小学奥数教程之-分数应用题(一) (含答案)
分数应用题带答案

分数应用题带答案1. 问题:小明有3个苹果,他把其中的一半分给了小红,然后又把剩下的一半分给了小刚。
最后小明还剩下多少个苹果?答案:小明最初有3个苹果,他分给小红一半,即3÷2=1.5个苹果。
然后他把剩下的一半分给小刚,即(3-1.5)÷2=0.75个苹果。
所以最后小明还剩下3-1.5-0.75=0.75个苹果。
2. 问题:一个班级有40名学生,其中3/5是男生,2/5是女生。
男生和女生各有多少人?答案:男生人数为40×3/5=24人,女生人数为40×2/5=16人。
3. 问题:一个长方形的长是10米,宽是长的3/4。
这个长方形的面积是多少?答案:长方形的宽为10×3/4=7.5米。
面积为长乘以宽,即10×7.5=75平方米。
4. 问题:一个水果店有苹果和橙子两种水果,其中苹果占总水果的2/3,橙子占总水果的1/3。
如果水果店总共有90个水果,那么苹果和橙子各有多少个?答案:苹果的数量为90×2/3=60个,橙子的数量为90×1/3=30个。
5. 问题:一个工厂生产了100个零件,其中90%是合格的,5%是次品,剩下的是废品。
请问合格的零件、次品和废品各有多少个?答案:合格的零件数量为100×90%=90个,次品的数量为100×5%=5个,废品的数量为100-90-5=5个。
6. 问题:小华有30元钱,他用其中的2/3买了一本故事书,剩下的钱用来买零食。
小华买零食花了多少钱?答案:小华买故事书花了30×2/3=20元,剩下的钱为30-20=10元,所以小华买零食花了10元。
7. 问题:一个班级有50名学生,其中2/5是女生,男生比女生多5人。
这个班级有多少名男生?答案:女生人数为50×2/5=20人,男生比女生多5人,所以男生人数为20+5=25人。
8. 问题:一个圆形花坛的周长是31.4米,这个花坛的半径是多少米?答案:圆的周长公式为C=2πr,其中C是周长,r是半径。
小学奥数6-2-1 分数应用题(一).专项练习及答案解析

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
最新版小学六年级奥数专项分数应用题(超详细)

例1新华书店运来一批图书,第一天卖出总数的8多16本,第二天卖出总数的2 少8本,还余下67本。
这批图书一共多少本?分析:解答此题的关键是要找出实际数量的对应分率。
从含有倍数关系的句子可以看出图书的总数为“单位 1 ”。
现在找出题中所给的数量与“单位1 ”之间的关系,见线段图:单位y(7本)_1例2 某工厂第一车间原有工人120名,现在调出8给第二车间后,这是第一6车间的人数比第二车间现有人数的7还多3名。
求第二车间原来有多少人?_1分析:通过读题可知“从第一车间调出8的工人给第二车间”,即调出2120X 8 =15名,这时第一车间还剩下105名工人。
这105名比第二车间现有人数的6 _67还多3名。
那么这102名工人就相当于第二车间的现有人数的7 了。
于是,第二车间现有人数与原来的人数就可以求了。
2 1 2 122从图中可以看出卖出总数的8和2后,余下的分率是1— 8— 2 = 8,与8相对应的数量是(67-8+16),从而可以求这批图书。
解答:(67—8 + 16)+1— 8 — 2 =200 (本)说明:我们还可以通过另一种方法找出量率对应。
根据题意,我们可以列出下面的等式:总数的8+16本+总数的2—8本+余下的67本=“单位1”将等式变形,量率分别放在等号的两边:16本一8本+余下的67本="单位1”一总数的8一总数的21 2刍从上面的式子中可以看出,(67—8+16)就是这批图书的1—8 — 2 = 8,因此列式为:1](67 -8 + 16)4-1- 8 - 2 =200 (本)这种方法比较简单直观,思维比较顺畅,只要把题目的叙述翻译成等式即可。
_1 解答:(1)第一车间剩下的人数:120X( 1— 8 ) =105 (名)6(2)第二车间现在的人数:(105—3) + 7 =119 (名)(3)第二车间原来的人数:119 —120X 8 =104 (名)例3 学校图书室内有一架故事书,借出总数的75%之后,有放上60本,这时架上的书是原来总数的3。
(完整word版)六年级奥数分数应用题经典例题加练习带答案

