人教版七年级下数学第三次月考测试试题

合集下载

人教版七年级下册数学第三次月考试题及答案

人教版七年级下册数学第三次月考试题及答案

人教版七年级下册数学第三次月考试卷一、单选题1.在﹣3,0,π)A.0 B.﹣3 C.πD2.若x是9的算术平方根,则x是()A.3 B.-3 C.9 D.81 3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 334.下列计算不正确的是()A=±2 B9C0.4 D 65.方程1ax yx by+=⎧⎨+=⎩的解是11xy=⎧⎨=-⎩,则a,b为( )A.1ab=⎧⎨=⎩B.1ab=⎧⎨=⎩C.11ab=⎧⎨=⎩D.ab=⎧⎨=⎩6.在数轴上表示不等式组21xx>-⎧⎨≤⎩的解集,其中正确的是()A.B.C.D.7.下列语句中,是假命题的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.互补的两个角是邻补角D.垂线段最短8.实数a,b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0 B.1﹣a<0 C.b﹣1>0 D.﹣1﹣b<09.如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()A.210330x yx y+=⎧⎨+=⎩B.210310x yx y+=⎧⎨+=⎩C.220310x yx y+=⎧⎨+=⎩D.220330x yx y+=⎧⎨+=⎩二、填空题112的相反数是____________,绝对值是_________________.12.87.19.(不用计算器)13.将方程2x+3y=6写成用含x的代数式表示y,则y=________.14.不等式3x﹣5≤1的正整数解是_______.15.在一本书上写着方程组21x pyx y+=⎧⎨+=⎩的解是0.5xy=⎧⎨=⎩,其中,y的值被墨渍盖住了,不过,我们可解得出p=___________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.一个立方体的体积是64m3,若把这个立方体体积扩大1000倍,则棱长为______.三、解答题183|.19.解方程组4421x y x y -=⎧⎨+=-⎩.20.如图,经过平移,四边形ABCD 的顶点A 移到点A′,作出平移后的四边形.21.求不等式组34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩的整数解.22.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.某电器超市销售每台进价分别200元,170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台;(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)²=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案1.D【分析】从四个数中先找出无理数,再根据实数大小比较的法则进行比较即可得出答案.【详解】∵﹣3,0是有理数,∴无理数有π∴故选:D.【点睛】本题考查实数大小的比较,解题的关键是掌握实数大小比较的基本方法.2.A【详解】试题解析:∵32=9,,故选A.3.B【详解】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4.A【分析】根据平方根和立方根的求解方法对原式各项计算得到结果,即可作出判断.【详解】A、原式=2,错误;B、原式=|﹣9|=9,正确;C、原式=0.4,正确;D、原式=﹣6,正确.故选:A.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的计算法则. 5.B【解析】由题意得:1011ab-=⎧⎨-=⎩,解得:1ab=⎧⎨=⎩,故选B.6.A【分析】先根据题意得出不等式组的解集,再在数轴上表示出来即可.【详解】由题意不等式组的解集为;﹣2<x≤1,在数轴上表示为:.故选:A.【点睛】本题考查解一元一次不等式组和在数轴上表示解集,熟练掌握解不等式组的方法是解此题的关键.7.C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、所有的实数都可用数轴上的点表示,正确是真命题,B、等角的补角相等,正确是真命题,C、互补的两个角不一定是邻补角,错误是假命题,D、垂线段最短,正确是真命题,故选:C.【点睛】此题主要考查命题的真假,涉及到补角和垂线段的知识,难度一般.8.A【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得b<a<0,再根据有理数的加减法法则可得答案.【详解】解:由题意,可得b<a<0,则b﹣a<0,1﹣a>0,b﹣1<0,﹣1﹣b与0无法比较,表示正确的是A;故选:A.【点睛】本题考查实数与数轴,关键是掌握在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.也考查了有理数的加减法法则.9.A【分析】如图,过点D作c∥a.由平行线的性质进行解题.【详解】如图,过点D作c∥a.则∠1=∠CDB=25°.又a ∥b ,DE ⊥b , ∴b ∥c ,DE ⊥c , ∴∠2=∠CDB+90°=115°. 故选A . 【点睛】本题考查了平行线的性质.能正确作出辅助线是解决此题的关键. 10.D 【详解】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102xy +=, 化简得220x y +=;根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=,化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D.11.2 2【详解】2的相反数是-2)=2,根据绝对值的2的绝对值是22.故答案为22. 考点:相反数;绝对值. 12.4.487 【详解】试题分析:被开方数的小数点每移动两位,其算术平方根的小数点移动一位..87,.487 考点:算术平方根 13.6−2x 3(或2−23x )【分析】将x 看做已知数求出y 即可. 【详解】解:方程2x+3y=6, 解得:y=6−2x 3=2−23x . 故答案为6−2x 3(或2−23x )14.2或1 【分析】解出不等式3x ﹣5≤1的解集,即可得到不等式3x ﹣5≤1的正整数解. 【详解】 解:3x ﹣5≤1 3x≤6 x≤2,∴不等式3x ﹣5≤1的正整数解是2或1, 故答案为:2或1. 【点睛】本题考查解一元一次不等式和正整数的定义,解题的关键是掌握解一元一次不等式. 15.3 【详解】解:将x=0.5代入第二个方程可得:0.5+y=1,则y=0.5,将x=0.5和y=0.5代入第一个方程可得:0.5+0.5p=2,解得:p=3. 故答案为:3. 16.65 【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可. 【详解】解:如图,由题意可知, AB ∥CD , ∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.40m【分析】根据体积扩大1000倍,可得立方体的体积,根据开方运算,可得答案.【详解】解:64×1000=64000m3,40,故答案为:40m.【点睛】本题考查立方根,解题的关键是先求体积再开方.18.2【分析】根据立方根和平方根的定义以及去绝对值法则,对式子化简即可得到答案.【详解】3|=2+0﹣3+3=2.【点睛】本题主要考查了立方根和二次根式的化简以及去绝对值法则,熟练掌握各知识点是解题的关键.19.7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【分析】方程组利用代入消元法求出解即可.【详解】解:4421x yx y-=⎧⎨+=-⎩①②,由①得:x=y+4,代入②得:4y+16+2y=﹣1,解得:y=﹣176,将y=﹣176代入①得:x=76,则方程组的解为7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查方程组的解法,解题的关键是掌握代入消元法的应用.20.见解析.【分析】根据题意分别作BB′、CC′、DD′与AA′平行且相等,即可得到B、C、D的对应点,顺次连接即可.【详解】解:如图:四边形A′B′C′D′即为所求.【点睛】本题考查的是平移变换作图.注意掌握作平移图形时,找关键点的对应点也是关键的一步.21.不等式组的所有整数解为3,4.【分析】根据题意先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】 解:34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩①②, ∵解不等式①得:x <92, 解不等式②得:x >52, ∴不等式组的解集为52<x <92, ∴不等式组的所有整数解为3,4.【点睛】本题考查解一元一次不等式以及解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.22.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【详解】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.(1)A、B两种型号电风扇的销售单价分别为250元,210元;(2)A型号电风扇最多能采购10台;(3)在(2)的条件下,超市不能实现利润为1400元的目标,理由见解析【分析】(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的电风扇采购a台,则B种型号的电风扇采购(30-a)台,根据进货总价=进货单价×进货数量结合超市准备用不多于5400元的金额采购两种型号的电风扇共30台,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售完这30台电风扇实现利润为1400元时的A种型号电风扇采购台数a,再结合(2)的取值范围判断即可.【详解】(1)设A、B两种型号的电风扇销售单价分别为x元、y元.⎧⎨⎩3518004103100x yx y+=+=解得:250210xy=⎧⎨=⎩答:A、B两种型号电风扇的销售单价分别为250元,210元.(2)设采购A种型号电风扇a台.200a+170(30-a)≤5400 解得:a≤10答:A型号电风扇最多能采购10台.(3)依题意解(250-200)a+(210-170)(30-a)=1400解得:a=20 ∵a≤10∴在(2)的条件下,超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.25.(1)a=3,b=1;(2)A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况:①在灯A射线到达AN之前;②在灯A射线到达AN之后,分别列出方程求解即可;(3)设A灯转动时间为t秒,则∠CAN=180°−3t,∠BAC=∠BAN−∠CAN=3t−135°,过点C作CF∥PQ,则CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°−2t,∠BCD=∠ACD−∠BCA=2t−90°,即可得出结果.【详解】解:(1)∵|a-3b|+(a+b-4)²=0,∴3040a ba b-=⎧⎨+-=⎩,解得:31ab=⎧⎨=⎩,故a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①在灯A射线到达AN之前,由题意得:3t=(20+t)×1,解得:t=10,②在灯A射线到达AN之后,由题意得:3t−180°=180°−(20+t)×1,解得:t=85,综上所述,A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD;理由:设A灯转动时间为t秒,则∠CAN=180°−3t,∴∠BAC=∠BAN−∠CAN=45°−(180°−3t)=3t−135°,∵PQ∥MN,如图2,过点C作CF∥PQ,则CF∥PQ∥MN,∴∠BCF=∠CBD,∠ACF=∠CAN,∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°−3t=180°−2t,∵CD⊥AC,∴∠ACD=90°,∴∠BCD=∠ACD−∠BCA=90°−(180°−2t)=2t−90°,∴2∠BAC=3∠BCD.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.。

