博弈论中的几个经典问题.doc

合集下载

博弈论几个问题的讨论

博弈论几个问题的讨论

博弈论论文率分别是q,1-q。

并且参与者A,B选择不同结果的战略表达式如上图。

因为参与者A,B选择不同结果的概率主要取决于外部条件,即表格中的字母a-h。

对不同的a-h, 参与者A,B都存在一种均衡结果,均衡结果主要由各自选择中使得到的利益,并且尽量使自己的利益最大化。

c,不招人成本为0.同时如果招到人并且成功组织活动,社团将收益v。

同时某人去参加此活动的成本为b,不去参加不花费成本,若参加了此活动,则其将收益w。

在该模型中,对于社团而言,若其招人并且有人参加了该活动,总的来说社团将收益-c+v。

若其招人但没人来参加,则其将损失成本c,若不招人,则无论是否有人参加此活动,社团都不收益不亏损。

从此可以看出:若招人,则预期收益为W1=p*(-c+v)-c*(1-p)=pv-c若不招人,则预期收益为W2=01:若pv-c>0,则W1>W2, 即社团招人的预期收益比不招人的收入大,招比不招要好。

2:若pv-c=0,则W1=W2,即社团招人与不招人的收益一样,3:若pv-c<0,则W1<W2,即社团招人将受到损失,不招比招要好。

对于参与者来说,若其去参加并且社团招人的话,其将会有-b+w的收益,若去了但社团不招人,则其将损失成本b,但若是其不去,无论社团招人与否,都与其无关,其收益都将为0。

从此可以看出:若去,则预期收益为W3=q*(-b+w)-b*(1-q)= qw-b若不去,则预期收益为W4=01: 若qw-b>0, W3>W4, 则去比不去的收益大,即去比不去要好2:若qw-b=0, W3=W4, 则去与不去的预期收益相同3:若qw-b<0, W3<W4,则去的预期收益为负,其将遭到损失,不去比去要好从以上分析可得:若pv-c>0,并且qw-b>0,则均衡结果将是社团招人,参与者去参加。

此时只需要b,c都比较小,而v,w都较大。

即小付出,大收益。

博弈论中常见的一些例子

博弈论中常见的一些例子

杨义群经济管理网、杨义群投资理财网博弈论中常见的一些例子1、(夫妻争执问题)一对新婚夫妻为晚上看什么电视节目争执不下,丈夫(记为I 方)要看足球比赛节目,而妻子(记为Ⅱ方)要看戏曲节目.他们新婚燕尔,相亲相爱,所以若这方面的行动不一致,则是很伤感情的.因此,这对夫妻间的争执是一次非零和对策。

2、(entry deterrence市场威慑)设某市场已被Ⅱ方(场内者)占据,现I方(场外者)正在考虑是进去争夺(记为策略I1)还是不进去争夺(记为策略I2),而Ⅱ方相应应考虑的是采取合作共享的态度(记为策略Ⅱ1)还是采取坚决斗争的态度(记为策略Ⅱ2)。

3、(prisoner’s dilemma囚犯困境)设有两个囚犯曾犯过大罪,现因犯小罪而被捕,正分别受警方审讯.这两个囚犯都明白:如果两人都拒不坦白犯过大罪,那么当局只能以当前的小罪而判处1年徒刑;要是两人都坦白犯过大罪,那么当局将判处9年徒刑;如果一人坦白,而另一人拒不坦白,那么坦白者将会立即获得释放,另一个将会被判处10年徒刑。

(北京大学1999年研究生入学考试微观试题) 举出一个你在现实生活中遇到的囚犯两难困境的例子。

4、(两寡头降价竞争)这一模型,在数学结构上,与上例完全相同。

设某一市场上仅有两个寡头,他们分别都可以选择降价与不降价两种策略。

5、(打假)设当局对商品采取查假行动的费用为a万元,查出假货后,罚款为b万元,且销毁的假货成本为c万元;若商人出售假货,而当局不采取查假行动,则商人可额外获利d万元,且社会的进一步损失为e万元。