.知识的回顾11.工厂原有职工128人,男工人数占总数的 -,后来又调入男职工若干人,调入后男工人4数占总人数的2,这时工厂共有职工人.51【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为128 (1 -)96人,42 33调入后女职工占总人数的 1 2 3,所以现在工厂共有职工96 - 160人.5 552.有甲、乙两桶油,甲桶油的质量是乙桶的-倍,从甲桶中倒出 5千克油给乙桶后,甲桶 2油的质量是乙桶的 4倍,乙桶中原有油千克.3-------------55【解析】原来甲桶油的质量是两桶油总质量的— 2,甲桶中倒出 5千克后剩下的油的 5 2744质量是两桶油总质量的—4,由于总质量不变,所以两桶油的总质量为 4 3 75 4 2 5 ( ) 35千克,乙桶中原有油 35 10千克.7 7 7(1)某工厂二月份比元月份增产 10 %,三月份比二月份减产 10% .问三月份比 元月份增产了还是减产了? (2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?(1)设二月份产量是1 ,所以元月份产量为:1 1+10%二10 ,三月份产量为:111 10%=0.9,因为10 > 0.9,所以三月份比元月份减产了11(2 )设商品的原价是1 ,涨价后为1+15%=115 ,降价15%为:1.15 1 15% =0.9775,现价和原价比较为:0.9775 v 1,所以价格比较后是价【例2】【解析】降低了。
1 1【巩固】把100个人分成四队,一队人数是二队人数的1-倍,一队人数是三队人数的13 4倍,那么四队有多少个人?1 3【解析】方法一:设一队的人数是“ 1 ”,那么二队人数是:1 11-,三队的人数是:3 41 4 3 4 51 511 1 ,1 ,因此,一、二、三队之和是:一队人数,因为4 5 4 5 20 20人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51 (某一整数),因为这是100以内的数,这个整数只能是1 •所以三个队共有51人,其中一、二、三队各有20 , 15, 16人•而四队有:100 51 49(人)•方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份•为统一一队所以设一队有[4,5] 20份,则二队有15份,三队有16份,所以三个队之和为15 16 20 51份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有100 51 49人(人).【例3】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的-,美术班人数相当于另外两个班人数的3,体育班有58人,音乐班和美术班5 7各有多少人?2 2【解析】条件可以化为:音乐班的人数是所有班人数的,美术班的学生人数是所5 2 73 3 2 3 29有班人数的,所以体育班的人数是所有班人数的 1 ,所以所7 3 10 7 10 7029 2有班的人数为58 140人,其中音乐班有140 40人,美术班有1070 73140 42 人.10【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工 45零件数的-,甲加工零件数是乙、丙加工零件总数的-,则甲、丙加工的零件数56 分别为 __________ 个、 ____________ 个.4 【解析】把乙加工的零件数看作1 ,则丙加工的零件数为-,甲加工的零件数为54 5 3 3 (1 -),由于甲比乙多加工 20个,所以乙加工了 20 (— 1) 40个,甲、56 2234丙加工的零件数分别为 4060个、4032个.25【例4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄11和的一,李先生的年龄是另外三人年龄和的-,赵先生的年龄是其他三人年龄2 31和的丄,杨先生26岁,你知道王先生多少岁吗 ?4【解析】方法一:要求王先生的年龄, 必须先要求出其他三人的年龄各是多少.而题目中出 现了三个“另外三人”所包含的对象并不同,即三个单位“ 1”是不同的,这就是所说的单位“T 不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题 中四个人的年龄总和是不变的, 如果以四个人的年龄总和为单位 “1”,则单位“1 就统一了•那么王先生的年龄就是四人年龄和的1 21 1人年龄和的,赵先生的年龄就是四人年龄和的1 3 4谓的转化单位“ 1 ”).则杨先生的年龄就是四人年龄和的设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的 ,但是现在四人年龄和分别是 3份、4份、5份, 它们的最小公倍数1,李先生的年龄就是四31 1(这些过程就是所 1 4 51 1 1 13 丄 1 .