人教版七年下第三次月考数学试卷

人教版七年下第三次月考数学试卷

七年下第三次月考数学试卷一、选择题(每小题2分,共12分)1.根据下列表述,能确定位置的是( )A.电影院2排B.北京四环路C.北偏东30°D.东经118°,北纬40°2.下列各方程组中,属于二元一次方程组的是( )A. ⎩⎨⎧==+5723xy y xB. ⎩⎨⎧=+=+212z x y xC. ⎪⎩⎪⎨⎧=+=-243123y x y xD. ⎪⎩⎪⎨⎧=+=+322135y x y x 3.小颖要制作一个三角形木架,现有两根长度为8m 和5m 的木棒.如果要求第三根木棒的长度是整数,第三根木棒的长度可以是( )A.3mB.6mC.13mD.5.5m4.下列各式中是一元一次不等式的有( )①x +3<-7; ②xy <3 ③12++x x >0 ④621+x ≤5x ⑤x -3≠0. A.1个 B.2个 C.3个 D.4个5.在正三角形、正方形、正五边形、正六边形中不能单独镶嵌平面的是( )A.正三角形B.正方形C.正五边形D.正六边形6.已知m <n ,则下列结论正确的是( )A. m <n -1B.-3m >-3nC. m +5>n +5D. m -n ≥0二、填空题(每小题3分,共24分)7.用不等式表示“x 的5倍与8的和不大于10”: .8.在方程3x -a y =8中,如果⎩⎨⎧==13y x 是它的一个解,那么a 的值为 . 9.如图,张叔叔家里的椅子坏了,于是他给椅子加了两根木条,他所用的数学原理是 .10.点A (-3,a )在第三象限的角平分线上,则a = .11.如图,a ∥b ,AC ⊥BC ,∠C=90°,∠β=25°,则∠α= .12.如图,在△ABC 中∠C=100°,∠B=30°,AE 是∠BAC 的平分线,∠AEC= .13.当x 时,式子231-x 的值是正数. βαC B A b a E C B A 9题图 11题图 12题图14.在某校举办的足球赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,共得了22分,已知这个球队中输了2场,为求此队胜几场和平几场.设这支足球队胜x 场,平y 场.根据题意,可列出方程组 .三、解答题(每小题5分,共20分)15.用代入法解方程组: ()⎩⎨⎧=-+=-11323y x y y x16.若一个多边形的内角和等于它外角和的2倍,求这个多边形的边数.17.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数..32+x ≤3x -1四、解答题(每小题7分,共28分)□x +5y =13①19.甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎩⎨⎧==22y x ;乙看错了 4x -□y =2②方程②中y 的系数,解得⎩⎨⎧=-=41y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解.20.张大伯有一块大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°角,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数来检验模板是否合格?21.某山区有若干名中、小学生因贫困失学需要捐款,某中学七、八年级学生举行“献爱心”募捐活动.七、22.如图,在△ABC 中,AD 是BC 边上的中线,△ABD 的周长比△ACD 的周长小5,你能求出AC 与AB 的边长的差吗?五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,若每一个方格的边长代表一个单位.(1)线段CD 是线段AB 经过怎样的平移得到的?(2)若C 点的坐标是(4,1),A 点的坐标是(-1,-2),你能写出B ,D 两点的坐标吗?(3)求平行四边形ABCD 的面积.D C B A D C B A 22题图20题图24.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1个桶底正好配套做1个水桶,现有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?六、解答题(每小题10分,共20分)25.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)若∠ABE=25°,∠BAD=50°,则∠BED 的度数是 .(2)在△ADC 中过点C 作AD 边上的高CH ;(3)若△ABC 的面积为60,BD=7.5,求点E 到BC 边的距离.26.小明与小王分别要把两块边长都为60㎝的正方形薄钢片制作成两个无盖的长方体盒子(不计粘合部分).(1)小明先在薄钢片四个角截去边长为10㎝的四个相同的小正方形(如图①),然后把四边折合粘在一起,便得到甲种盒子,请你帮忙求出甲种盒子底面边长.(2)小王如图②截去两角后,沿虚线折合粘在一起,便得到乙种盒子,已知乙种盒子底面的长AB 是宽BC 的2倍,求乙种盒子底面的长与宽.(3)若把乙种盒子装满水后倒入甲种盒子内,问是否可以装满甲种盒子,若能装满甲种盒子,那么乙种盒子里的水面还有多高?若不能装满甲种盒子,求出此时甲种盒子的水面的高度.E D C BA 剪去剪去CB A ① ② 26题图 25题图。