6、(监督博弈)设税务局查税的费用为a万元,查出逃税后,罚款为b(b>a)万元,纳税人应纳的税金为c万元。

则税务局与纳税人的该两人非零和对策模型的赢得表具体如下。

7、(boxed pigs智猪博弈)设猪圈里有一个按钮与两只猪,大猪与小猪,按一次按钮,就会有10份食品进入,大猪与小猪同时吃的话,将分别能吃到7份与3份,但去按一次按钮,必须耗费a份食品,而且按按钮者,由于耽误了时间,还将少吃到2份食品。

博弈论经典案例

博弈论经典案例

博弈论经典案例1. 囚徒困境:这是一种经典的博弈论案例,两名囚犯被关押在不同的牢房中,警方缺乏确凿的证据将他们定罪,决定让他们进行交涉。

如果两人都认罪,每人将会被判刑5年;如果一个人认罪而另一个人保持沉默,认罪的人将会被判刑1年,而保持沉默的人将被判无期徒刑;如果两人都保持沉默,每人将被判刑3年。

在这种情况下,每个囚犯都面临着是否信任对方合作的决策。

2. 麦氏定理:这是美国经济学家约翰·N·纳什于1950年提出的经典问题。

假设有两家咖啡店A和B,它们的位置一个在城市的北边,另一个在南边。

两家咖啡店需要决定每天早上的开门时间。

如果A咖啡店在北边开门,而B咖啡店在南边也同样开门,北部居民会去A店,南部居民会去B店,两家店的收入会平均分。

但是,如果A店在北边开门,而B店在南边关门,南部居民不得不去北边排队等待,这将导致北边的队伍变长,北部居民也会选择去B店。

麦氏定理指出,当两家店选择不同的开门时间时,总是有一种策略,使得两家店的收入之和最大。

3. 社交圈中的追逐游戏:在一个社交聚会上,一对情侣分手后,男方试图追回女方。

男方完成了一连串的行动,女方必须在每个行动之后做出回应。

游戏的目标是让女方接受男方的求爱。

这个案例涉及到博弈论中的策略选择和不确定性。

4. 价格竞争:在一场市场竞争中,两家公司决定销售产品的价格。

低价通常会吸引更多的消费者,但是公司也需要考虑到自己的成本和利润。

每家公司需要在出售产品的定价上权衡竞争和利润之间的平衡。

这个案例涉及到博弈论中的纳什均衡和即时反应策略。

5. 投标博弈:在一场拍卖中,多个竞争者竞相出价,以获得拍卖品。

每个竞争者必须决定自己的出价,以获得最大的利润。

这个案例涉及到博弈论中的最优出价和风险评估。

博弈论的经典案例

博弈论的经典案例

斗鸡博弈
斗鸡博弈存在两个Nash均衡——(进, 退)和(退,进)。
博弈结果——(2,0)和(0,2)。
斗鸡博弈
斗鸡博弈实例:
1.公共产品提供; 2.美苏争霸; 3.警察与游行队伍; 4.夫妻吵架; 5. 古巴导弹危机。
斗鸡博弈
现实生活中的象骑虎难下、进退 两难的局面都可看成是斗鸡博弈的具 体体现。
2
智猪博弈
现有一猪圈,里面有两头猪——大猪和 小猪(参与人);
猪圈的一端是食槽,一端是按钮。(大 猪或小猪)按按钮,食槽中可进10个单位的 食物,按按钮的成本为2个单位的食物。
智猪博弈
按钮 食槽
智猪博弈
假设食物进入食槽后, 1.大猪先吃,吃9个食物; 2.小猪先吃,吃4个食物; 3.同时吃,大猪吃7个食物,小 猪吃3个食物。
1,-1 -1, 1
剪刀 布
1,-1 -1,1
6 石头、剪刀、布
存在类似于猜硬币游戏的均衡吗?
7 市场进入阻扰博弈
在某一产品生产领域,一厂商(称为 在位者)单独生产该产品,获得高额利润 300。现有另一厂商(进入者)准备进入该 产品市场。
市场进入阻扰博弈
进入者面临的选择——“进入”或“不 进入”; 在位者面临的选择——“默许”或“斗 争”。
囚徒困境
B
坦白
坦白
A
-10, 0
抵赖
-1,-1
-8,-8 0,-10
抵赖
囚徒困境
解决问题的思路: 给定对方的选择,寻找自己的最优战略。 每位参与者要选择的战略必须是针对其 它参与者选择战略的最优反应。
囚徒困境
结果——(坦白,坦白)(或(-8,-8))。该 结果称为博弈的Nash均衡。

