组合机床外文文献

合集下载

机床的论文中英文资料外文翻译文献

机床的论文中英文资料外文翻译文献

机床的论文中英文资料外文翻译文献引言机床是制造业中重要的设备,用于加工各种零部件和制造产品。

本文汇总了关于机床的论文中英文资料的外文翻译文献,以供参考和研究使用。

外文翻译文献列表Author: John Smith John SmithYear: 2015 20152. Title: Advanced Techniques for Machine Tool Analysis Title: Advanced Techniques for Machine Tool AnalysisAuthor: Jennifer Lee Jennifer LeeYear: 2016 20163. Title: Intelligent Control Systems for Precision Machining Title: Intelligent Control Systems for Precision MachiningAuthor: David Wang David WangYear: 2018 2018Abstract: This paper focuses on intelligent control systems for precision machining. It discusses the integration of artificial intelligence and control algorithms to enhance the precision and performance of machine tools. The paper presents case studies on the application of intelligent control systems in precision machining processes. This paper focuses on intelligent control systems for precision machining. It discusses the integration of artificial intelligence and control algorithms to enhance the precision and performance of machine tools. The paper presents case studies on the application of intelligent control systems in precision machining processes.4. Title: Advances in Machining Processes for Hard-to-Machine Materials Title: Advances in Machining Processes for Hard-to-Machine MaterialsAuthor: Emily Chen Emily ChenYear: 2019 2019Abstract: This paper reviews recent advances in machining processes for hard-to-machine materials. It discusses the challenges associated with machining materials such as titanium, nickel-basedalloys, and ceramics. The paper highlights the development of new cutting tools, machining strategies, and technologies to improve the machinability of these materials. This paper reviews recent advances in machining processes for hard-to-machine materials. It discusses the challenges associated with machining materials such as titanium, nickel-based alloys, and ceramics. The paper highlights the development of new cutting tools, machining strategies, and technologies to improve the machinability of these materials.5. Title: Optimization of Machining Parameters for Energy Efficiency Title: Optimization of Machining Parameters for Energy EfficiencyAuthor: Michael Liu Michael LiuYear: 2020 2020Abstract: This paper explores the optimization of machining parameters for energy efficiency. It discusses the impact of machining parameters, such as cutting speed, feed rate, and depth of cut, on energy consumption in machining processes. The paper presents optimization techniques and case studies on reducing energy consumption in machining operations. This paper explores theoptimization of machining parameters for energy efficiency. It discusses the impact of machining parameters, such as cutting speed, feed rate, and depth of cut, on energy consumption in machining processes. The paper presents optimization techniques and case studies on reducing energy consumption in machining operations.结论以上是关于机床的论文中英文资料的外文翻译文献,希望对研究和了解机床技术的人员有所帮助。

外文翻译--- 多功能组合机床时代

外文翻译--- 多功能组合机床时代

外文翻译专业机械设计制造及其自动化学生姓名班级学号指导教师专业系主任外文资料名称:Multi-purpose aggregatemachine-tool time外文资料出处:U.S.A. Michigan university附件:1.外文资料翻译译文2.外文原文多功能组合机床时代蒂莫西雅各布斯,丹尼斯阿斯纳斯,卓然飞利浦美国密西根大学王雷译摘要:组合机床加工中心可使加工制造业适应不断变化的需求,有效利用劳动力资源,并在全球范围的市场上更具竞争力。

关键字:组合机床对于多功能组合机床,工业领域内有很多称呼来形容它,如“多任务处理装置”、“多功能机床”、“多程序生产系统”等,它确实可称为加工领域的新星,可降低成本,简化配置,并一直保持在美国本土生产。