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试题一、单选题1.下列各式的值一定是正数的是( )A B C .21a D .a 2.下列式子中,是一元一次不等式的是( )A .x 2<1B .y –3>0C .a+b=1D .3x=2 3.上海是世界知名金融中心,以下能准确表示上海市地理位置的是( ) A .在中国的东南方B .东经121.5C .在中国的长江出海口D .东经12129',北纬3114' 4.如图,已知a ∥b ,小明把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为( )A .65°B .120°C .125°D .145° 5.若点P (a ,b )在第二象限,则点Q (b +2,2﹣a )所在象限应该是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A .不超过3cmB .3cmC .5cmD .不少于5cm 7.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =+⎧⎨+=⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =-⎧⎨=+⎩D .7385y x y x =+⎧⎨=+⎩8.下列计算或命题:①有理数和无理数统称为实数;=a ;的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有( )A .1个B .2个C .3个D .4个9.如图,AB ∥CD ∥EF ,EH ⊥CD 于H ,则∠BAC+∠ACE+∠CEH=( ).A .180°B .270°C .360°D .540°10.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A .36,8B .28,6C .28,8D .13,311.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2) 12.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( )A .13-B .1-C .34D .4二、填空题13.下列实数中:3.14,π,0,2270.3232232223(⋯每相邻两个3之间依次增加一个2),0.123456;其中无理数有______个.14.化简(21+-+_____.15.不等式7﹣2x >1的非负整数解为:_______________.16.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为_____cm.17.编队飞行(即平行飞行)的两架飞机A、B在直角坐标系中的坐标分别为A(﹣1,2)、B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是_____.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是_____.三、解答题19.如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.20.解方程(或方程组):(1) 4x2=81;(2)(2x+10)3=﹣27.(3)24 {4523x yx y-=-=-(4)11 {23 3210. x yx y+-=+=21.长阳公园有四棵古树A,B,C,D (单位:米).(1)请写出A,B,C,D 四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.已知()267567190a b a b +-+--=.(1)求a 和b 的值;(2)当x 取何值时,ax b -的值大于2.23.如图,已知直线AB 和CD 相交于O 点,射线OE ⊥AB 于O ,射线OF ⊥CD 于O ,且∠BOF =25∘.求:∠AOC 与∠EOD 的度数.24.在平面直角坐标系xOy 中,有一点P (a ,b ),实数a ,b ,m 满足以下两个等式:2a -6m +4=0,b +2m -8=0.(1)当a =1时,点P 到x 轴的距离为______;(2)若点P 在第一三象限的角平分线上,求点P 的坐标;(3)当a <b 时,则m 的取值范围是______.25.列方程组解应用题:某学校在筹建数学实验室过程中,准备购进一批桌椅,现有三种桌椅可供选择:甲种每套150元,乙种每套210元,丙种每套250元.若该学校同时购买其中两种不同型号的桌椅50套,恰好花费了9000元,则共有哪几种购买方案?26.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC度数.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC 与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC 有何数量关系?并说明理由.参考答案1.C【解析】【分析】根据实数、绝对值以及算术平方根的性质进行选择即可.【详解】解:A 、当a≤0时,,故A 错误;B 、当a=0时,,故B 错误;C 、∵a≠0,∴a 2>0,∴21a >0,故C 正确; D 、当a=0时,|a|=0,故D 错误;故选:C .【点睛】本题考查了实数,立方根,非负数:绝对值和算术平方根,掌握非负数的性质是解题的关键. 2.B【解析】【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的次数是1的不等式,即可解答.【详解】解:A 、未知数次数是2,属于一元二次不等式,故本选项错误;B 、符合一元一次不等式的定义,故本选项正确;C 、含有2个未知数,属于二元一次方程,故本选项错误;D 、含有1个未知数,是一元一次方程,故本选项错误.故选B .【点睛】本题考查一元一次不等式的定义,解题的关键是熟练掌握一元一次不等式的定义. 3.D【解析】【分析】根据坐标确定点的位置可得.【详解】解:A、在中国的东南方,无法准确确定上海市地理位置;B、东经121.5,无法准确确定上海市地理位置;C、在中国的长江出海口,法准确确定上海市地理位置;D、东经12129',北纬3114',是地球上唯一的点,能准确表示上海市地理位置;故选:D.【点睛】本题主要考查坐标确定点的位置,掌握将平面用两条互相垂直的直线划分为四个区域,据此可表示出平面内每个点的准确位置是关键.4.C【解析】【分析】根据两直线平行,同位角相等,即可得到∠AEB=∠ACD=125°,再根据两直线平行,同位角相等,即可得到∠2的度数.【详解】如图所示,∵∠1=35°,∠ACB=90°,∴∠ACD=125°,∵a∥b,∴∠AEB=∠ACD=125°,∴由图可得∠2=∠AEB=125°,故选:C.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记性质并准确识图是解题的关键.5.A【解析】【分析】直接利用第二象限内点的坐标特点得出a,b的符号进而得出答案.【详解】∵点P(a,b)在第二象限,∴a<0,b>0,∴b+2>0,2﹣a>0,∴点Q(b+2,2﹣a)所在象限应该是第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标特点是解题关键.6.A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P到直线l的距离是小于或等于3,故选A.【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短.7.C【解析】【分析】根据题意确定等量关系为:①组数×每组7人=总人数-3人;②组数×每组8人=总人数+5人.由此列方程组即可.【详解】根据组数×每组7人=总人数-3人,得方程7y=x-3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为73 85y xy x=-⎧⎨=+⎩.故选C.【点睛】本题考查了二元一次方程组的应用,根据题意确定等量关系为组数×每组7人=总人数-3人和组数×每组8人=总人数+5人是解决问题的关键.8.D【解析】【分析】利用实数的定义、算术平方根的定义以及立方根的性质,分别判定各项即可解答.【详解】①有理数和无理数统称为实数,①正确;,②正确;,4的算术平方根是2,③正确;④实数和数轴上的点是一一对应的,④正确.故选D.【点睛】本题考查了命题与定理,熟练运用相关定义是解决问题的关键.9.C【解析】【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF 的度数即可.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF-∠HEF=360°-90°=270°.故选B .【点睛】本题主要考查了平行线的性质:两直线平行同旁内角互补.10.A【解析】【分析】此题不变的是井深,用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】设绳长x 米、井深y 米,依题意有4314x y x y ⎧=+⎪⎪⎨⎪=+⎪⎩ , 解得368x y =⎧⎨=⎩, 即:绳长36米、井深8米.故选:A【点睛】本题考核知识点:二元一次方程组的应用.解题关键点:设好未知数,根据题意,找出等量关系,列出方程(组).11.D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.12.D【解析】【分析】根据已知条件可以先计算出几个x的值,从而可以发现其中的规律,求出x2019的值.【详解】解:由已知可得,x1=13 -,213,14 13x==⎛⎫--⎪⎝⎭314,314x==-411, 143x==--可知每三个一个循环,2019÷3=673,故x2019=4.故选D.【点睛】本题考查数字的规律问题,解题的关键是发现其中的规律,求出相应的x的值.13.4【解析】【分析】根据无理数的定义即可求出答案.【详解】π,0.3232232223…(每相邻两个3之间依次增加一个2)是无理数.故答案为:4.