. 当t =12时y min =34;当t =8时,y max =57.答案为⎣⎢⎡⎦⎥⎤34,57.针对训练若0<a <1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则a 的值为________. 解析:令t =a x (0<a <1),则原函数化为y =(t +1)2-2(t >0). 因为0<a <1,x ∈[-1,1],所以t =a x ∈⎣⎢⎡⎦⎥⎤a ,1a , 此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.答案:131.下列函数中值域为正实数集的是( ) A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x -1D .y =1-2x解析:选B ∵1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x 的值域是正实数集,∴y =⎝ ⎛⎭⎪⎫131-x 的值域是正实数集.2.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( ) A .5 B .7 C .9D .11解析:选B 由f (a )=3得2a +2-a =3, 两边平方得22a +2-2a +2=9, 即22a +2-2a =7,故f (2a )=7. 3.函数f (x )=2|x -1|的图象是( )解析:选B∵f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,∴根据分段函数即可画出函数图象.4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域( ) A .[9,81] B .[3,9] C .[1,9]D .[1,+∞)解析:选C 由f (x )过定点(2,1)可知b =2,因f (x )=3x -2在[2,4]上是增函数,可知C 正确.5.(2012·深圳诊断)设函数f (x )=a -|x |(a >0,且a ≠1),f (2)=4,则( ) A .f (-2)>f (-1) B .f (-1)>f (-2) C .f (1)>f (2)D .f (-2)>f (2)解析:选A ∵f (2)=4,∴a -|2|=4,∴a =12,∴f (x )=⎝ ⎛⎭⎪⎫12-|x |=2|x |,∴f (x )是偶函数,当x ≥0时,f (x )=2x 是增函数,∴x <0时,f (x )是减函数,∴f (-2)>f (-1).6.若(2m +1)12>(m 2+m -1)12,则实数m 的取值范围是( ) A.⎝ ⎛⎦⎥⎥⎤-∞,5-12B.⎣⎢⎢⎡⎭⎪⎪⎫5-12,+∞ C .(-1,2)D.⎣⎢⎢⎡⎭⎪⎪⎫5-12,2 解析:选D 因为函数y =x 12的定义域为[0,+∞),且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1,解2m +1≥0,得m ≥-12;解m 2+m -1≥0, 得m ≤-5-12或m ≥5-12; 解2m +1>m 2+m -1,即m 2-m -2<0,得-1<m <2. 综上所述,m 的取值范围是5-12≤m <2.7.⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42-⎝ ⎛⎭⎪⎫-2323=________. 解析:原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2.答案:28.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.解析:∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=a x 在R 上递增,由f (m )>f (n ),得m >n . 答案:m >n9.若函数f (x )=a |2x -4|(a >0,a ≠1)且f (1)=9.则f (x )的单调递减区间是________. 解析:由f (1)=9得a 2=9,∴a =3.因此f (x )=3|2x -4|,又∵g (x )=|2x -4|的递减区间为(-∞,2],∴f (x )的单调递减区间是(-∞,2]. 答案:(-∞,2]10.求下列函数的定义域和值域.(1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y =32x -1-19.解:(1)显然定义域为R. ∵2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.∴⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12.故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2,∵y =3x 为增函数,∴2x -1≥-2, 即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞,由上可知32x -1-19≥0,∴y ≥0. 即函数的值域为[0,+∞). 11.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.解:当a >1时,f (x )=a x 为增函数,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a .∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时,f (x )=a x 为减函数,在x ∈[1,2]上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2. ∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.12.函数y =lg(3-4x +x 2)的定义域为M ,当x ∈M 时,求f (x )=2x +2-3×4x 的最值. 