浙教版-数学-九年级上册-2.3 用频率估计概率 教学设计

合集下载

九年级数学上册 第二章 简单事件的概率 2.3 用频率估计概率a课件 (新版)浙教版

九年级数学上册 第二章 简单事件的概率 2.3 用频率估计概率a课件 (新版)浙教版
2020/1/1
精品课件
1
教学目标: 1. 了解随机事件在每次实验中发生与否具有不确定性,但随着实验次数 的增加,事件发生的频率逐渐趋于稳定. 2. 通过实验, 认识大量重复实验所得的频率可作为概率的估计值. 3. 会运用大量重复实验所取得的事件发生的频率估计概率. 重难点: ●用事件发生的频率估计概率是本节教学的重点. ●对大量重复实验频率的趋势,稳定性的理解,学生不易接受, 是本节 教学的难点.
频率不等于概率,但通过大量的重复实验,事件发生的频率值将 逐渐稳定在相应的概率附近,此时的频率值可用于估计这一事件发 生的概率.
概率只表示事件发生的可能性的大小,不能说明某种肯定的结果.
2020/1/1
精品课件
15
THANK YOU
2020/1/1
精品课件
16
编后语
折叠课件作用 ①向学习者提示的各种教学信息; ②用于对学习过程进行诊断、评价、处方和学习引导的各种信息和信息处理; ③为了提高学习积极性,制造学习动机,用于强化学习刺激的学习评价信息; ④用于更新学习数据、实现学习过程控制的教学策略和学习过程的控制方法。 对于课件理论、技术上都刚起步的老师来说,POWERPOINT是个最佳的选择。因为操作上非常简单,大部分人半天就可以基本掌握。所以,就可以花心思

试验总次 一正一反的总次
频率


2020/1/1
精品课件
8
频率与概率有什么区别和联系?随着重复试验次数的不断增加 ,频率的变化趋势如何?
从上面的试验可以看到:在相同条件下,当重复试验的次数 大量增加时,事件发生的频率就稳定在相应的概率附近。
因此,我们可以通过大量重复的试验,用一个事件发生的频 率来估计这一事件发生的概率。

初中九年级数学上册《用频率估计概率1》教案

初中九年级数学上册《用频率估计概率1》教案

25.3 用频率估计概率1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:抽检个数801002003004006008001000优等品个数6083154246312486634804优等品频率(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:抽检个数801002003004006008001000优等品个数 60 83 154 246 312 486 634 804 优等品 频率0.750.830.770.820.780.810.79250.804(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近16.探究点二:用频率估计概率 【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】 频率估计概率的实际应用 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x 条鱼,则5∶200=30∶x ,解得:x =1200,故答案为:1200. 方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.数学选择题解题技巧1、排除法。

浙教版数学九年级上册《2.3用频率估计概率》说课稿2

浙教版数学九年级上册《2.3用频率估计概率》说课稿2

浙教版数学九年级上册《2.3 用频率估计概率》说课稿2一. 教材分析《2.3 用频率估计概率》是浙教版数学九年级上册第四章的内容。

这部分内容是在学生已经掌握了概率的基本概念,以及如何通过实验来探究事件发生的可能性之后进行学习的。

在本节课中,学生将学习如何利用频率来估计事件的概率,进一步理解概率的内涵。

教材通过具体的实例,引导学生感受频率与概率之间的关系,培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的概率基础知识,对概率概念有一定的理解。

但是,对于如何利用频率来估计概率,以及频率与概率之间的关系,可能还不是很清楚。

因此,在教学过程中,我将会注意引导学生通过实验来探究频率与概率之间的关系,让学生在实践中掌握用频率估计概率的方法。

三. 说教学目标1.知识与技能:理解频率与概率之间的关系,学会如何利用频率来估计概率。

2.过程与方法:通过实验探究,感受频率与概率之间的关系,培养学生的动手实践能力。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。

四. 说教学重难点1.重点:频率与概率之间的关系,如何利用频率来估计概率。

2.难点:频率与概率之间的关系在实际问题中的应用。

五. 说教学方法与手段在本节课中,我将采用实验探究、小组讨论、讲解示范等教学方法。

同时,利用多媒体教学手段,为学生提供丰富的学习资源,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入新课:通过复习概率的基本概念,引导学生思考如何用实验来探究事件发生的可能性。