博弈论智力题

博弈论智力题

A.逻辑推理2、请把一盒蛋糕切成8 份,分给8个人,但蛋糕盒里还必须留有一份。

3、小明一家过一座桥,过桥时是黑夜,所以必须有灯。

现在小明过桥要 1 秒,小明的弟弟要3 秒,小明的爸爸要6 秒,小明的妈妈要8 秒,小明的爷爷要12 秒。

每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30 秒就会熄灭。

问:小明一家如何过桥?4、一群人开舞会,每人头上都戴着一顶帽子。

帽子只有黑白两种,黑的至少有一顶。

每个人都能看到其他人帽子的颜色,却看不到自己的。

主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。

第一次关灯,没有声音。

于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。

一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。

问有多少人戴着黑帽子?5、请估算一下CN TOWER电视塔的质量。

7、U2 合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。

次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。

手电筒是不能用丢的方式来传递的。

四个人的步行速度各不同,若两人同行则以较慢者的速度为准。

Bono需花1分钟过桥,Edge需花2 分钟过桥,Adam 需花5 分钟过桥,Larry 需花10 分钟过桥。

他们要如何在17 分钟内过桥呢?11、有7克、2克砝码各一个,天平一只,如何只用这些物品三次将140克的盐分成50、90 克各一份?13、你有两个罐子,50个红色弹球,50 个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?14、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?16、如果你有无穷多的水,一个3 夸脱的和一个5 夸脱的提桶,你如何准确称出4 夸脱的水?21、假设一张圆盘像唱机上的唱盘那样转动。

十大博弈论经典案例

十大博弈论经典案例

十大博弈论经典案例1.《囚徒困境》。

囚徒困境是博弈论中最著名的案例之一。

在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。

如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。

在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。

2.《合作博弈》。

合作博弈是指参与者之间可以进行合作的博弈。

在合作博弈中,参与者可以通过合作来获得更好的结果。

例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。

合作博弈强调参与者之间的合作和协调,以实现共同的利益。

3.《竞争博弈》。

竞争博弈是指参与者之间存在竞争关系的博弈。

在竞争博弈中,参与者的利益往往是相互对立的。

例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。

竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。

4.《博弈的策略》。

在博弈中,参与者可以选择不同的策略来影响结果。

策略是参与者在博弈中可以采取的行动。

不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。

5.《信息不对称博弈》。

信息不对称博弈是指参与者在博弈中拥有不同的信息。

在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。

信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。

6.《博弈的均衡》。

博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。

在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。

博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。

7.《博弈的合作与对抗》。

在博弈中,合作和对抗是两种常见的行为方式。

合作可以带来共同的利益,而对抗则是为了争取最大的利益。

在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。

博弈论十五道题以及答案

博弈论十五道题以及答案

博弈论十五道题以及答案1.博弈理论在哪些方面扩展了传统的新古典经济学?2.法律和信誉是维持市场有序运行的两个基本机制。

请结合重复博弈理论谈谈信誉机制发生作用的几个条件。

3.经济发展史表明,在本来不认识的人之间建立相互之间的信任关系是经济发展的关键。

为什么?4.在传统社会中,即使没有法律,村民之间也可以建立起高度的信任。

请结合博弈理论解释其原因。

5.在旅游地很容易出现假货,而在居民小区的便利店则很少出现假货,请结合博弈论的相关理论进行解释。

6.你如何理解“Credible threats or promises about future behavior can influence current behavior”这句话的?7.有效的法律制度对经济发展具有什么作用?请结合博弈理论谈谈你的理解。

8.试用博弈理论解释家族企业为什么难以实行制度化管理?9.固定资产投资为什么可以作为一种可置信的承诺?10.以汽车保险为例谈谈因为信息不对称所可能产生的道德风险问题,并提出一种解决道德风险的方案。