由3 4 5 60 26, 1 1 11 - 121314120(岁),王先生的年 龄为:120 140(岁).31份,则其他三人年龄和为2份,则四人年龄和为3份,同理此便可求出四人的年龄和:方法二:设王先生年龄是是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40【巩固】 甲、乙、丙、丁四个筑路队共筑 1200米长的一段公路,甲队筑的路是其他三个队1 1 1的,乙队筑的路是其他三个队的 3,丙队筑的路是其他三个队的 4,丁队筑了 多少米?1 11【解析】甲队筑的路是其他三个队的 一,所以甲队筑的路占总公路长的2 1+23 1乙队筑的路是其他三个队的,所以乙队筑的路占总公路长的1 1 3 1+3 4 1丙队筑的路是其他三个队的,所以丙队筑的路占总公路长的1 1—4 1+45 111所以丁筑路为:12001 =260 (米)3 4 5【例5】 小刚给王奶奶运蜂窝煤,第一次运了全部的3,第二次运了 50块,这时已运来85的恰好是没运来的 5 •问还有多少块蜂窝煤没有运来?75【解析】方法一:运完第一次后,还剩下没运,再运来50块后,已运来的恰好是没运来的8575,也就是说没运来的占全部的—,所以,第二次运来的50块占全部的:7 125 711 ,全部蜂窝煤有:501200 (块),没运来的有:8 12 24241200 — 700(块)•125方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的,所以可7以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12] 2450 14 700 (块)份,则已运来应是 24 10份,没运来的2414份,第一次运来9份,所以第二次运来是109 1份恰好是50块,因此没运来的蜂窝煤有【巩固】 五(一)班原计划抽1的人参加大扫除,临时又有2个同学主动参加,实际参加扫5除的人数是其余人数的 1•原计划抽多少个同学参加大扫除?3【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加1111 人数比原计划多—1丄•即全班共有2 —40 (人)•原计划抽1 3 5 2020140 - 8(人)参加大扫除.5小莉和小刚分别有一些玻璃球,如果小莉给小刚3 5 少3 ;如果小刚给小莉 24个,则小刚的玻璃球比小莉少 -,小莉和小刚原来共78有玻璃球多少个?【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的1,后来又有204名同学参加大扫除,实际参加的人数是未参加人数的这个学校有多少人?【解析】20— — 400 (人).3 14 1【例6】24个,则小莉的玻璃球比小刚【解析】 小莉给小刚24个时,小莉是小刚的小莉24个时,小莉是两人球数和的34),即两人球数和的;小刚给7 118(=),因此24+24是两人球数和(=1118 8 58 4 4的一-一= .从而,和是(24+24)11 11 114=132(个).111【巩固】 某班一次集会,请假人数是出席人数的丄,中途又有一人请假离开,这样一来,93请假人数是出席人数的 —,那么,这个班共有多少人?221【解析】因为总人数未变,以总人数作为”1 ”.原来请假人数占总人数的 ——,现在请假1 93、31人数占总人数的,这个班共有:I *(-)=50(人).3 22 3 22 1 9小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的1页数丄,他今天比昨天多读了 14页,这时已经读完的页数是还没读的页数的9问题是,这本书共有多少页?”1Cd首先,可以直接运算得出,第一天小明读了全书的 —-,而前二天小明一共1 - 109【例7】【解析】书共14 20 280 (页)。
小学六年级上奥数教程:第六讲 分数应用题(一)--学生版

第6讲 分数应用题(一)【解题秘钥】把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的b a;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =ad bc。