2.探究频率与概率之间的关系:让学生进行实验,观察实验结果,引导学生发现频率与概率之间的关系。

3.讲解频率估计概率的方法:通过对实验结果的分析,讲解如何利用频率来估计概率。

4.应用练习:让学生运用所学的知识解决实际问题,巩固用频率估计概率的方法。

5.总结提升:引导学生总结本节课所学的内容,提高学生对频率与概率之间关系的理解。

七. 说板书设计板书设计如下:频率与概率之间的关系八. 说教学评价本节课的评价方式主要包括课堂表现、练习完成情况和小组讨论。

新浙教版九年级上册初中数学 2-3 用频率估计概率 教学课件

新浙教版九年级上册初中数学 2-3 用频率估计概率 教学课件
(5)议一议:频率与概率有什么区别和联系?
随着重复实验次数的不断增加,频率的变化趋势如何?
通过大量重复的实验,用一个事件发生的频率来估计这一
事件发生的概率.
第八页,共十六页。
新课讲解
频率与概率有什么区别和联系?随着重复实验次数的不断增
加,频率的变化趋势如何?
从上面的实验可以看出,当重复实验的次数大量增加时, 事件发生的频率就稳定在相应的概率附近
解得:x≈531.
答:播种3公顷该种小麦,估计约需531kg麦种.
第十二页,共十六页。
课堂小结
概率是理论性规律的东西,频率是实践性的东西,理论应该
联系实际,因此我们可以通过大量重复的实验,用一个事件发
生的频率来估计这一事件发生的概率
频率不等于概率,但通过大量的重复实验,事件发生的频 率值将逐渐稳定在相应的概率附近,此时的频率值可用于估 计这一事件发生的概率
(4)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后
的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种
小麦,估计约需麦种多少kg?
解:设需麦种x kg, 则粒数为 x •1000• 1000
由题意得,
35
x •1000• 1000 0.9587% 3 4181818
35
⒉通过实验,认识大量重复实验所得的频率可作为概率的估计值.
3.会运用大量重复实验所所取得的事件发生的频率估计率.(重 点、难点)
第三页,共十六页。
新课导入
1、如何估计一位篮球运动员的罚球命中率?
2、抛一枚均匀的硬币,“正面朝上“的概率是多少?
它表示的含义是什么?
第四页,共十六页。
新课讲解
知识点1 用频率估计概率 我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科 学家曾做过成千上万次的实验,其中部分结果如下表:

2.3 用频率估计概率 浙教版数学九年级上册课件

2.3 用频率估计概率 浙教版数学九年级上册课件

(3) 如果播种该种小麦每公顷所需麦苗数为4 181 818棵,种子 发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种 3公顷该种小麦,估计约需麦种多少千克(精确到1 kg )?
利用频率估计概率的三个条件: ①试验要在相同的条件下进行,试验数据要真实; ②试验的次数要足够多; ③随机事件发生的频率要逐渐稳定在某一常数附近.
与试验次数的变化无关
与试验人、试验时间、 试验地点无关
联系
试验次数越多,频率越趋向于概率
探究学习
我们知道,任意抛一枚均匀的硬币,“正面朝上”的概率 是0.5,许多科学家曾做过成千上万次的试验,其中部分结 果如下表:
试验者 抛掷次数 n “正面向上”的次数 m
莫弗 布丰 费勒 皮尔逊 皮尔逊
2 048 4 040 10 000 12 000 24 000
1 061 2 048 4 979 6 019 12 012
随着抛掷次数的增加,“正面向上” 的频率越来越稳定在0.5附近.
Байду номын сангаас结
在相同条件下,当重复试验的次数大量增加时,事 件发生的频率就稳定在相应的概率附近.因此,我们可 以通过大量重复试验,用一个事件发生的频率来估计这 一事件发生的概率.
以下两种情况可通过统计频率来估计概率: ①试验的所有可能结果不是有限个; ②各种可能结果发生的可能性不相等.
(1) 计算表中各个频率.
试验种子 n(粒) 1 5 50 100 200 500 1000 2000 3000 发芽频数 m 0 4 45 92 188 476 951 1900 2850 0 0.80 0.90 0.92 0.94 0.952 0.951 0.95 0.95
(2) 估计该麦种的发芽概率. 解:由第(1)题可知,该麦种的发芽概率约为0.95.

