高考数学基础知识梳理

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高考数学知识点总结最全版

高考数学知识点总结最全版

高考数学知识点总结最全版高考是每个学生都将面临的重要考试,其中数学科目一直是让许多学生感到头疼的科目之一。

数学知识点琐碎繁多,考试内容宽泛,很容易让人感到困惑和迷茫。

为了帮助广大考生更好地复习数学,下面将对高考数学知识点进行全面总结。

一、函数与方程1. 一次函数:y = kx + b,k为斜率,b为截距。

如何确定k和b的值?通过给定的点来确定。

2. 二次函数:y = ax^2 + bx + c,a不等于0。

如何确定a、b、c的值?通过给定的点或抛物线的顶点来确定。

3. 指数函数:y = a^x,a为底数。

指数函数的特点是随着x的增大,y的值迅速增大。

4. 对数函数:y = logₐx,a为底数。

对数函数的特点是随着x 的增大,y的增长缓慢。

5. 幂函数:y = x^a,a为指数。

幂函数的特点是当a大于1时,随着x的增大,y的值迅速增大;当0<a<1时,y的增长缓慢。

6. 三角函数:包括正弦函数、余弦函数、正切函数等。

重点理解各个三角函数的图像和周期性。

7. 一元二次方程:ax^2 + bx + c = 0。

求解一元二次方程可以使用公式法、配方法或因式分解法。

二、概率与统计1. 排列与组合:排列是从n个元素中选择m个元素进行排序,组合是从n个元素中选择m个元素进行组合。

重点理解计算排列组合的方法和公式。

2. 概率:概率是事件发生的可能性。

常见的概率计算方法有等可能概率和古典概率。

3. 统计:统计是对数据进行收集、整理、分析和解释的过程。

常见的统计方法有频数分布表、频率分布图和数据的平均值、中位数、众数等。

三、解析几何1. 平面几何:包括直线的方程、两直线的位置关系、圆的方程等。

掌握通过已知条件求解几何图形的方法。

2. 空间几何:包括空间中点、直线、平面的位置关系、球的方程等。

了解实际问题与几何图形之间的联系。

四、三角函数与三角恒等式1. 了解正弦、余弦、正切等三角函数的定义和性质。

2. 掌握基本的三角函数图像和周期性。

数学高考必考知识点

数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。

高考数学试卷板块知识总结

高考数学试卷板块知识总结

一、函数与导数1. 函数概念:函数的定义、性质、图像及性质;反函数、复合函数、分段函数等。

2. 函数图像:函数图像的绘制方法、性质;函数图像与方程的关系。

3. 函数性质:函数的单调性、奇偶性、周期性、有界性等;函数的极限、连续性。

4. 导数:导数的定义、计算方法;导数的几何意义、物理意义;导数的应用:函数的极值、最值、凹凸性、拐点等。

5. 高阶导数:高阶导数的计算方法;高阶导数的应用。

二、三角函数与解三角形1. 三角函数:正弦、余弦、正切、余切、正割、余割函数的定义、性质、图像;三角函数的周期性、奇偶性、有界性。