解:由3-4x +x 2>0,得x >3或x <1, ∴M ={x |x >3,或x <1},f (x )=-3×(2x )2+2x +2=-3⎝⎛⎭⎪⎫2x -162+2512. ∵x >3或x <1,∴2x >8或0<2x <2, ∴当2x =16,即x =log 216时,f (x )最大, 最大值为2512,f (x )没有最小值.1.(2013·绍兴一中模拟)函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定解析:选A 由题意知a >1,又f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1). 2.(2012·衡水模拟)已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0;②a <0,b ≥0,c >0; ③2-a <2c ;④2a +2c <2.解析:画出函数f (x )=|2x -1|的图象(如图), 由图象可知,a <0,b 的符号不确定,c >0. 故①②错;∵f (a )=|2a -1|,f (c )=|2c -1|, ∴|2a -1|>|2c -1|,即1-2a >2c -1, 故2a +2c <2,④成立; 又2a +2c >22a +c ,∴2a +c <1,∴a +c <0,∴-a >c ,∴2-a >2c ,③不成立. 答案:④3.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令t =-x 2-4x +3,由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2). (2)令h (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.1.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b 其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个解析:选B 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x 的图象如图, 由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b 得a <b <0或0<b <a 或a =b =0. 2.求函数y =a 2x -2a x -1(a >0,a ≠1)的单调区间和值域. 解:y =(a x -1)2-2(a >0,a ≠1),设u =a x .∵y =(u -1)2-2在u ∈[1,+∞)时是关于u 的增函数,在u ∈(-∞,1)时是关于u 的减函数,∴当a x ≥1时,原函数的单调性与u =a x 的单调性相同;当a x <1时,原函数的单调性与u =a x 的单调性相反.若a >1,a x ≥1⇔x ≥0;a x <1⇔x <0,∴在[0,+∞)上,函数y =a 2x -2a x -1是增函数; 在(-∞,0)上,函数y =a 2x -2a x -1是减函数. 若0<a <1,a x ≥1⇔x ≤0;a x <1⇔x >0,∴在(0,+∞)上,函数y =a 2x -2a x -1是增函数;在(-∞,0]上,函数y =a 2x -2a x -1是减函数. ∵a x >0,∴函数值域是[-2,+∞).第八节对数与对数函数[知识能否忆起]1.对数的概念 (1)对数的定义:如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.当a =10时叫常用对数.记作x =lg_N ,当a =e 时叫自然对数,记作x =ln_N .(2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0. ②log a a =1.③对数恒等式:a log a N =N . ④换底公式:log a b =log c blog c a.推广log a b =1log b a ,log a b ·log b c ·log c d =log a d .(3)对数的运算法则:如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ;②log a M N=log a M -log a N ;③log a M n =n log a M (n ∈R); ④log am M n =nmlog a M .2.对数函数的概念(1)把y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)函数y =log a x (a >0,a ≠1)是指数函数y =a x 的反函数,函数y =a x 与y =log a x (a >0,a ≠1)的图象关于y =x 对称.3.对数函数的图象与性质y =log a x a >1 0<a <1图象性质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0当0<x <1时,y <0当x >1时,y <0当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数[小题能否全取]1.(教材习题改编)设A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y |y =⎝ ⎛⎭⎪⎫12x ,0<x <1,则A ∩B 为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,1 D .(0,2)解析:选C ∵A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y |12<y <1, ∴A ∩B =⎩⎨⎧⎭⎬⎫y |12<y <1. 2.函数y =log a (3x -2)(a >0,a ≠1)的图象经过定点A ,则A 点坐标是( )A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎭⎪⎫23,0 C .(1,0)D .(0,1)解析:选C 当x =1时y =0. 3.函数y =lg |x |( )A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递减D .