【经典例题】例题1:乙数是甲数的23 ,丙数是乙数的45,丙数是甲数的几分之几?练习11. 乙数是甲数的34 ,丙数是乙数的35,丙数是甲数的几分之几?2. 一根管子,第一次截去全长的14 ,第二次截去余下的12,两次共截去全长的几分之几?例题2:修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米?练习2用两种方法解答下面各题:1.一堆黄沙30吨,第一次用去总数的15,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2.大象可活80年,马的寿命是大象的12,长颈鹿的寿命是马的78,长颈鹿可活多少年?例题3:晶晶三天看完一本书,第一天看了全书的14,第二天看了余下的25,第二天比第一天多看了15页,这本书共有多少页?练习31.有一批货物,第一天运了这批货物的14,第二天运的是第一天的35,还剩90吨没有运。
这批货物有多少吨?2. 修路队在一条公路上施工。
第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?例题4、男生人数是女生人数的45,女生人数是男生人数的几分之几?练习41. 停车场里有小汽车的辆数是大汽车的34,大汽车的辆数是小汽车的几分之几?2. 如果山羊的只数是绵羊的67,那么绵羊的只数是山羊的几分之几?例题5、甲数的13 等于乙数的14,甲数是乙数的几分之几,乙数是甲数的几倍?练习51. 甲数的34 等于乙数的25,甲数是乙数的几分之几?乙数是甲数的几分之几?2. 甲数的123 倍等于乙数的56,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?【作业】1.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
分数奥数应用题及答案

分数奥数应用题及答案分数奥数应用题及答案学好数学,挑战奥数,我们要各个击破,下面是分数奥数应用题及答案,欢迎练习。
例一:王叔叔买了一辆价值16000元的摩托车。
按规定,买摩托车要缴纳10%的车辆购置税。
王叔叔买这辆摩托车一共要花多少钱?分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。
也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。
方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)方法2:16000 ×(1 + 10%)= 16000 ×1.1 = 17600(元)答:王叔叔买这辆摩托车一共要花17600元钱。
例二:益民五金公司去年的营业总额为400万元。
如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。
缴纳营业税占营业额的3%,即400万元的3%。
求一个数的百分之几是多少,也用乘法计算。
计算时可将百分数化成分数或小数来计算。
400×3% = 12(万元)或400×3%= 400×0.03 = 12(万元)答:去年应缴纳营业税12万元。
点评:在现实社会中,各种税率是不一样的。
应纳税额的计算从根本上讲是求一个数的百分之几是多少。
例三:扬州某风景区2017年“十一”黄金周接待游客9万人次,门票收入达270万元。
按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%答:“十一”黄金周期间应缴纳营业税13.5万元。
分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
小学奥数分数问题50道详解(一)

小学奥数分数问题50道详解(一)
1. 分数是什么?
分数是用来表示一个整体被平均分成若干等分的数。
分数由一
个分子和一个分母组成,分子表示被平均分出来的等分的数量,分
母表示整体被平均分成的等分的数量。
2. 分数的基本运算
2.1 分数的加法
分数的加法就是将两个分数的分子相加,然后保持分母不变。
2.2 分数的减法
分数的减法可以通过将两个分数的分子相减,然后保持分母不
变来实现。
2.3 分数的乘法
分数的乘法可以通过将两个分数的分子相乘,分母相乘来实现。
2.4 分数的除法
分数的除法可以通过将一个分数的分子乘以另一个分数的倒数来实现。
3. 分数的化简
化简分数就是将分子和分母的公约数约去的过程。
如果一个分数的分子和分母没有公约数,那么这个分数就是最简分数。
4. 分数的比较
比较两个分数的大小可以通过找到它们的公共分母,然后比较它们的分子大小来实现。
5. 分数的转换
5.1 将分数转换为小数
将分数转换为小数可以通过将分子除以分母来实现。
5.2 将小数转换为分数
将小数转换为分数可以通过将小数的数字部分作为分子,小数的位数作为分母来实现。
6. 分数的运算技巧
6.1 分数的乘法技巧