【点睛】本题考查了无理数的定义,解题的关键是熟练运用无理数的定义,本题属于基础题型.14.3+【解析】【分析】先算平方,再去绝对值,然后算立方根,从左往右依次相加即可.【详解】原式3故答案为3【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.15.0、1、2【解析】【分析】首先根据不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:不等式7-2x>1,整理得,2x<6,x<3,则不等式的非负整数解是:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键;解不等式应根据不等式的基本性质.16.20【解析】【分析】根据平移的距离表示出长方形A'ECF的长和宽,即可求出结论.【详解】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.【点睛】本题考查了平移的性质,认准图形,准确求出长方形A'ECF的长和宽是解题的关键.17.(1,0)【解析】【分析】先根据飞机A确定出平移规律,再求出飞机B的横坐标与纵坐标即可得解.【详解】∵飞机A(-1,2)到达(2,-1)时,横坐标加3,纵坐标减3,∴飞机B(-2,3)的横坐标为-2+3=1,纵坐标为3-3=0,∴飞机B的坐标为(1,0).故答案为(1,0)【点睛】本题考查了坐标与图形的变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.18.(2018,0)【解析】分析:根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.详解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2018次运动后,动点P的横坐标为2018,纵坐标为1,0,2,0,每4次一轮,∴经过第2018次运动后,动点P的纵坐标为:2018÷4=504余2,故纵坐标为四个数中第2个,即为0,∴经过第2018次运动后,动点P的坐标是:(2018,0),故答案为: (2018,0).点睛:此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.19.50°.【解析】【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【详解】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.20.(1) x=92±; (2)x=132-; (3)436{313xy==;(4)=3{1=2xy.【解析】【分析】(1)系数化为1后,利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可;(3)利用代入消元法进行求解即可;(4)整理后,利用加减消元法进行求解即可.【详解】(1) 4x2=81,x2=81 4,x=所以x=92±;(2)(2x+10)3=﹣27,,2x+10=-3,x=132 -;(3)244523x yx y-=⎧⎨-=-⎩①②,由①得y=2x-4③,把③代入②得,4x-5(2x-4)=-23,解得x=436,把x=436代入③,得y=313,所以436313x y ⎧=⎪⎪⎨⎪=⎪⎩; (4) 整理得3283210x y x y -=⎧⎨+=⎩①②, ①+②得,6x=18,x=3,②-①得,4y=2,y=12, 所以312x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了利用平方根定义、立方根定义解方程,解二元一次方程组,熟练掌握相关定义以及求解方法是解题的关键.21.(1)A(10,10),B(20,30),C(40,40),D(50,20);(2)1950m 2【解析】试题分析:(1)根据图形即可直接写出A 、B 两点坐标;(2)用大长方形面积减去三个小三角形面积即可.试题解析:(1)A (10,10)、B (20,30);(2)保护区面积为:60×50﹣12×10×60﹣12×10×50﹣12×20×50=1950m 2. 考点:点的坐标. 22.(1)21a b =⎧⎨=-⎩;(2) 当12x >时, 21x +的值大于2 【解析】【分析】(1)已知()267567190a b a b +-+--=,由非负数的性质可得675067190a b a b +-=⎧⎨--=⎩,解方程组即可求得求a 和b 的值;(2)根据题意可得2ax b ->,把a 和b 的值代入后解不等式即可求得x 的取值范围.【详解】(1)由题意得,675067190a b a b +-=⎧⎨--=⎩, 解得, 21a b =⎧⎨=-⎩; (2) 2ax b ->∵2a =,1b =-∴()212x --> 即12x > 所以,当12x >时, 21x +的值大于2. 【点睛】本题考查了非负数的性质、二元一次方程组的解法及一元一次不等式的解法,根据非负数的性质得到方程组675067190a b a b +-=⎧⎨--=⎩是解决问题的关键.23.∠AOC =115°, ∠EOD =25°.【解析】【分析】根据垂线的性质和余角及补角的定义可求出∠ AOC ,由垂线的性质和余角的定义可求出∠EOD【详解】解:∵OF ⊥CD ,∴∠COF =90°,∴∠BOC =90°-∠BOF =65°,∴∠AOC =180°-65°=115°. ∵OE ⊥AB ,∴∠BOE =90°,∴∠EOF =90°-25°=65°,∵OF ⊥CD∴∠DOF=90°∴∠EOD=∠DOF −∠EOF=90°-65°=25°.【点睛】垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键. 24.(1)6.(2)(4,4).(3)m<2【解析】【分析】(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.【详解】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.【点睛】本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.25.有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套【解析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.解:①若同时购买甲、乙两种桌椅,则设购买甲x套,购买乙y套.根据题意,得50 1502109000x yx y+=⎧⎨+=⎩,解方程组,得2525x y =⎧⎨=⎩; ②若同时购买甲、丙两种桌椅,则设购买甲x 套,购买乙z 套.根据题意,得501502509000x z x z +=⎧⎨+=⎩, 解方程组,得 3515x z =⎧⎨=⎩, ③若同时购买乙、丙两种桌椅,则设购买乙y 套,购买丙z 套.根据题意,得502102509000y z y z +=⎧⎨+=⎩, 解方程组,得87.537.5y z =⎧⎨=-⎩(不符题意,舍),所以,共有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套. 26.(1)80°;(2)详见解析;(3)详见解析【解析】【分析】(1)过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据APC APE CPE BAP DCP ∠=∠+∠=∠+∠进行计算即可;(2)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠AKE =∠BAK ,∠CKE =∠DCK ,得到∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,同理可得,∠APC =∠BAP +∠DCP ,再根据角平分线的定义,得1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,进而得到1.2AKC APC ∠=∠ (3)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠BAK =∠AKE ,∠DCK =∠CKE ,进而得到∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,同理可得,∠APC =∠BAP −∠DCP ,再根据角平分线的定义,得出1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,进而得到1.2AKC APC ∠=∠ 【详解】解:(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠APE =∠BAP ,∠CPE =∠DCP ,∴602080APC APE CPE BAP DCP ∠=∠+∠=∠+∠=+=; (2)1.2AKC APC ∠=∠理由:如图2,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠AKE =∠BAK ,∠CKE =∠DCK ,∴∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP +∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K , ∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,∴12AKC APC ∠=∠; (3) 12AKC APC ∠=∠;理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP −∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K ,∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,∴1.2AKC APC ∠=∠【点睛】考核知识点:平行线判定和性质综合.添辅助线,灵活运用平行线性质是关键.第21 页。