过去只有使用多机操作才能完成的任务,现在可以集中到一台机床上加工完成。

由于市场需求的不断变化,产品的生命周期在不断缩短,今天的市场更加强烈需求多任务处理装置概念。

在整个生产环境中推行精益管理时,没有比把零件加工集中到一台机器上完成更精一些传统的制造业厂商认为多功能组合机床过于复杂,很难找到合适的操作人员也就不足为奇了。

在一些劳动力市场,要找到能够对多轴组合机床加工中心进行手工编程的人是不太可能的事。

但资料显示,解决方案可有两个,一个是现代多功能组合机床的直觉式技术,另一个是针对金属加工基本原理及在生产车间现场有关新机床使用中难题创新解决方面的培训。

直觉式技术控制设备采用“带走热量”式设计,有床身、钢制直线滚动导轨、钢制转塔刀架、设备上使用的不同材料,所有这些组合到一起建造成一台机床。

这些都与导热系数、体积膨胀相关。

所有不同尺寸的东西都会以不同的速度生长。

由于这个原因,需要制造热友好机床,以便知道发热的薄弱点在哪里,可以通过合理的机床设计来补偿。

元件是全程运动。

机床滑动产生摩擦并转化为热。

切削加工产生的热屑掉到不同地方,在整个过程中冷却液会混合在其中。

在切削刀具上会持续出现很多不同的温度区域,所以也会有很多东西对热稳定性产生影响。

组合镗床外文翻译

组合镗床外文翻译

本科毕业设计外文文献及译文文献、资料题目:Combination Boring Machine文献、资料来源:English in Mechatronic Engineering 文献、资料发表(出版)日期:2000.3.25院(部):机电工程学院专业:机械工程及自动化班级:机械087姓名:刘武学号:2008071362指导教师:李英杰翻译日期:2012.3.3外文文献:Combination Boring MachineThe multi-purpose aggregate machine-tools has many names to describe it in the industrial field.It likes“the multitasking installment”, “the multi-purpose engine beds”, “the multi-procedure production s ystem” and so on.It may be called the processing domain truly the nova and reduce the cost, the simplified disposition and has maintained in the US territory produces. In the past only they used the duty which many machine operations could complete, now it may concentrate to an engine bed on processes completes.As a result of market demand's unceasing change, the product life cycle is reducing unceasingly, today's market more intense demand multitasking installment concept. Carries out the fine profit management when the entire production environment, compared to having not concentrated the components processing to a machine on completes a finer profit.Some tradition's manufacturing industry manufacturer thought that the multi-purpose aggregate machine-tools are too complex, very difficult to find the appropriate operators also the difficult problem innovates on the spot on the insufficiency for the metal working basic principle and in the Production workshop related new engine bed use solution aspect training.Intuition type technical controlThe equipment use “carries off the quantity of heat” the type design, has different material which the lathe bed, the steeliness straight line rolling guide, on the steeliness revolving tool box saddle, the equipment uses, all these combine make an engine bed together. These with the thermal conductivity, the volume expansion are related. All different size's thing can by the different speed growth.As a result of this reason, needs to make the hot friendly engine bed, with the aim of knowing gives off heat the weak point in where, can compensate through the reasonable engine bed design. The part is the entire journey movement. The engine bed glide produces rubs and transform hotly. The machining produces the hot filings fall to the different place, the refrigerant can mix in the entire process in which. Will present the different temperature province continually on the cutting tool, will therefore also have many things to have the influence to the thermostability. The cutting tool technology turned the multi-purpose aggregate machine-tools has had the milling and cutting power “the versatile machine”.According to the material introduced that the most remarkable characteristic is in these engine bed whole has the intuition. The anti-collision preservation technology was already mature, in certain circumstances, even if uses the manual operation pattern, can also avoid the occurrencewhich collides. Because the control software has the very good intuition, the user operation friendly degree unceasingly is also enhancing. Believe the multi-purpose aggregate machine-tools by its survivability world-wide in the more different processing scenes.The off-line programming optimization and the NC automatic control system's formation already made this technology to be easier to accept, when therefore uses the procedure when the engine bed, does not need to spend many time tune-up procedure and confirmed that some part does not have the question. If components need to provide the high and low two revolving tool box saddle simultaneously to carry on the rough machining, in this kind of situation the programming is quite difficult, because it needs two revolving tool box saddles also to feed. The AdMac system may realize tool rest's automatic programming which simultaneously feeds to these, and can cause the correct main axle speed, the correct feed rate and so on all parameters to realize the synchronization.Okuma Corporation's collision avoidance system design based on actual processing operating mode anti-collision simulation, therefore, if the operator has installed the wrong cutting tool or has established the wrong parameter, the control system will examine and prevents the engine bed to enter the processing condition. Through cooperates with the Siemens, INDEX Corporation may provide the 3D pattern now “the hypothesized engine bed”, has custom-made according to some specific model's engine bed. The result indicated that the simulation processes not only the fabricated parts and the actual end product is similar, is the one-to-one copy simply.The intuition type control interface, the simulation as well as other software technique are progressive, the more Production workshops have opened wide the front door to the multi-purpose aggregate