11.以公司为例,谈谈所有者与经营者的分离可能产生的道德风险问题。

12.在波纳佩岛上,谁能种出特别大的山药,谁的社会地位就高,谁就能赢得人们的尊敬并可担任公共职务。

请结合信号传递模型谈谈波纳佩岛上的这种奇异风俗。

13.一位男生在女朋友过生日时送给女朋友三百元人民币,他的女朋友往往感觉受到了侮辱。

而他女朋友可能会欣然接受父母亲的现金礼物。

请解释其中可能的原因。

14.<圣经>(旧约)中记载了两个母亲争夺一个孩子的故事。

一次,两个女人为争夺一个婴儿争扯到所罗门王殿前,她们都说婴儿是自己的,请所罗门王作主。

所罗门王稍加思考后作出决定:将婴儿一刀劈为两段,两位妇人各得一半。

这时,其中一位妇人立即要求所罗门王将婴儿判给对方,并说婴儿不是自己的,应完整归还给另一位妇人,千万别将婴儿劈成两半。

听罢这位妇人的求诉,所罗门王立即作出最终裁决——婴儿是这位请求不杀婴儿的妇人的,应归于她。

博弈论经典题目

博弈论经典题目

博弈论经典题目
1. 背包问题:
背包问题是贪婪算法求解的一个经典例子,也是动态规划常出现的一个经典最优化算法问题。

背包问题描述是这样的:有一个背包,背包容量限制为V,现有n种物品,每种物品的体积分别是w1, w2, w3, ... wn,而价值分别是v1, v2, v3, ... vn,问如何挑选物品装入背包以使物品价值总和最大。

2. 钓鱼游戏:
钓鱼游戏是由John Von Neumann及Oskar Morgenstern于1944年出版的游戏理论研究的经典题目,它用简单的游戏表示了一个有价值的决策问题:一对捕鱼人去钓鱼,他们的成功机会各不相同,而他们的收入有几乎相同的可能性。

游戏设定两个捕鱼者就一道鱼池进行渔获,鱼库只能容纳两种鱼,一种种鱼可以产生相同价值,不过每个捕鱼者只能抓一种鱼。

他们可以在淘到鱼前决定他们抓取的鱼种以及机率。

3. 亚当斯密矩阵博弈:
亚当斯密矩阵博弈也称为亚当斯博弈,是一种两边博弈,也就是说每一方都可以改变策略,古腾堡武器竞赛中使用的最佳策略最终也确定了该博弈结果。

它是一种形式上可以实时解决的游戏,每一种游戏具有一组有限的可能性。

游戏中,双方都拥有一种完全不同的收益,这些收益对两者来说都是实际易变涉及各自的利益、代价及限制,最终
目的是达到一个最佳方案,也就是哪一方收益最大。

4. 棋盘问题:
棋盘问题是建模和强化学习算法的经典问题,是一种几何回溯问题,主要指一个棋盘下怎样移动国王,使其最终能够到达标记点,而不经过被标记的地方,并且时间费用最少。

棋盘中任何一个标记点在边框联想能表示出一种折线状的运动方式,这样的运动方式通常分为八个半径块,而国王的最终目的地则被标记在其中的任何一个格子上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几个博弈论中的经典问题博弈论( GameTheory ),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。

目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

博弈论主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

生物学家使用博弈理论来理解和预测进化论的某些结果。

几个重要的概念1、策略 (strategies) :一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。

如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。

2、得失 (payoffs) :一局博弈结局时的结果称为得失。

每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。

所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff )函数。

3、次序( orders ):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。

4、博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。

在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。

5、纳什均衡 (Nash Equilibrium) :在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。

也就是说,此时如果他改变策略他的支付将会降低。

在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。

纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。

所谓“均衡偶”是在二人零和博弈中,当局中人 A 采取其最优策略a*, 局中人 B 也采取其最优策略 b*, 如果局中人 B 仍采取b*, 而局中人 A 却采取另一种策略a,那么局中人 A 的支付不会超过他采取原来的策略a* 的支付。