当两个分数相乘时,如果它们的分子和分母都可以化简,可以
先化简分子和分母,再进行乘法运算。
6.2 分数的除法技巧
当两个分数相除时,可以先将除数和被除数都乘以同一个数,
使得被除数的分母变为1,然后再进行乘法运算。
以上是关于小学奥数分数问题的50道详解。
希望对你有帮助!。
小学-六年级-数学奥数-分数运算-练习题-带答案

小学-六年级-数学(shùxué)奥数-分数运算-练习题-带答案1.凑整法与整数(zhěngshù)运算中的“凑整法”相同,在分数(fēnshù)运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而(cóng ér)使运算得到简化.2.约分法3.裂项法数之和时,若能将每个分数都分解成两个分数之差,并且使中间(zhōngjiān)的分数相互抵消,则能大大简化运算.例7 在自然数1~100中找出10个不同(bù tónɡ)的数,使这10个数的倒数的和等于1.分析(fēnxī)与解;这道题看上去比较复杂,要求(yāoqiú)10个分子为1,而分母不来做,就非常简单了.题中所求,添上括号.此题要求(yāoqiú)的是10个数的倒数和为1,于是做成;所求的10个数是2,6,12,20,30,42,56,72,90,10.替换答案(dáàn)中的10和30,仍是符合题意的解.4.代数(dàishù)法分析(fēnxī)与解;通分计算(jì suàn)太麻烦,不可取.注意到每个括号中都有例2 计算(jì suàn);分析与解题中的每一项的分子都是1,分母不是连续相邻两个自然数之积,而是连续三个自然数的乘积,下面我们试着从前几项开始拆分,探讨解这类问题的一般方法,因为这里n是任意(rènyì)一个自然数,利用这一等式,采用(cǎiyòng)裂项法便能较快地求出例2的结果,例3 计算(jì suàn);分析(fēnxī)与解仿上面(shàng miɑn)例1、例2的解题思路,我们也先通过几个简单的特例试图找出其规律,再用裂项法求解,这几个分数的分子都是2,分母是两个(liǎnɡɡè)自然数的积,其中较小的那个自然数正好等于分母中自然数的个数,另一个自然数比这个自然数大3,把这个想法推广(tuīguǎng)到一般就得到下面的等式;连续使用(shǐyòng)上面两个等式,便可求出结果来,因为第一个小括号内所有分数的分子都是1,分母(fēnmǔ)依次为2,3,4,...,199,所以共有(ɡònɡ yǒu)198个分数,第二个小括号内所有(suǒyǒu)分数的分子也都是1,分母依次为5,6,7, (202)所以也一共(yīgòng)有198个分数,这样分母(fēnmǔ)分别为5,6,7,…,199的分数正好抵消,例4 求下列所有分数的和;分析与解这是分数求和题,如按异分母分数加法法则算,必须先求1,2,3,…,1991这1991个数的最小公倍数,单是这一点就已十分麻烦,为此我们只好另找其他的方法,先计算分母分别为1,2,3,4的所有分数和各等于多少,这四个结果说明,分母分别(fēnbié)为1,2,3,4的上述所有分数和分别为1,2,3,4,如果这一结论具有一般性,上面(shàng miɑn)所有分数的求和问题便能很快解决,下面我们来讨论(tǎolùn)一般的情况,假定(jiǎdìng)分数的分母是某一自然数k,那么分母为k的按题目要求的所有分这说明,此题中分母为k的所有分数的和为k,利用这一结论,便可得到(dé dào)下面的解答,例5 自然数m至n之间所有(suǒyǒu)分母为P的最简分数和是多少〔这里(zhèlǐ)m<n,P是奇质数〕?分析(fēnxī)与解先写出这些(zhèxiē)分数来,因为P是奇质数,所以与P互质且比P小的数有1,2,3,…,P-1,共〔P-1〕个,换句话说,每相邻的两个(liǎnɡɡè)自然数之间,以P为分母的最简分数都有〔P-1〕个,故下面来求这些分数的和;因为m至〔n-1〕之间自然数的个数为;〔n-1〕-m+1=n-m,所以上面结果故上面结果又可改写为;由以上例题可知,认真观察(guānchá),发现题目中的规律,然后利用规律去解题,是我们解题的一大法宝,内容总结(1)小学-六年级-数学奥数-分数运算-练习题-带答案1.凑整法与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数(2)因为m至〔n-1〕之间自然数的个数为(3)〔n-1〕-m+1=n-m,所以上面结果故上面结果又可改写为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。
例如:水结成冰后体积增加了,冰融化成水后,体积减少了。