人教版初一_七年级下册第三次月考数学试卷含答案解析

人教版初一_七年级下册第三次月考数学试卷含答案解析

七年级数学第三次月考试题 考号:姓名: 得分:一、选择题(每小题3分,共24分)1、下列各图中,∠1与∠2是对顶角的是:( )2、下列各数中,不是无理数的是 ( )A 、B 、0.5C 、2D 、0.151151115…(每两个5之间依次多一个1)3、16的平方根是( )(A )2 (B )4 (C )- 2或2 (D )- 4或44、在直角坐标系中,点P (-2,3)先向右平移3个单位长度,再向下平移5个单位长度后的坐标为( )A .(-5,8) B.(1,-2) C.(1,2) D.(-5,-2)5. 如图,下列条件中,不能判断直线a//b 的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180°6、已知坐标平面内点M(a,b)在第三象限,那么点N(b, -a)在 ( )A .第一象限B .第二象限C .第三象限D .第四象限7、若方程有一解则的值等于( ) A.2 . B. . C. . D.-.628k x y -=32x y =-⎧⎨=⎩,k 162323c b a 5 4 3 2 18、如图AB ∥CD ,则∠1=( )。

A 、75°B 、80°C 、85°D 、95°二、填空题(每小题3分,共21分)9、若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。

10、把“对顶角相等”写成“如果……那么……”的形式为 。

11、的相反数是_________。

12、点P (-2,3)关于X 轴对称点的坐标是 。

关于原点对称点的坐标是 。

关于y 轴的对称点的坐标是 。

13、若=0,则m =________,n =_________。

14、如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=56°,•则∠2=________度.15、使式子x +x 1+有意义的x 的取值范围是 ______.三、解答题(共55分)16、计算题(每题3分,共6分)(1)(2)| | + ||- ||17、求满足下列等式的x 的值(每小题4分,共8分)(1) x 2-25=0 (2)641x 23=-)(18、(8分)请把下列解题过程补充完整并在括号中注明理由。