machine-tools, but if does not have the corresponding knowledge to train and to solve the question creativity, the manufacturer is also very difficult to realize and the full use advanced engine bed flexibility aspect superiority. The work which does to the machine are more, the machine will be more complex, also needs to have the stronger skill person correspondingly to be able to operate it.If machinist past one day operated 3 engine beds, then he has this kind of multi-purpose engine bed now, might produce more components. More importantly, he may draw support from software's help to cause the production efficiency to be higher, regarding transformation processing components preparation, may also establish the processing craft plan. Because the replacement components need to lower 3 main axles, therefore before replacing the components, the workshop should process as far as possible many components. Regarding the multi-purpose engine beds, the transformation components speed is quick, the production batch of time interval is shorter, the stock is lower, the production efficiency is higher. Can use multi-purpose enginebed's some workshops fully, very quick will discover the post function the unification. Now, a workshop may only use an operator, an adjuster and a programming teacher, in the future these 3 work definitely may do by a person.In the traditional post description the machinist will transit becomes one to adjust engineer, if this engineer the familiar components processing programming, that were also more ideal. Regarding such transformation, training has been simple, so long as trains 1 individual line, but is not 3 individuals. Looking from the long views, this will provide to the people the higher post degree of satisfaction. When adjusts engineer to be responsible to process the programming, and pays attention to the components processing personally time the entire process, he completely has become this components control. In addition, but should also makes more effort in the cutting tool choice and the programming aspect, must make any model the multi-purpose aggregate machine-tool to succeed, the workshop needs to provide the skilled machinist, has ability and completes many kinds of operations nimbly. Therefore, crosswise training was at any time in the past more important. Regarded as the milling and the lathe work the different discipline the viewpoint never to return. Regarding the programmers, this belongs to their time. Regarding personnel who will program, will understand the engine bed and controls it, this will be their ability manifestation.The cutting tool will choose most people not to install the passenger vehicle tire to the race car on, but processed the cutting tool to have such situation. The cutting tool should match with the new engine bed, is conceivably redundant on the new engine bed uses the old cutting tool to the production efficiency influence. In order to match the multi-purpose aggregate machine-tools, the new cutting tool and the cutting tool adapter technology was already developed. At present the industrial field is developing the development the processing cutting tool, may complete the turning on the identical tool rest, boring and drills truncates the processing, is only processes the phase to differ from regarding the work piece angle. The processing operates the difference even confuses is unclear. The new processing cutting tool may complete the milling and the turning.Since has moved the technology (engine bed) is this century develops is extremely rapid and one of influence enormous science and technology. The modern automation technology is one kind of completely new productive forces, is one of direct creation public wealth principal means that is playing the enormous promotion effect to humanity's production activity and the material civilization. Therefore, the automated technology receives various countries widely to take seriously with more and more applications. The machinery automation (engine bed), mainly refers to the machine-building industry applies the automated technology, realizes the processing object continuously the automatic production, realizes the optimized effective automaticproduction process, the increase production investment processing transformation and the flow rate. The machinery automation technology's application and the development, are the machine-building industry technological transformations, the technology advancement principal means and the technological development main direction. Machinery automation technical standards, not only affects the entire machine-building industry the development, and has the very tremendous immediate influence to the national economy various departments' technology advancement. Therefore, develops our country's machine-building industry automation technology, conforms to our country socialism basic principle, conforms to our country modern production law of development. How to develop our country's machinery automation technology (engine bed), here has the technical policy question, should be realistic, all embark from our country's concrete national condition, do each foundation work, takes the China's road of machinery automation technological development. The domestic and foreign industry history tells us, realizes