完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来的水是单位“1”冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了” →原来的冰是单位“1”知识点拨教学目标分数应用题(一)解题关键:要结合语文知识将题目简化的文字丰富后在分析模块一、单位“1”不变抓住量率对应进行计算【例 1】村里种了新瓜,男女老少品尝它.小伙每人吃一个,姑娘两人分一瓜;老人一瓜三人吃,四个小孩吃一瓜.男女老少四个组,一共吃了五十瓜,各组人数都相等,每组多少人品尝瓜?【考点】分数应用题【难度】2星【题型】解答【解析】把各组人数都视为“1”,那么有:50÷(1+12+13+14)=24(人).【答案】24【例 2】五年级男生有50人,女生有40人.⑴女生人数是男生人数的几分之几?⑵男生人数比女生人数多几分之几?⑶女生人数比男生人数少几分之几?⑷女生比男生少的人数是全班人数的几分之几?【考点】分数应用题【难度】1星【题型】解答【解析】此题四个问题都是求一个数是另一个数的几分之几,解答的关键是找准单位“1”.⑴男生人数为单位“1”,44050=5÷;⑵女生人数为单位“1”,1504040=4-÷();⑶男生人数为单位“1”,1504050=5-÷();⑷全班人数为单位“1”,1(5040)(5040)9-÷+=.【答案】⑴45⑵14⑶15⑷19【巩固】一个单位精简机构后有工作人员120人,比原来工作人员少40人,精简了几分之几?【考点】分数应用题【难度】1星【题型】解答【解析】“精简了百分之几”是在说“现在比原来少的人数是原来工作人员的几分之几”,单位“1”就是“原来工作人员人数”,140(12040)4÷+=.【答案】14【例 3】将一个分数作如下图所示的变化后,得到的新分数比原分数减少的百分率等于 %。
【考点】分数应用题【难度】2星【题型】解答【关键词】希望杯,六年级,一试【解析】设原来的分数为ab,(0)b≠,则新分数为(110%)(150%)ab-+,新分数比原分数减少例题精讲(110%)110%140%(150%)150%a a a b b b ⎡⎤---÷=-=⎢⎥++⎣⎦(还可以用设数法,找一个最简单的分数按题目要求进行计算答案应该是一样的)【答案】40%【例 4】 根据图中的信息回答,剩下的糖果是原来糖果重量的 。
【考点】分数应用题 【难度】1星 【题型】解答【关键词】希望杯,六年级,一试【解析】 设原来糖果和瓶的总重量为10份,则原来有糖果9份。
瓶重1份。
则剩下的糖果为(61)5-=份,所以剩下的糖果是原来糖果的5599÷=【答案】59【巩固】 一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重________千克。
【考点】分数应用题 【难度】1星 【题型】解答 【关键词】希望杯六年级二试 【解析】 可知卖出了20-15.6=4.4千克,筐重量为20-4×4.4=2.4千克。
【答案】2.4千克【例 5】 下图中的扇形图分别表示小羽在寒假的前两周阅读《漫话数学》一书的页数占全书总页数的比例。
由图可知,这本书共有 页。
【考点】分数应用题 【难度】1星 【题型】解答 【关键词】希望杯,六年级,一试【解析】 115(30%)3004÷-=(页)【答案】59【例 6】 某商品价格为1200元,降价15%后,又降价20%,由于销售额猛增,商店决定再提价25%,提价后这种商品的价格为 元。
【考点】分数应用题 【难度】1星 【题型】解答 【关键词】学而思杯,6年级 【解析】 降价15%后,又降价20%,再提价25%,此时的价格为:1200(115%)(120%)(125%)1200(115%)1020⨯-⨯-⨯+=⨯-=(元)。
【答案】1020【例 7】将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
【考点】分数应用题【难度】1星【题型】解答【关键词】希望杯,六年级,一试【解析】因为销售总额相等,故商品单价与销售量成反比,单价之比为1:1.25,即4:5,那么销售量之比为5:4,减少了(54)5100%20%-÷⨯=。
【答案】20%【例 8】小红和小明帮刘老师修补一批破损图书。
根据图中信息计算,小红和小明一共修补图书______本。
【考点】分数应用题【难度】2星【题型】解答【关键词】希望杯,六年级,一试【解析】小红和小明一共补了21135420+=还多3-2=1本.而刘老师补了720少一本,一共有数()72016020+÷=本.则小红和小明共修补了60-20=40本。