这一结果对局中人 B 亦是如此。

经典的博弈问题1、“囚徒困境”“囚徒困境”是博弈论里最经典的例子之一。

讲的是两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是 " 坦白从宽,抗拒从严 " ,如果两人都坦白则各判8年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年;如果都不坦白则因证据不足各判1年。

在这个例子里,博弈的参加者就是两个嫌疑犯A和B,他们每个人都有两个策略即坦白和不坦白,判刑的年数就是他们的支付。

可能出现的四种情况:A和B均坦白或均不坦白、A坦白B不坦白或者B坦白A不坦白,是博弈的结果。

A和B均坦白是这个博弈的纳什均衡。

这是因为,假定A选择坦白的话,B最好是选择坦白,因为B坦白判8年而抵赖却要判十年;假定A选择抵赖的话,B最好还是选择坦白,因为B坦白判不被判刑而抵赖确要被判刑1年。

即是说,不管A坦白或抵赖,B的最佳选择都是坦白。

反过来,同样地,不管B是坦白还是抵赖,A的最佳选择也是坦白。

结果,两个人都选择了坦白,各判刑8年。

在(坦白、坦白)这个组合中,A和B都不能通过单方面的改变行动增加自己的收益,于是谁也没有动力游离这个组合,因此这个组合是纳什均衡。

囚徒困境反映了个人理性和集体理性的矛盾。

如果A和B都抵,各判刑1年,然比都坦白各判刑8年好得多。

当然,A和B可以在被警察抓到之前立一个" 攻守同盟" ,但是可能不会有用,因它不构成什均衡,没有人有极性遵守个定。

2、海盗分金在一座座荒上,有 5 个盗掘出了 100 非常珍的金。

他商定了一个分配金的:首先抽决定每个人的次序,排列成盗一至五。

然后由盗一先提出分配方案,5 人表决,如多数人同意,方案就被通,否盗一将被扔入大海喂。

如果盗一被扔入大海,就由盗二接着提出分配方案,如多数人同意方案就被通,否盗二也要被扔入大海。

以下依次推。

假定每个盗都足明, 都能做出理性的,那么,盗一提出什么的分配方案,能使自己得到最大的收益?于个要采用方向推方法:如果 1 至 3 号盗都喂了,只剩 4 号和 5 号的,5 号一定投反票 4 号喂,以独吞全部金。

所以, 4 号惟有支持 3 号才能保命。

3 号知道一点,就会提出“100, 0,0”的分配方案,4 号、5 号一毛不拔而将全部金已有,因他知道 4 号一无所但是会投成票,再加上自己一票,他的方案即可通。

不, 2 号推知 3 号的方案,就会提出“ 98, 0,1,1”的方案,即放弃 3 号,而予 4 号和 5 号各一枚金。

由于方案于 4 号和 5 号来比在 3 号分配更有利,他将支持他而不希望他出局而由 3 号来分配。

, 2 号将拿走98 枚金。

同, 2 号的方案也会被 1 号所洞悉, 1 号并将提出( 97,0,1,2,0)或( 97,0, 1,0, 2)的方案,即放弃 2 号,而 3 号一枚金,同 4 号(或 5 号) 2 枚金。

由于 1 号的一方案于 3 号和 4 号(或 5 号)来,相比 2 号分配更,他将投 1 号的成票,再加上 1 号自己的票, 1 号的方案可通,97 枚金可松落入囊中。