是奇函数,在区间(0,+∞)上单调递增解析:选B y =lg |x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增.4.(2012·江苏高考)函数f (x )=1-2log 6x 的定义域为________.解析:由1-2log 6x ≥0,解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0,6 ].答案:(0,6 ]5.(2012·北京高考)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 解析:由f (ab )=1得ab =10,于是f (a 2)+f (b 2)=lg a 2+lg b 2=2(lg a +lg b )=2lg(ab )=2lg 10=2.答案:21.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N *,且n 为偶数).2.对数值取正、负值的规律:当a >1且b >1,或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1,或0<a <1且b >1时,log a b <0. 3.对数函数的定义域及单调性:在对数式中,真数必须大于0,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.对数式的化简与求值典题导入[例1] 求解下列各题. (1)12lg 3249-43lg 8+lg245=________;(2)若2a =5b =m ,且1a +1b=2,则m =________.[自主解答] (1)12lg 3249-43lg8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7)=52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. (2)由2a =5b =m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10.∵1a +1b=2,∴log m 10=2,即m 2=10. 解得m =10(∵m >0).[答案] (1)12 (2)10由题悟法对数式的化简与求值的常用思路(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.以题试法1.化简:(1)lg 37+lg 70-lg 3-lg 23-lg 9+1;(2)⎝⎛⎭⎪⎫lg 4-lg 60lg 3+lg 53-45×2-11. 解:(1)原式=lg37×703-lg 23-2lg 3+1=lg 10-lg 3-12=1-|lg 3-1|=lg 3.(2)原式=⎝⎛⎭⎪⎫lg 4-lg 4+lg 15lg 153-210×2-11 =⎝⎛⎭⎪⎫-lg 15lg 153-2-1 =-32.对数函数的图象及应用典题导入[例2] (1)(2012·烟台调研)函数y =ln(1-x )的图象大致为( )(2)(2012·新课标全国卷)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎪⎫0,22B.⎝ ⎛⎭⎪⎪⎫22,1 C .(1,2)D .(2,2)[自主解答] (1)由1-x >0,知x <1,排除选项A 、B ;设t =1-x (x <1),因为t =1-x 为减函数,而y =ln t 为增函数,所以y =ln(1-x )为减函数,可排除D 选C.(2)法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知,f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎪⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12 ,x=12,则有412=2,log 1212=1,显然4x <log a x 不成立,排除选项A. [答案] (1)C (2)B若本例(2)变为:若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,实数a 的取值范围为________.解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 图象的下方即可.当0<a <1时,显然不成立; 当a >1时,如图,要使x ∈(1,2)时f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,又即log a 2≥1.所以1<a ≤2,即实数a 的取值范围是(1,2]. 答案:(1,2]由题悟法1.对一些可通过平移、对称变换能作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合求解.2.一些对数型方程、不等式问题的求解,常转化为相应函数图象问题,利用数形结合法求解.以题试法2.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则y =f (1-x )的大致图象是( )解析:选C由题意可得f (1-x )=⎩⎪⎨⎪⎧31-x ,x ≥0,log 131-x ,x <0,因此当x ≥0时,y =f (1-x )为减函数,且y >0;当x <0时,y =f (1-x )为增函数,且y <0.对数函数的性质及应用典题导入[例3] 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (x )定义域为R ,求a 的取值范围; (2)若f (1)=1,求f (x )的单调区间;(3)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. [自主解答] (1)因为f (x )的定义域为R , 所以ax 2+2x +3>0对任意x ∈R 恒成立. 显然a =0时不合题意,从而必有⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,4-12a <0,解得a >13.