最新人教版七年级数学下册第三次月考试题

最新人教版七年级数学下册第三次月考试题

七年级数学下册第三次月考试题一、选择题(每题3分,共30分)1.在π,,﹣,,3.1416,0.3中,无理数的个数是()A.1个B.2个C.3个D.4个2.若a>b,下列说法正确的是()A.a﹣b<0 B.2a>2b C.﹣a>﹣b D.a﹣1<b﹣1 3.下列各式中,正确的是()A.B.C.D.4.如图,点E在AC的延长线上,下列条件中不能判断AB∥CD的是()A.∠A=∠DCE B.∠1=∠2C.∠3=∠4 D.∠D+∠ABD=180°5.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限6.下列命题是真命题的是()A.同旁内角互补B.两个无理数的和仍是无理数C.若a2=b2,则a=bD.同角的余角相等7.下列调查中,适宜采用抽样调查的是()A.对宇宙飞船零部件质量的调查B.对全班50名同学身高的调查C.对本校七年级学生周末写作业时间的调查D.对奥运会运动员使用兴奋剂的调查8.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中:①;②;③3x+(100﹣x)=100;④(100﹣y)+3y=100正确的是()A.①③B.①④C.②③D.②④9.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)二、填空题(每小题3分,共15分)11.若实数x,y满足|x﹣3|+=0,则(x+y)3的平方根为.12.已知:≈1.42091,≈4.49332,则(精确到0.01)≈.13.如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠BOC=130°,则∠DOE=.14.已知二元一次方程=1,则它的正整数解是.15.若方程组的解满足0<y﹣x<1,则k的取值范围是.三、解答题(本大题共8个小题,满分55分)16.(5分)计算:+|1﹣|.17.(5分)解方程组.18.(5分)解不等式组:并写出它的所有正整数解.19.(8分)某社区要调查社区居民双休日的学习情况,采用下列调查方式:甲:从一幢高层住宅楼中选取200名居民;乙:从不同住宅楼中随机选取200名居民;丙:选取社区内200名在校学生.(1)上述调查方式最合理的是;(2)将最合理的调查方式得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).在这个调查中,200名居民双休日在家学习的有人;(3)调查的200名居民中在家学习1小时的有人;(4)请估计该社区1400名居民双休日学习时间不少于3小时的人数.20.(6分)如图,E,F分别是AB和CD上的点,CE,BF分别交AD于G,H,∠1=∠2,∠B =∠C.求证:AB∥CD.21.(6分)△ABC与△A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)△ABC由△A'B'C'经过怎样的平移得到?(3)求△ABC的面积.22.(10分)我市在进行“六城同创”的过程中,决定购买A,B两种树对某路段进行绿化改造,若购买A种树2棵,B种树3棵,需要2700元;购买A种树4棵,B种树5棵,需要4800元.(1)求购买A,B两种树每棵各需多少元?(2)考虑到绿化效果,购进A种树不能少于48棵,且用于购买这两种树的资金不低于52500元.若购进这两种树共100棵.问有哪几种购买方案?23.(10分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.七年级数学下册期中试题一、选择题(每小题3分,满分30分)1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下面四个图形中,∠1与∠2是对顶角的图形的是()A.甲B.乙C.丙D.丁4.在实数:﹣0.3,,2.010010001…(0的个数依次递增),3.21,3π,中,无理数有()A.1个B.2个C.3个D.4个5.方程kx+3y=5有一组解是,则k的值是()A.1B.﹣1C.0D.26.估计的大小应在()A.5~6之间B.6~7之间C.7~8之间D.8~9之间7.点P的横坐标是﹣3,且到x轴的距离为5,则P点的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣5)8.如图,能判断直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°9.方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,410.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.β+γ﹣α=90°B.α+β+γ=180°C.α+β﹣γ=90°D.β=α+γ二.填空题(每小题3分,满分30分)11.图中是对顶角量角器,用它测量角的原理是.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是.13.的相反数是.14.16的算术平方根是,﹣8的立方根是.15.已知,a、b互为倒数,c、d互为相反数,求=.16.如果点P(m+3,m ﹣2)在x轴上,那么m=.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于.18.若|x+y﹣3|与(2x+3y﹣8)2互为相反数,则3x+4y=.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为.20.如图,点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后动点P的坐标是.三.解答题(60分)21.(6分)计算(1)﹣|| (2)+.22.(8分)解方程组(1)(2).23.(8分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.24.(8分)如图,已知∠1=∠2,DF∥AC,∠C与∠D相等吗?为什么?25.(8分)已知点P(2x﹣6,3x+1),求下列情形下点P的坐标.(1)点P在y轴上;(2)点P到x轴、y轴的距离相等,且点P在第二象限;(3)点P在过点A(2,﹣4)且与y轴平行的直线上.26.(10分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.27.(12分)已知射线AB∥射线CD,P为一动点,AE平分∠P AB,CE平分∠PCD,且AE 与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC的度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.。