the machinery automation is from to high-level, from simply to complex, from is preliminarily imperfect the consummation the developing process. After machine's operation uses the automatic regulator, the production method only then gradually transits from the mechanization to the mechanism control (tradition) automated, the numerical control automation, the computer control automation. Only then after having established the Automated factory, the production process can overall automate, can make the productivity to enhance comprehensively, achieves automated the high-level ideal stage.The machinery automation technology first starts from the 1920s in the machine manufacture cold finishing production in enormous quantities process to develop the application, after in the 60s, to adapt the market demand and the change, for the enhancement machine-building industry to the market nimble rapid reaction's ability, starts to establish the variable automation production system, namely revolves the computer technology the flexible automation. It is in the manufacture system invariable or in the change small situation, the machinery equipment either production management process through the automatic detection, the information processing, the analysis judgment realizes the anticipated operation or some kind of process automatically, and can from make one kind of components to transform automatically to makes another kind of different components. The social practice proved that under this kind of definition's manufacture system automation and the contemporary majority enterprises are not actually accommodating. The contemporary society also not in the science and technology, the material and the personnel aspect prepares to realize this automated condition, insists such to do only meets the wasted effort. This kind of situation is not exceptional regarding the separate production method's machine-building industry, the difficulty can bigger.In the 80s internationally appeared started to use computer integration manufacture system CIMS (Computer Integrated Manufacturing), the flexible automation production pattern also had this kind of situation. The initial period take the information integration as a key point, take the high automaticity as the characteristic, but in realized in the process to encounter the difficulty. In view of the fact that realizes the large amount investment which the computer integration manufacture system's automation overall needs (an overall Automated factory to spend several hundred hundred million US dollars, flexible manufacture system regular price is 600 ~ 25,000,000 US dollars), undertakes the huge risk, in addition questions and so on technical difficulty and reliability, the world industrially advanced country started “to run into a wall produces a different product”, transfers pays great attention the information integration the effect, pursues low cost automation LCA (Low Cost Automation) enterprise organizational structure and movement way.The aggregate machine-tool future development more use transmissions and so on variable speed motor and ball bearing guide screw, will simplify structure, the reduction production metre; Uses the numerical control system and the headstock, the jig automatic replacement system, enhances the craft controllability; As well as integrates the flexible manufacture system and so on.The aggregate machine-tool is take the general part as a foundation, matches by presses the work piece specific shape and the processing technological design special-purpose part and the jig, the composition semiautomatic or the automatic special purpose machine. The aggregate machine-tool selects the method which generally multiple spindle, the multi-knives, the multi-working procedures, many or the multi-locations simultaneously process, production efficiency ratio general engine bed high several times to several dozens times. Because the general part already the standardization and the seriation, might according to need to dispose nimbly, could reduce the design and the manufacturing cycle. The multi-axle-boxes are aggregate machine-tool's core parts. It selects the common parts, carries on the design according to the special-purpose request, in the aggregate machine-tool design's process, is one of work load big parts. It is acts according to the work piece processing hole quantity which and the position the working procedure chart and the processing schematic drawing determined, the cutting specifications and the main axle type design transmission various main axles movement power unit. Its power from the general power box, installs together with the power box in to feed sliding table, may complete drills, twists and so on working processes. This topic designed has used in the HT200 top head hole processing the drill hole aggregate machine-tool. According to the top head hole components size which must process carries on the aggregate machine-tool generalmulti-axle-boxes the design, draws up the multi-axle-box primitive basis chart, the definite main axle and the gear modulus, determined the transmission system, calculates the main axle and drive shaft's coordinate. Through the above design, realized a top head one-sided six processing to complete, has achieved the design requirements well。