无疑是 1 号能取最大收益的方案了!答案是: 1 号盗分 3 号 1 枚金,分 4 号或 5 号盗 2 枚,自己独得 97 枚。

分配方案可写成( 97,0, 1, 2, 0)或( 97, 0, 1, 0, 2)。

1号看起来最有可能喂,但他牢牢地把握住先,果不但消除了死亡威,收益最大。

而5 号,看起来最安全,没有死亡的威,甚至能坐收人之利,却因不得不看人色行事而只能分得一小杯羹。

在“海盗分金”中,任何“分配者”想自己的方案得通的关是,事先考清楚“挑者”的分配方案是什么,并用最小的代价取最大收益,拉“挑者”分配方案中最不得意的人。

3、旅行者困境两个旅行者从一个以出瓷花瓶著称的地方旅行回来,他都了花瓶。

提取行李的候,花瓶被摔坏了,于是他向航空公司索。

航空公司知道花瓶的价格大概在八九十元的价位浮,但是不知道两位旅客的候的确切价格是多少。

于是,航空公司两位旅客在 100 元以内自己写下花瓶的价格。

如果两人写的一,航空公司将他真,就按照他写的数;如果两人写的不一,航空公司就定写得低的旅客的是真,并且原上按个低的价格,同,航空公司真的旅客励 2 元,假的旅客款 2 元。

了取最大而言,本来甲乙双方最好的策略,就是都写100 元,两人都能100 元。

可是不,甲很明,他想:如果我少写 1 元成 99 元,而乙会写100 元,我将得到101 元。

何而不?所以他准写99 元。

可是乙更明,他算到甲要算他写 99 元,于是他准写98 元。

想不到甲要更明一个次,估到乙要写98 元来坑他,于是他准写97 元⋯⋯大家知道,下象棋的候,不是要多“看”几步,“看”得越远,胜算越大。

你多看两步,我比你更强多看三步,你多看四步,我比你更老谋深算多看五步。

在花瓶索赔的例子中,如果两个人都“彻底理性”,都能看透十几步甚至几十步上百步,那么上面那样“精明比赛”的结果,最后落到每个人都只写一两元的地步。

事实上,在彻底理性的假设之下,这个博弈唯一的纳什均衡。

4、枪手博弈彼此痛恨的甲、乙、丙三个枪手准备决斗。

甲枪法最好,十发八中;乙枪法次之,十发六中;丙枪法最差,十发四中。

如果三人同时开枪,并且每人只发一枪;第一轮枪战后,谁活下来的机会大一些?一般人认为甲的枪法好,活下来的可能性大一些。

但合乎推理的结论是,枪法最糟糕的丙活下来的几率最大。

我们来分析一下各个枪手的策略。

枪手甲一定要对枪手乙先开枪。

因为乙对甲的威胁要比丙对甲的威胁更大,甲应该首先干掉乙,这是甲的最佳策略。

同样的道理,枪手乙的最佳策略是第一枪瞄准甲。

乙一旦将甲干掉,乙和丙进行对决,乙胜算的概率自然大很多。

枪手丙的最佳策略也是先对甲开枪。

乙的枪法毕竟比甲差一些,丙先把甲干掉再与乙进行对决,丙的存活概率还是要高一些。

我们计算一下三个枪手在上述情况下第一轮枪战中的存活几率:甲: 24%(被乙丙合射40% X 60% = 24%)乙: 20%(被甲射100% - 80% = 20% )丙: 100%(无人射丙)第二轮枪战中甲乙丙存活的几率粗算如下:(1) 假设甲丙对决:甲的存活率为60%,丙的存活率为20%。

(2) 假设乙丙对决:乙的存活率为60%,丙的存活率为40%。

第一轮:甲射乙,乙射甲,丙射甲。

甲的活率为 24%( 40% X 60%),乙的活率为 20%(100% - 80%) ,丙的活率为 100%(无人射丙)。

第二轮:情况 1:甲活乙死( 24% X 80% = % )甲射丙,丙射甲──甲的活率为60%,丙的活率为20%。

情况 2:乙活甲死( 20% X 76% = % )乙射丙,丙射乙──乙的活率为60%,丙的活率为40%。

情况 3:甲乙皆活( 24% X 20% = % )重复第一轮。

情况 4:甲乙皆死( 76% X 80% = % )枪战结束。

甲的活率为 %% X 60%) + % X 24%) = %乙的活率为 %% X 60%) + % X 20%) = %丙的活率为 %% X 20%) + % X 40%) + % X 100%) + % X 100%) = %通过对两轮枪战的详细概率计算,我们仍然发现枪法最差的丙存活的几率最大,枪法较好的甲和乙的存活几率仍远低于丙的存活几率。

对于这样的例子,有人会发出“英雄创造历史,庸人繁衍子孙”的感叹。

相关文档
最新文档