浙教版数学九年级上册2.3《用频率估计概率》说课稿

浙教版数学九年级上册2.3《用频率估计概率》说课稿

浙教版数学九年级上册2.3《用频率估计概率》说课稿一. 教材分析《用频率估计概率》是浙教版数学九年级上册第2.3节的内容,本节课的主要任务是让学生理解频率与概率之间的关系,学会利用频率来估计概率,并通过实际例子体会数学在生活中的应用。

教材通过具体的实验和案例,引导学生探究频率与概率的本质联系,培养学生的实践能力和思维能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对概率的概念有一定的了解。

但是,对于如何利用频率来估计概率,以及频率与概率之间的关系,可能还存在一定的困惑。

因此,在教学过程中,需要注重引导学生通过实验和案例,探究频率与概率之间的关系,提高他们的理解能力和应用能力。

三. 说教学目标1.理解频率与概率的概念,掌握频率与概率之间的关系。

2.学会利用频率来估计概率,能运用频率估计概率解决实际问题。

3.培养学生的实践能力、思维能力和创新能力。

四. 说教学重难点1.教学重点:频率与概率的概念,频率与概率之间的关系。

2.教学难点:如何利用频率来估计概率,以及频率与概率之间的本质联系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:多媒体课件、实验器材、案例资料等。

六. 说教学过程1.导入:通过一个简单的概率实验,引导学生思考频率与概率之间的关系。

2.新课导入:介绍频率与概率的概念,引导学生理解频率与概率之间的关系。

3.案例分析:分析具体案例,让学生学会利用频率来估计概率。

4.实践环节:学生分组进行实验,亲身体验频率与概率的关系。

5.总结提升:引导学生总结频率与概率之间的关系,并能运用频率估计概率解决实际问题。

6.课堂练习:布置一些相关的练习题,巩固所学知识。

七. 说板书设计板书设计如下:频率:实验中某一结果出现的次数与实验总次数的比值。

概率:某一结果出现的可能性。

频率与概率的关系:1.频率是概率的近似值,当实验次数足够多时,频率趋近于概率。

九年级数学上册《用频率作为概率的估计值》教案、教学设计

九年级数学上册《用频率作为概率的估计值》教案、教学设计
2.培养学生严谨、踏实的科学态度,养成认真观察、分析问题的习惯。
3.通过数学知识在实际生活中的应用,让学生认识到数学的价值,提高学生的数学素养。
教学过程:
一、导入新课
1.复习概率的基本概念,为新课的学习做好铺垫。
2.提问:我们已经学习了如何计算事件的概率,那么在实际问题中,如何估计事件的概率呢?
二、自主探究
3.激发学生对数学的兴趣,培养他们的探究精神和:以生活实例引入频率与概率的概念,让学生感受到数学的实用性和趣味性。
2.自主探究,合作交流:鼓励学生自主探索频率与概率之间的关系,通过小组合作、讨论交流,共同解决问题。
3.精讲精练,突破难点:针对教学难点,教师进行详细的讲解和示范,让学生在理解的基础上,通过适量的练习题进行巩固。
设计实际问题,让学生运用频率估计概率,解决生活中的问题,提高数据分析与处理的能力。
第六步:总结反思,提升素养
1.让学生回顾所学内容,总结频率与概率之间的关系。
2.教师对学生进行情感态度与价值观的教育,强调数学在实际生活中的价值。
四、教学内容与过程
(一)导入新课,500字
1.教师通过展示一个有趣的魔术,引起学生的好奇心。魔术内容为:教师准备一个不透明的袋子,里面装有5个红球和5个蓝球,让学生从中随机抽取一个球,然后放回袋子。重复这个过程多次,最后预测学生抽到红球的概率。
九年级数学上册《用频率作为概率的估计值》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解频率和概率的关系,掌握用频率估计概率的方法。
2.培养学生运用数学知识解决实际问题的能力,提高数据分析与处理的能力。
3.使学生能够运用频率估计概率,解决一些简单的实际问题,如抛硬币、掷骰子等。