2. 解三角形:正弦定理、余弦定理;解三角形的应用:求角度、边长、面积等。

3. 三角函数的应用:三角函数在物理、几何、经济等领域的应用。

三、数列与不等式1. 数列:数列的定义、性质、通项公式;数列的极限;数列的求和。

2. 不等式:不等式的性质、解法;不等式的应用:最值、比较大小等。

3. 概率与统计:概率的定义、性质;随机变量、分布函数;期望、方差;大数定律、中心极限定理等。

四、立体几何与解析几何1. 立体几何:点、线、面、体的概念、性质;线面关系、面面关系;空间角、距离、面积等。

2. 解析几何:解析几何的基本概念、方程;解析几何的应用:求点、线、面、体的位置关系;解析几何在几何证明中的应用。

五、概率与统计1. 概率:概率的定义、性质;条件概率、独立事件;随机变量、分布函数;期望、方差等。

2. 统计:数据的收集、整理、分析;描述性统计、推断性统计;相关分析、回归分析等。

六、复数与复平面1. 复数:复数的概念、性质;复数的运算;复数的几何意义。

2. 复平面:复平面的概念、性质;复数在复平面上的表示;复数的乘除运算等。

七、数学文化与应用1. 数学文化:数学史、数学家故事、数学趣味知识等。

2. 数学应用:数学在日常生活、科技、经济、管理等领域的应用。

以上是对高考数学试卷板块知识的总结,希望对考生在备考过程中有所帮助。

高考数学基础知识点大全总结归纳

高考数学基础知识点大全总结归纳

高考数学基础知识点大全总结归纳数学是高考中最重要的科目之一,也是考生们备战高考的重点之一。

要在高考数学中取得好成绩,掌握基础知识点是至关重要的。

本文将对高考数学中的基础知识点进行全面总结归纳,帮助考生们更好地复习备考。

一、代数与函数代数与函数是数学中最基础也是最核心的内容之一。

在高考数学中,代数与函数的知识点占据了相当大的比重。

以下是高考数学代数与函数部分的基础知识点:1.1 整式与分式1.2 多项式与多项式的运算1.3 幂的运算与整式的整除性1.4 分式的化简与运算1.5 分式方程的解法二、数与数量关系数与数量关系是高考数学中的重要知识点之一,它不仅包括了基础的数与数的关系,还包括了数量之间的比较和计算。

以下是高考数学数与数量关系部分的基础知识点:2.1 数与数的性质2.2 数与式的计算2.3 数与面积、体积的关系2.4 一次函数与一次函数的应用三、几何与变换几何与变换是高考数学中相对较为复杂的知识点,但也是不可或缺的一部分。

几何与变换包括了图形的性质、图形的变换与运动等内容。

以下是高考数学几何与变换部分的基础知识点:3.1 线与角3.2 三角形与三角形的性质3.3 圆与圆的性质3.4 二次曲线与二次曲线的性质3.5 向量与向量的运算四、概率与统计概率与统计是高考数学中较为实际且应用广泛的知识点,它涉及到事件的发生概率和数据的统计分析等内容。

以下是高考数学概率与统计部分的基础知识点:4.1 随机事件与随机事件的运算4.2 概率的计算与性质4.3 统计数据的收集与整理4.4 统计指标与统计图的应用综上所述,高考数学基础知识点的掌握对于考生在高考中取得好成绩至关重要。