人教版数学七年级下册第三次月考试卷含答案

人教版数学七年级下册第三次月考试卷含答案

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D . 2.点P(-2,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 4.下列方程组不是二元一次方程组的是( )A .43624x y x y +=⎧⎨+=⎩B .44x y x y +=⎧⎨-=⎩C .141y x x y ⎧+=⎪⎨⎪-=⎩D .35251025x y x y +=⎧⎨+=⎩ 5.在311.41407π-,,, 1.14,3.212212221(每两个1之间多一个2),这些数中无理数的个数为( )A .3B .2C .5D .46.若点P ()31m m ,+-在x 轴上,则点P 的坐标为( )A .(0,-2)B .(4,0)C .(2,0)D .(0,-4) 7.如图,由下列条件不能得到AB ∥CD 的是( )A .∠B +∠BCD =180° B .∠1=∠2C .∠3=∠4D .∠B =∠5 8.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(-3,4)B .(4,-3)C .(3,-4)D .(-4,3) 9.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C 4D .-8的立方根是2± 10.已知x y 、是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( ) A .0 B .5 C .-1 D .111.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为( )A .50°B .60°C .40°D .30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A .(5,6)B .(6,0)C .(6,3)D .(3,6)二、填空题 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知x y 、()230y -=,则xy 的值是_______.15 1.732 5.477≈≈,≈_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1,−2),“马”位于点(2,−2),则“兵”位于点__________.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题19.计算:(1)(2)已知(x –2)2=16,求x 的值.20.已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111A B C △;(3)计算111A B C △的面积.21.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=20°,求∠BOE 和∠AOG 的度数.22.若关于x y 、的方程组59x y k x y k +=⎧⎨-=⎩的解满足236x y +=,求k 的值.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.如图,△ABO 的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB 的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的25,求点M的坐标.参考答案1.B【分析】对顶角是两条直线相交,其中一个角是另一个角的边的反向延长线,据定义即可判断.【详解】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故选B【点睛】本题主要考查对顶角的定义,是一个基础题.理解定义是关键.2.C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点在平面直角坐标系中,点P(−2,−5)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.B【解析】【分析】<<,推出23即可.【详解】解:<<,∴23,2和3之间.【点睛】.4.C【解析】【分析】根据二元一次方程组的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元一次方程组,故本选项错误;B、是二元一次方程组,故本选项错误;C、第一个方程x在分母上,不是二元一次方程组,故本选项正确;D、是二元一次方程组,故本选项错误.故选:C.【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项的最高次数都应是一次的整式方程.5.A【解析】【分析】根据无理数是无限不循环小数,直接判定即可.【详解】,π,3.212212221(每两个1之间多一个2),共3个;故选:A.【点睛】本题主要考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.B【解析】【分析】根据点P在x轴上,即m-1=0,可得出m的值,从而得出点P的坐标.【详解】解:∵点P(m+3,m-1)在x轴上,∴m-1=0,解得:m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.7.B【解析】【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】解:A、∵∠B+∠BCD=180°,∴AB∥CD,正确,故本选项不选;B、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,错误,故本选项选;C、∵∠3=∠4,∴AB∥CD,正确,故本选项不选;D、∵∠B=∠5,∴AB∥CD,正确,故本选项不选;故选:B.【点睛】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.8.A【解析】【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【详解】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:−3,∴P(−3,4),故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作(a≥0);也考查了立方根的定义.10.B【解析】【分析】两个二元一次方程相加可得4x+4y=20,两边同时除以4即可得到结果. 【详解】解:31238x yx y+=⎧⎨+=⎩①②,①+②得:4x+4y=20,∴x+y=5,故选:B.【点睛】本题考查了二元一次方程组的解,理解方程组解的定义是解题关键.11.D【解析】【分析】反向延长DE交BC于M,根据平行线的性质求出∠BMD的度数,由补角的定义求出∠CMD 的度数,根据三角形外角的性质即可得出结论.【详解】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°−∠BMD=120°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE−∠CMD=150°−120°=30°.故选:D.【点睛】本题考查的是平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】【分析】根据题目中所给点运动的特点,从中找出规律,即可得出答案.【详解】解:由图可得,4秒后跳蚤所在位置的坐标是(2,0);16秒后跳蚤所在位置的坐标是(4,0);36秒后跳蚤所在位置的坐标是(6,0);∴42秒时根据跳蚤向上跳动6个单位可以到达(6,6),45秒时根据跳蚤向左跳动3个单位可以到达(3,6),故选:D.【点睛】本题主要考查点的坐标问题,解决本题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.13.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.14.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.17.32【解析】【分析】根据题目中的数据和算术平方根的求法可以解答本题.【详解】==≈,17.32故答案为:17.32.【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出所求数据的算术平方根.16.3【解析】【分析】BE 即是平移的距离,根据线段和差求出即可.【详解】解:根据题意可知BE即为平移的距离,BE=BC-EC=3cm,故答案为:3.【点睛】本题考查平移的性质,根据题意找到平移的的方向和距离是解题关键.17.(−3,1)【解析】试题分析:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系18.17【解析】【分析】设晴天工作x 天,雨天工作y 天,根据题意列出二元一次方程组求解即可.【详解】解:设晴天工作x 天,雨天工作y 天, 根据题意得:()()1130%1141411120%11515x y x y ⎧+⨯-=⎪⎪⎨⎪+⨯-=⎪⎩, 解得:710x y =⎧⎨=⎩, ∴两个工程队各工作了x+y=17天,故答案为:17.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.19.(1)原式=4;(2)x=-2或x=6.【解析】【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=-+=+(2)()2216x -=,24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析;(3)面积为5.【解析】【分析】(1)找到点A 、B 、C 的位置,连接即可;(2)根据平移的性质找到A 1、B 1、C 1的位置,连接即可;(3)用111A B C △所在矩形的面积减去周围直角三角形的面积进行计算.【详解】解:(1)如图,△ABC 即为所求;(2)如图,111A B C △即为所求;(3)111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查平面直角坐标系和平移,熟练掌握平移的性质是解题关键.21.∠BOE=70°;∠AOG=55°. 【解析】【分析】先求出∠AOF ,根据对顶角的性质得出∠BOE ,再根据邻补角的性质求出∠AOE ,由角平分线即可求出∠AOG .【详解】解:∵AB ⊥CD ,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG 平分∠AOE ,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 22.34【解析】分析:先利用加减消元法解二元一次方程组,可得72x k y k=⎧⎨=-⎩,然后根据2x+3y=6可得:1466k k -=,解得34k =. 详解:解59x y k x y k +=⎧⎨-=⎩①②, 由①+②可得:214x k =,解得7x k =,把7x k =代入②可得:2y k =-, 因为2x+3y=6可得:1466k k -=,解得34k =. 点睛:本题主要考查含参数的二元一次方程组的解法,解决本题的关键是要熟练掌握加减消元法解二元一次方程组.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)10;(2)P 点的纵坐标为8或-8,横坐标为任意实数;(3)M(-2,0),(2,0).【解析】【分析】(1)根据三角形面积公式可直接计算;(2)由于底不变,△OAP 的高是△OAB 的高的二倍即可;(3)分情况讨论,当M 在x 轴上时和当M 在y 轴上时,分别求出OM 即可.【详解】解:(1)∵O(0,0),A(5,0),B(2,4),∴S △OAB =0.5×5×4=10;(2)若△OAP 的面积是△OAB 面积的2倍,O ,A 两点的位置不变,则△OAP 的高应是△OAB 高的2倍,即△OAP 的面积=△OAB 面积×2=0.5×5×(4×2), ∴P 点的纵坐标为8或-8,横坐标为任意实数;(3) △OBM 的面积=21045⨯=, 当M 在x 轴上时,以OM 为底,OM 边上的高为4, ∴1442OM ⨯⨯=,解得OM=2, ∴M(-2,0),(2,0),同理当M在y轴上时,M(0,4),(0,-4).【点睛】本题考查了坐标与图形以及三角形的面积的求解,三角形的底边不变,则三角形的面积与高成正比,高不变,则三角形的面积与底边成正比,需要注意,在平面直角坐标系内,符合长度的点的坐标通常都有两种情况,不要漏解.。

人教版数学七年级下册第三次月考试卷带答案

人教版数学七年级下册第三次月考试卷带答案

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定2.4的平方根是()A.±16 B.2 C.﹣2 D.±2 3.在平面直角坐标系中,点(-3,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC5.在实数:3.141 59,1.010 010 001, 4.21,π,227中,无理数有( )A.1个B.2个C.3个D.4个6.下列命题是假命题的是().A.同位角相等B.平行于同一直线的两直线平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两直线平行,内错角相等7.已知32xy=⎧⎨=-⎩是二元一次方程3x﹣my=5的一组解,则m的值为()A.﹣2 B.2 C.﹣12D.128.如果方程组864x yy zz x+=⎧⎪+=⎨⎪+=⎩的解使代数式kx+2y﹣3z的值为8,则k=()A .13 B .﹣13 C .3 D .﹣3二、填空题9.如图,在线段AC ,BC ,CD 中,线段______最短,理由是________.10.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =68°,则∠BOD 的度数为________.11.若一个正数的平方根是2a-3与5-a ,则这个正数是_____.12.点P (2a,1-3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为6,则点P 的坐标是________.13.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为 .三、解答题14.3_____,绝对值是_____.15.计算:(1)(﹣2)22016(1)-;(22|16.求下列等式中x 的值:(1)2x 2﹣12=0;(2)(x +4)3=125.17.已知2a ﹣1的平方根是±3,11a +b ﹣1的立方根是4,求a +2b 的平方根.18.解下列方程组:(1)3219424x y x y +=⎧⎨-=⎩ (2)5323225x y x y ⎧+=⎪⎨⎪+=⎩19.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.20.如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,求证:AB ∥CD .21.如图所示,△ABC 中,A (﹣2,1)、B (﹣4,﹣2)、C (﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图,并且C的对应点C′的坐标为(4,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