即a 的取值范围是⎝ ⎛⎭⎪⎫13,+∞.(2)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (3)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a =1,解得a =12.故存在实数a =12使f (x )的最小值为0.由题悟法研究复合函数y =log a f (x )的单调性(最值)时,应先研究其定义域,分析复合的特点,结合函数u =f (x )及y =log a u 的单调性(最值)情况确定函数y =log a f (x )的单调性(最值)(其中a >0,且a ≠1).以题试法3.已知f (x )=log a (a x -1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.解:(1)由a x -1>0得a x >1,当a >1时,x >0; 当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0). (2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2, 故0<ax 1-1<ax 2-1, ∴log a (ax 1-1)<log a (ax 2-1). ∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数.类似地,当0<a <1时,f (x )在(-∞,0)上为增函数.1.函数y =1-lg x +2的定义域为( )A .(0,8]B .(2,8]C .(-2,8]D .[8,+∞)解析:选C 由题意可知,1-lg(x +2)≥0,整理得lg(x +2)≤lg 10,则⎩⎪⎨⎪⎧x +2≤10,x +2>0,解得-2<x ≤8,故函数y =1-lg x +2的定义域为(-2,8].2.(2012·安徽高考)(log 29)·(log 34)=( ) A.14B.12 C .2D .4解析:选D (log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.3.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB.12x C .log 12xD .2x -2解析:选A f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2. ∴f (x )=log 2x .4.(2011·天津高考)已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >cD .c >a >b解析:选B a =log 23.6=log 43.62=log 412.96,y =log 4x (x >0)是单调增函数,而3.2<3.6<12.96,∴a >c >b .5.(2013·安徽名校模拟)函数y =log 2|x |x的大致图象是( )解析:选C 由于log 2|-x |-x =-log 2|x |x ,所以函数y =log 2|x |x 是奇函数,其图象关于原点对称.当x >0时,对函数求导可知函数图象先增后减,结合选项可知选C.6.已知函数f (x )=log 12|x -1|,则下列结论正确的是( )A .f ⎝ ⎛⎭⎪⎫-12<f (0)<f (3)B .f (0)<f ⎝ ⎛⎭⎪⎫-12<f (3)C .f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0)D .f (3)<f (0)<f ⎝ ⎛⎭⎪⎫-12解析:选C 依题意得f (3)=log 122=-1<0,log 122<f ⎝ ⎛⎭⎪⎫-12=log 1232<log 121,即-1<f ⎝ ⎛⎭⎪⎫-12<0,又f (0)=log 121=0,因此有f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0).7.(2012·长安一中质检)对任意的非零实数a ,b ,若a ⊗b =⎩⎪⎨⎪⎧b -1a ,a <b ,a +1b ,a ≥b ,则lg10 000⊗⎝ ⎛⎭⎪⎫12-2=________.解析:∵lg 10 000=lg 104=4,⎝ ⎛⎭⎪⎫12-2=4, ∴lg 10 000⊗⎝ ⎛⎭⎪⎫12-2=4+14=54. 答案:548.函数y =log 12(x 2-6x +17)的值域是________.解析:令t =x 2-6x +17=(x -3)2+8≥8,y =log12t 为减函数,所以有log 12t ≤log 128=-3.答案:(-∞,-3]9.函数f (x )=log a x (a >1)在区间[a,2a ]上的最大值与最小值之差为12,则a 等于________.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上为增函数.∴log a 2a -log a a =12,解得a =4.答案:410.计算下列各式.(1)lg 25+lg 2·lg 50+(lg 2)2; (2)lg 32-lg 9+1·lg 27+lg 8-lg 1 000lg 0.3·lg 1.2.解:(1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=lg 32-2lg 3+1·⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32lg 3-1·lg 3+2lg 2-1=1-lg 3·32lg 3+2lg 2-1lg 3-1·lg 3+2lg 2-1=-32.11.说明函数y =log 2|x +1|的图象,可由函数y =log 2x 的图象经过怎样的变换而得到.并由图象指出函数的单调区间.解:作出函数y =log 2x 的图象,再作其关于y 轴对称的图形得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的递减区间为(-∞,-1),递增区间为(-1,+∞).12.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1),且log 2f (x )<f (1). 