2.3用频率估计概率-2024-2025学年初中数学九年级上册(浙教版)上课课件

2.3用频率估计概率-2024-2025学年初中数学九年级上册(浙教版)上课课件

与试验人、试验时间、试验地点有关.
与试验人、时间、地点无关.
联系
试验次数越多,频率越趋向于概率.
典例1 (教材第55页例题变式)某篮球队教练记录了该队一名主力前锋练习罚球的结果如下表.
练习罚球次数
30
60
90
150
200
300
400
500
罚中次数
27
45
78
118
161
239
322
401
罚中频率
(1) 填表,求该前锋罚球命中的频率 精确到 .
链接教材 本题取材于教材第56页作业题第1题,考查了利用频率估计概率.不同的是教材习题需先求出频率再估计概率,而中考真题是直接根据频率估计概率,因此中考真题较教材习题难度有所降低.
第2章 简单事件的概率
2.3 用频率估计概率
学习目标
1.了解随机事件在每次试验中发生与否具有不确定性,但随着试验次数的增加,事件发生的频率逐渐趋于稳定.
2.通过试验,认识大量重复试验所得的频率可作为概率的估计值.
3.会运用大量重复试验所取得的事件发生的频率估计概率.
知识点 利用频率估计概率 重点
抽检产品数
100
150
200
250
300
500
1 000
合格产品数
89
134
179
226
271
451
904
合格率
0.890
0.893
0.895
0.904
0.903
0.902
0.904
在这批产品中任取一件,恰好是合格产品的概率约是(结果保留一位小数)____.
0.9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 用频率估计概率
教学目标.
1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.
2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.
重点、难点:
1.教学重点:利用频率估计概率
2.教学难点:理解频率与概率的区别与联系
教学过程
一、复习,引入新课:
概率事件发生的可能性,也称为事件发生的概率.
必然事件发生的概率为1(或100%),
记作P(必然事件)=1;
不可能事件发生的概率为0,
记作P(不可能事件)=0;
随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.
如果A为随机事件(不确定事件),
那么0<P(A)<1.
用列举法求概率的条件是什么?
(1)实验的所有结果是有限个(n)
(2)各种结果的可能性相等.
当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?
二、新课讲解:
问题1:某林业部门要考查某种幼树在一定条件下的移植成活率,应采取什么具体做法?
问题2:某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(去掉坏的),每千克大约定价为多少元?
老师讲解:上面两个问题,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等, 事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.
瑞士数学家雅各布.伯努利(1654-1705)最早阐明了可以由频率估计概率即:在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以估计这个事件发生的概率。

一般地,在大量重复试验中,如果事件A发生的频率m
n
会稳定在某个常数P附近,那么事件A
发生的概率P(A)=P.
需要注意的是:概率是针对大量重复的试验而言的,大量试验反映的规律并非在每一次试验中出现.
更一般地,即使试验的所有可能的结果不是有限个,或各种可能的结果发生的可能性不相等,也可以通过试验的方法去估计一个随机事件发生的概率.只要试验次数是足够大的,频率就可以作为概率的估计值.
练习:某篮球运动员在最近的几场大赛中罚球投篮的结果如下:
(1)计算表中各次比赛进球的频率;
(2)这位运动员投篮一次,进球的概率约为多少?
解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;
(2)0.75.
评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.
探究问题1:国家在明年将继续实施山川秀美工程,各地将大力开展植树造林活动.为此林业部要考查幼树在一定条件下的移植成活率,应采用什么具体做法?
(填表格并完成表后的填空.)
例1.在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.
(1)计算表中各个频数.
(2)估计该麦种的发芽概率
(3)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg?
解:(1)当n =5时,m =4,则发芽的频率为0.8.依次算得各个频率为0.90,0.92,0.94,0.952,0.951,0.95,0.95.
(2)由第(1)题可知,该麦种的发芽率约为0.95.
(3)设需麦种x (kg ),则粒数为
由题意,得
解得x ≈531(kg)
答:播种3公顷该种小麦,估计约需531kg 麦种.
例2.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?
解:根据概率的意义,可以认为其概率大约等于250/2000=0.125.
该镇约有100000×0.125=12500人看中央电视台的早间新闻.
练习
三、归纳总结:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.
从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律.
四、布置作业:课本作业题.
3510001000••x 418181838795.0351*******⨯=⨯⨯••%x。

相关文档
最新文档