通过对代数与函数、数与数量关系、几何与变换以及概率与统计等知识点的全面总结归纳,相信考生们能够更好地复习备考并在高考中取得优异成绩。

希望本文能为广大考生提供帮助,祝愿各位考生都能顺利通过高考,实现自己的人生目标。

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理

2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。

- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。

- 函数的性质:奇偶性、周期性、单调性、极值、零点等。

2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。

- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。

- 直线的方程:点斜式、两点式、截距式等。

3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。

- 一元二次方程的解:实数解、复数解、无解等。

- 一元二次方程的求解方法:配方法、公式法、图解法等。

4. 不等式- 不等式的概念:比大小关系不是等号的代数式。

- 不等式的性质:加减、乘除等运算规则。

- 不等式的解集:解集可以用数轴图、区间表示等。

二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。

- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。

- 等差数列的性质:求和公式、前n项和等。

2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。

- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。

- 等比数列的性质:求和公式、前n项和等。

3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。

- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。

4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。

高考数学常考的100个基础知识点

高考数学常考的100个基础知识点

高考数学常考的100个基础知识点
一、数据处理
1、用直线和曲线表示简单的函数关系;
2、求方程的根,包括一元二次方程、一元三次方程;
3、极限的概念及求极限的方法;
4、利用大致数量关系求微分;
5、抽样定理及其推广;
二、几何
1、角的三种度数制;
2、角平分线的性质;
3、对称中心及其对称性;
4、多边形几何关系;
5、曲线的斜率;
6、空间几何关系;
7、证明的方法;
三、排列组合数
1、概念及其性质;
2、组合数的运算;
3、二项式定理及其推广;
4、抽屉原理;
5、幂集的运算;
四、计算
1、分数的运算;
2、两次方程的求解;
3、直角坐标系的使用;
4、根式的运算及其化简;
5、三次根式的求解;
6、不等式的解法;
7、指数函数及其运用;
五、三角函数
1、三角函数的基本性质;
2、正弦定理及其运用;
3、余弦定理及其换元;
4、正切定理及其反函数;
5、正余弦的平面坐标表示;
六、统计
1、概率的概念及性质;
2、离散随机变量的计算;
3、独立性及独立性的性质;
4、条件概率与期望;
5、相关与相关系数;
七、函数
1、函数的定义及其性质;
2、函数的图形表示;
3、函数的单调性;
4、函数的综合应用;
5、函数的最值及其导数;
八、数列
1、数列的极限及性质;
2、常用数列的求和;
3、等差、等比数列的性质;
4、数列的通项公式;。

高考数学主干知识点归纳

高考数学主干知识点归纳

高考数学主干知识点归纳高考数学作为高中阶段学习的重点,其主干知识点主要包括以下几个方面:一、函数与导数- 函数的概念、性质、图像和应用。

- 导数的定义、几何意义、计算方法和应用。

- 函数的单调性、极值、最值问题。

二、三角函数与解三角形- 三角函数的定义、图像和性质。

- 正弦定理、余弦定理及其应用。

- 解三角形的常用方法。

三、不等式与方程- 不等式的基本性质、解法和应用。

- 一元二次方程的解法和判别式。

- 分式不等式和绝对值不等式的解法。

四、数列- 等差数列和等比数列的定义、通项公式和性质。

- 数列的求和问题。

- 数列的极限和无穷等比数列的求和公式。

五、解析几何- 直线、圆、椭圆、双曲线、抛物线等基本几何图形的性质和方程。

- 点、直线、圆等几何元素的位置关系。

- 圆锥曲线的参数方程和极坐标方程。

六、立体几何- 空间直线与平面的位置关系。

- 空间几何体的体积和表面积的计算。

- 空间向量在立体几何中的应用。

七、概率与统计- 随机事件的概率计算。

- 条件概率和独立事件的概念。

- 统计数据的收集、整理和分析。

八、复数- 复数的概念、代数形式和几何意义。

- 复数的四则运算和共轭复数。

- 复数在几何问题中的应用。

九、逻辑与推理- 逻辑运算符的使用和逻辑表达式的化简。

- 推理方法和证明技巧。

结束语:高考数学的主干知识点覆盖了从基础到进阶的多个方面,要求学生不仅要掌握扎实的数学基础知识,还要具备良好的逻辑推理能力和问题解决能力。

通过系统地学习和练习,可以有效地提高数学成绩,为高考的成功打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学基础知识、常见结论详解一、集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。

集合元素的互异性:如:)}lg(,,{xy xy x A =,}|,|,0{y x B ,求A ; (2)集合与元素的关系用符号∈,∉表示。

(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。

(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。

注意:区分集合中元素的形式:如: }12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==;}12|)',{(2++==x x y y x F ;},12|{2xyz x x y z G =++==(5)空集是指不含任何元素的集合。

(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。

注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。

如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

二、集合间的关系及其运算(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。

(2)_}__________{_________=B A ;____}__________{_________=B A ; _}__________{_________=A C U (3)对于任意集合B A ,,则:①A B B A ___;A B B A ___;B A B A ___;②⇔=A B A ;⇔=A B A ;⇔=U B A C U ;⇔=φB A C U ;③=B C A C U U ; )(B A C U =;(4)①若n 为偶数,则=n ;若n 为奇数,则=n ;②若n 被3除余0,则=n ;若n 被3除余1,则=n ;若n 被3除余2,则=n ;三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

(2)B A 中元素的个数的计算公式为:=)(B A Card ; (3)韦恩图的运用:四、x x A |{=满足条件}p ,x x B |{=满足条件}q ,若 ;则p 是q 的充分非必要条件B A _____⇔; 若 ;则p 是q 的必要非充分条件B A _____⇔; 若 ;则p 是q 的充要条件B A _____⇔;若 ;则p 是q 的既非充分又非必要条件___________⇔; 五、原命题与逆否命题,否命题与逆命题具有相同的 ;注意:“若q p ⌝⇒⌝,则q p ⇒”在解题中的运用,如:“βαsin sin ≠”是“βα≠”的 条件。