解:(1)∵f (x )=x 2-x +b , ∴f (log 2a )=(log 2a )2-log 2a +b .由已知得(log 2a )2-log 2a +b =b ,∴log 2a (log 2a -1)=0. ∵a ≠1,∴log 2a =1,即a =2. 又log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4.∴b =4-a 2+a =2.故f (x )=x 2-x +2. 从而f (log 2x )=(log 2x )2-log 2x +2=⎝⎛⎭⎪⎫log 2x -122+74.∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意⎩⎪⎨⎪⎧log 2x 2-log 2x +2>2,log 2x 2-x +2<2⇒⎩⎪⎨⎪⎧x >2或0<x <1,-1<x <2⇒0<x <1.1.(2012·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 28-x ,x ≤0,f x -1-f x -2,x >0,则f (3)的值为( ) A .1 B .2 C .-2D .-3解析:选D 依题意得f (3)=f (2)-f (1)=[f (1)-f (0)]-f (1)=-f (0)=-log 28=-3.2.已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x .设a =f ⎝ ⎛⎭⎪⎫65,b =f ⎝ ⎛⎭⎪⎫32,c=f ⎝ ⎛⎭⎪⎫52,则( ) A .a <b <cB .b <a <cC .c <b <aD .c <a <b解析:选D 已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x ,则a =f ⎝ ⎛⎭⎪⎫65=f ⎝ ⎛⎭⎪⎫-45=-f ⎝ ⎛⎭⎪⎫45=-lg 45>0, b =f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-lg 12>0, c =f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12=lg 12<0. 又因为lg 45>lg 12, 所以0<-lg 45<-lg 12. 所以c <a <b .3.若函数f (x )=log a (x 2-ax +3)(a >0且a ≠1),满足对任意的x 1,x 2,当x 1<x 2≤a 2时,f (x 1)-f (x 2)>0,求实数a 的取值范围.解:因为对任意的x 1,x 2,当x 1<x 2≤a 2时,f (x 1)-f (x 2)>0, 所以函数f (x )在⎝⎛⎦⎥⎤-∞,a 2上单调递减. 令t =x 2-ax +3,则二次函数t =x 2-ax +3的对称轴为x =a 2,其在⎝ ⎛⎦⎥⎤-∞,a 2上单调递减.由复合函数的单调性,可知y =log a x 为单调增函数,故a >1. 由对数函数的定义域,可知在区间⎝⎛⎦⎥⎤-∞,a 2上,t >0恒成立,即x 2-ax +3>0在区间⎝⎛⎦⎥⎤-∞,a 2上恒成立.而函数t =x 2-ax +3在区间⎝ ⎛⎦⎥⎤-∞,a 2上的最小值为⎝ ⎛⎭⎪⎫a 22-a ×a 2+3=3-a 24.故3-a 24>0,解得|a |<2 3.综上可得a 的取值范围是(1,23).1.设函数f (x )=⎩⎪⎨⎪⎧ log 12x ,x >0,log 2-x ,x <0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C 当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1; 当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以,m 的取值范围是(-1,0)∪(1,+∞).2.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则2a +b 的取值范围是( )A .(22,+∞)B .[22,+∞)C .(3,+∞)D .[3,+∞)解析:选B 由于函数f (x )在区间(0,1]上单调递减,在区间[1,+∞)上单调递增,当0<a <b ,且f (a )=f (b )时,只能0<a <1,b >1,故f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b .由f (a )=f (b ),得-lg a =log b ,即lg(ab )=0,故ab =1.则2a +b ≥22ab =22,当且仅当2a =b ,即a =22,b =2时取等号. 3.化简:log 34273·log 5[412log 210-(33)23-7log 72]. 解:原式=log 33343·log 5[2log 210-(332)23-7log 72] =⎝ ⎛⎭⎪⎫34log 33-log 33·l og 5(10-3-2) =⎝ ⎛⎭⎪⎫34-1·log 55=-14. 4.(2012·上海徐汇二模)已知函数f (x )=3-2log 2x ,g (x )=log 2x .(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,求实数k 的取值范围. 解:(1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2,因为x ∈[1,4],所以log 2x ∈[0,2].故函数h (x )的值域为[0,2].(2)由f (x 2)·f (x )>k ·g (x )得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立,①当t =0时,k ∈R ;②当t ∈(0,2]时,k <3-4t 3-t t 恒成立,即k <4t +9t-15恒成立, 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以4t +9t-15的最小值为-3,即k ∈(-∞,-3).。

相关文档
最新文档