).
A. m>- 1. 25
B. m<- 1.25
C. m>1.25
D. m<1.25
9.某种出租车的收费标准:起步价 7 元(即行驶距离不超过 3 千米都需付 7 元车费),超 过 3
千米后,每增加 1 千米,加收 2.4 元(不足 1 千米按 1 千米计).某人乘这种出租车从甲 地
到乙地共付车费 19 元,那么甲地到乙地路程的最大值是(
28.今秋,某市白玉村水果喜获丰收,果农刘喜收获枇杷
20 吨,桃子 12 吨.现计划租用甲、
乙两种货车共 8 辆将这批水果全部运往外地销售, 已知一辆甲种货车可装枇杷 4 吨和桃子 1
吨,一辆乙种 货车可装枇杷和桃子各 2 吨.
(1)刘喜如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(列一元不等式组)
3
本,则还剩 8 本;如果每人送 5 本,则最后一人得到的课外读物不足 3 本,求该校的获奖
人数及所买的课外读物的本数?(列一元一次不等式组)
26 打折前, 买 60 件 A 商品和 30 件 B 商品用了 1080 元,买 50 件 A 商品和 10 件 B 商品用了 840 元。打折后,买 500 件 A 商品和 500 件 B 商品用了 9600 元。比不打折少花多少元?(列二 元一次方程组)
御临中学七年级数学第三学月考试题
试题在答卷上完成 一 选择题(每小题 4 分,共计 40 分)
1 .已知 x, y 的值:①
x 2, x 3, x


y 2; y 2; y
3, x 6,

其中,是二元一次方程
2; y 6.
2x y 4 的解的是(
A.①
B.②
) C.③
D.④
2.不等式 6x 8 > 3x 8 的解集为()
30 3
A.
303
B.
30 3
C.
30 3
D.
6.不等式 x 2 <6 的正整数解有( )
A .1 个
B
.2 个
C
.3 个
D
.4个
x1 0
7.把不等式组
的解集表示在数轴上,正确的是(

2x 0
A.
B.
C.
D.
8.若方程 3m( x+1) +1=m(3- x)- 5x 的解是负数,则 m的取值范围是(
3

并把它的解集表示在数轴上:

(2) 解不等式组
x 3 3≥ x 1,
2
并写出该不等式组的整数解.
1 3( x 1) 8 x,
xy4
23 解方程组( 1)
4x 2 y 1
x 2 2( y 1),
(3)
2( x 2) ( y 1) 5;
7x 3y 5
( 2)
5x 6y 9
x 2y 3z 14 (4) 2x y z 7
3x y 2z 11
四 应用题 ( 每小题 8 分,共 40 分 )
24. 有大小两种货车, 3 辆大车与 5 辆小车一次可运货 24.5 吨,两辆大车与 3 辆小车一次可运 15.5 吨,求每辆大车和每辆小车一次各可运货多少吨?(列二元一次方程组)
25.某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送
A . x>1
B
. x <0
C
. x >0
D
. x<1
2
2
3. 下图所表示的不等式组的解集为()
-2
-1 0
12
3
4
A 、x 3
B、 2 x 3 C、 x 2
D、 2 x 3
x2
4.已知关于 x 的不等式组 x 1无解,则 a 的取值范围是(

xa
A、 a 1 B 、 a 2 C 、 1 a 2 D 、 a 1或 a 2 5.不等式 2x 6 0 的解集在数轴上表示正确的是 ( )
x1
① x 2 4 ; ② 5x 10 ;③

x2
1/ 2
x2
17. 若一个二元一次方程的一个解为
,则这个方程可以是:
y1
(只要求写出一个)
18. 若方程组 x y 3 与方程组 x my 2 同解,则 m=______
x y1
nx y 3
19.小明用 100 元钱购得笔记本和钢笔共 30 件,已知每本笔记本 2 元,每只钢笔 5 元 . 那么小
).
A. 5 千米
B. 7 千米
C. 8 千米
D. 15 千米
10. 某商品原价800元,标价为1200元,要保持利润率不低于5%,则至多可打(

A、6折
B、7折
C、8折
二 填空题(每小题 3 分,共计 30 分)
D、9折
11. 在二元一次方程 2x 3y 4 中,当 x 5 时, y _____.
27.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼
房间比二楼房间少 5 间,该旅游团有 48 人,若全部安排在一楼,每间住 4 人,房间不够,
每间住 5 人,有房间没住满.若全部安排在二楼,每间住
3 人,房间不够,每间住 4 人,
则有房间没住满.你能根据以上信息确定 宾馆一楼有多少房间吗?(列一元不等式组)
明最多能买只钢笔.
20.某种商品的进价为 800 元,出售时标价为 1200 元,后来由于该商品积压,商店准备打折销
售,但要保证利润率不低于 5%,则至多可打.
三 计算题 ( 每小题 5 分,共 40 分 )
21.解不等式 5x 15
4x 13 . 1
x
2
1 4x

2
3
22. (1) 解不等式组
x 3(x 1)≤ 7, 1 2 5x x.
(2)若甲种货车每辆要付运输费 300 元,乙种货车每辆要付运输费 运费是多少?
2/ 2
12、在 3x 4 y 9 中,如果 2 y 6 ,那么 x=。
13.已知三角形的两边为 3 和 4,则第三边 a 的取值范围是 ________
14. x
y1
(2 x
y
2
1)
0 ,则 x= y = .
15.用不等号填空:若 a<b<0 ,则 a 5
16.直接写出下列不等式(组)的解集:
b ; 1 1 ; 2a 1 2b 1 . 5 ab
相关文档
最新文档