【例 9】小静的书架上有三种不同种类的书,其中漫画书比故事书多2本,小说书比故事书少2本,已知故事书比小说书多25%,那么漫画书比故事书多百分之几?【考点】分数应用题【难度】2星【题型】解答【解析】小说书有225%8÷=本,所以故事书有8210+=本,漫画书有10212+=本,漫画书比故事书多210100%20%÷⨯=.【答案】20%【巩固】一个水箱中的水是装满时的56,用去200立升以后,剩余的水是装满时的34,这个水箱的容积是多少立升?【考点】分数应用题【难度】2星【题型】解答【解析】200÷(56-34)=2400(立升)。
【答案】2400立升【巩固】水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原来库存量多六分之一,原来库存水果多少万斤?【考点】分数应用题【难度】2星【题型】解答【解析】根据量率对应为:116600018000056⎛⎫÷+=⎪⎝⎭(斤)=18(万斤)【答案】18万斤【巩固】迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%.那么,原计划生产插秧机台.【考点】分数应用题【难度】2星【题型】解答【解析】5400÷(1+16%一56%)=9000(台).【答案】9000台【例 10】 已知小明家2007年总支出是24300元,各项支出情况如图所示,其中教育支出是______元.【考点】分数应用题 【难度】2星 【题型】解答 【关键词】希望杯,六年级,一试 【解析】 教育支出24300×(1-10%-24%-12%-36%)=4374. 【答案】4374【巩固】 某项目的成本包括:人力成本、差旅费、活动费、会议费、办公费、招待费以及其他营运费用,它们所占比例如图所示,其中的活动费是10320元,则该项目的成本是 元。
【考点】分数应用题 【难度】2星 【题型】解答 【关键词】希望杯,六年级,一试 【解析】 成本()10320115%30%12%8%9%14%86000=÷------=元 【答案】86000元【例 11】 小强看一本书,每天看15页,4天后加快进度,又看了全书的25,还剩下30页,这本故事书有多少页?【考点】分数应用题 【难度】2星 【题型】解答【解析】 由题意,4天看了15460⨯=(页),最后还剩下30页,所以603090+=页占全书的:23155-=,所以这本故事书有:3901505÷=(页).【答案】150页【巩固】 一个水箱中的水是装满时的56,用去200立升以后,剩余的水是装满时的34,这个水箱的容积是多少立升?【考点】分数应用题 【难度】2星 【题型】解答 【关键词】祖冲之杯【解析】 由题意,水箱装满时的水量是单位1,用去的200立升水是装满水时的5364-,所以水箱的容积是:53200()240064÷-=(立升).【答案】2400立升【巩固】小强看一本故事书,每天看20页,5天后还剩下全书的15没看,这本故事书有多少页?【考点】分数应用题【难度】2星【题型】解答【解析】5天看了205100⨯=(页),占全书的14155-=,所以这本故事书一共有:1(205)(1)1255⨯÷-=(页).【答案】125页【巩固】点点暑假练习写字,每天写3页,5天后加快速度又写了全部的15,还剩下25页,点点共练习多少页?【考点】分数应用题【难度】2星【题型】解答【解析】1(2535)(1)505+⨯÷-=(页).【答案】50页【例 12】用一批纸装订一种练习本.如果已装订120本,剩下的纸是这批纸的40%;如果装订了185本,则还剩下1350张纸.这批纸一共有多少张?【考点】分数应用题【难度】2星【题型】解答【解析】方法一:120本对应(1-40%=)60%的总量,那么总量为120÷60%=200本.当装订了185本时,还剩下200-185:15本未装订,对应为1350张,所以每本需纸张:1350÷15=90张,那么200本需200×90=18000张.即这批纸共有18000张.方法二:装订120本,剩下40%的纸,即用了60%的纸.那么装订185本,需用185×(60%÷120)=92.5%的纸,即剩下1-92.5%=7.5%的纸,为1350张.所以这批纸共有1350÷7.5%=18000张.【答案】18000【例 13】有男女同学325人,新学年男生增加25人,女生减少120,总人数增加16人,那么现有男同学多少人?【考点】分数应用题【难度】2星【题型】解答【解析】男生增加25人,总人数只增加16人,说明女生减少9人,而女生减小120,故9人对应的为120,女生原有人数为1918020÷=(人),现有男生人数为32518025170-+=(人)或()()325161809170+--=(人)。