六、反证法:当证明“若p ,则q ”感到困难时,改证它的等价命题“若q ⌝则p ⌝”成立, 步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。

矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。

适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。

二、函数一、映射与函数:(1)映射的概念: (2)一一映射:(3)函数的概念:如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。

函数)(x y ϕ=的图象与直线a x =交点的个数为 个。

二、函数的三要素: , , 。

相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: ①)()(x g x f y =,则 ; ②)()(*2N n x f y n ∈=则 ; ③0)]([x f y =,则 ; ④如:)(log )(x g y x f =,则 ;⑤含参问题的定义域要分类讨论;如:已知函数)(x f y =的定义域是]1,0[,求)()()(a x f a x f x -++=ϕ的定义域。

⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

如:已知扇形的周长为20,半径为r ,扇形面积为S ,则==)(r f S ;定义域为 。

(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

求下列函数的值域:①])1,1[,,0,0(-∈>>>-+=x b a b a bxa bxa y (2种方法); ②)0,(,32-∞∈+-=x x x x y (2种方法);③)0,(,132-∞∈-+-=x x x x y (2种方法); 三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数) 复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。

f(x) -f(-x)=0⇔f(x) =f(-x) ⇔f(x)为偶函数;f(x)+f(-x)=0⇔ f(x) =-f(-x) ⇔f(x)为奇函数。

判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x 满足:f(x+T)=f(x),则T 为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x 满足:f(x+a)=f(x -a),则2a 为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。

如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。

(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

对称变换 y=f(x)→y=f (-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。

(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

一个重要结论:若f(a -x)=f(a+x),则函数y=f(x)的图像关于直线x=a 对称; 如:)(x f y =的图象如图,作出下列函数图象: (1))(x f y -=;(2))(x f y -=; (3)|)(|x f y =;(4)|)(|x f y =; (5))2(x f y =;(6))1(+=x f y ; (7)1)(+=x f y ;(8))(x f y --=; (9))(1x fy -=。

五、反函数: (1)定义:(2)函数存在反函数的条件: ;(3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将)(x f y =看成关于x 的方程,解出)(1y f x -=,若有两解,要注意解的选择;②将y x ,互换,得)(1x fy -=;③写出反函数的定义域(即)(x f y =的值域)。

(5)互为反函数的图象间的关系: ; (6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

如:求下列函数的反函数:)0(32)(2≤+-=x x x x f ;122)(-=xxx f ;)0(21log )(2>-+=x x xx f 七、常用的初等函数:(1)一元一次函数:)0(≠+=a b ax y ,当0>a 时,是增函数;当0<a 时,是减函数; (2)一元二次函数:一般式:)0(2≠++=a c bx ax y ;对称轴方程是 ;顶点为 ; 两点式:))((21x x x x a y --=;对称轴方程是 ;与x 轴的交点为 ; 顶点式:h k x a y +-=2)(;对称轴方程是 ;顶点为 ;①一元二次函数的单调性:当0>a 时: 为增函数; 为减函数;当0<a 时: 为增函数; 为减函数;②二次函数求最值问题:首先要采用配方法,化为h k x a y +-=2)(的形式, Ⅰ、若顶点的横坐标在给定的区间上,则0>a 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; 0<a 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;Ⅱ、若顶点的横坐标不在给定的区间上,则0>a 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;0<a 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;有三个类型题型:(1)顶点固定,区间也固定。

如:]1,1[,12-∈++=x x x y(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。

(3)顶点固定,区间变动,这时要讨论区间中的参数.]1,[,12+∈++=a a x x x y ③二次方程实数根的分布问题: 设实系数一元二次方程0)(2=++=c bx ax x f 的两根为21,x x ;则:注意:若在闭区间],[n m 讨论方程0)(=x f 有实数解的情况,可先利用在开区间),(n m 上实根分布的情况,得出结果,在令n x =和m x =检查端点的情况。

相关文档
最新文档