组合机床论文中英文资料外文翻译文献

组合机床论文中英文资料外文翻译文献

中英文资料外文翻译文献TRANSFER AND UNIT MACHINEWhile the specific intention and application for transfer and unit machine vary from one machine type to another, all forms of transfer and unit machine have common benefits. Here are but a few of the more important benefits offered by TRANSFER AND UNIT MACHINE equipment.The first benefit offered by all forms of transfer and unit machine is improved automation. The operator intervention related to producing workpieces can be reduced or eliminated. Many transfer and unit machine can run unattended during their entire machining cycle, freeing the operator to do other tasks. This gives the transfer and unit machine user several side benefits including reduced operator fatigue, fewer mistakes caused by human error, and consistent and predictable machining time for each workpiece. Since the machine will be running under program control, the skill level required of the transfer and unit machine operator (related to basic machining practice) is also reduced as compared to a machinist producing workpieces with conventional machine tools.The second major benefit of transfer and unit machine technology is consistent and accurate workpieces. Today's transfer and unit machines boast almost unbelievable accuracy and repeatability specifications. This means that once a program is verified, two, ten, or one thousand identical workpieces can be easily produced with precision and consistency.rd benefit offered by most forms of transfer and unit machine tools is flexibility. Since these machines are run from programs, running a different workpieceis almost as easy as loading a different program. Once a program has been verified and executed for one production run, it can be easily recalled the next time the workpiece is to be run. This leads to yet another benefit, fast change over. Since these machines are very easy to set up and run, and since programs can be easily loaded, they allow very short setup time. This is imperative with today's just-in-time (JIT) product requirements.Motion control - the heart of transfer and unit machineThe most basic function of any transfer and unit machine is automatic, precise, and consistent motion control. Rather than applying completely mechanical devices to cause motion as is required on most conventional machine tools, transfer and unit machines allow motion control in a revolutionary manner2. All forms of transfer and unit machine equipment have two or more directions of motion, called axes. These axes can be precisely and automatically positioned along their lengths of travel. The two most common axis types are linear (driven along a straight path) and rotary (driven along a circular path).Instead of causing motion by turning cranks and handwheels as is required on conventional machine tools, transfer and unit machines allow motions to be commanded through programmed commands. Generally speaking, the motion type (rapid, linear, and circular), the axes to move, the amount of motion and the motion rate (feedrate) are programmable with almost all transfer and unit machine tools.A transfer and unit machine command executed within the control tells the drive motor to rotate a precise number of times. The rotation of the drive motor in turn rotates the ball screw. And the ball screw drives the linear axis (slide). A feedback device (linear scale) on the slide allows the control to confirm that the commanded number of rotations has taken place3. Refer to fig.1.Fig.1Though a rather crude analogy, the same basic linear motion can be found on a common table vise. As you rotate the vise crank, you rotate a lead screw that, in turn, drives the movable jaw on the vise. By comparison, a linear axis on a transfer and unit machine machine tool is extremely precise. The number of revolutions of the axis drive motor precisely controls the amount of linear motion along the axis.How axis motion is commanded - understanding coordinate systemsIt would be infeasible for the transfer and unit machine user to cause axis motion by trying to tell each axis drive motor how many times to rotate in order to command a given linear motion amount4. (This would be like having to figure out how many turns of the handle on a table vise will cause the movable jaw to move exactly one inch!) Instead, all transfer and unit machine controls allow axis motion to be commanded in a much simpler and more logical way by utilizing some form of coordinate system. The two most popular coordinate systems used with transfer and unit machines are the rectangular coordinate system and the polar coordinate system. By far, the more popular of these two is the rectangular coordinate system.The program zero point establishes the point of reference for motion commands in a transfer and unit machine program. This allows the programmer to specify movements from a common location. If program zero is chosen wisely, usually coordinates needed for the program can be taken directly from the print.With this technique, if the programmer wishes the tool to be sent to a position one inch to the right of the program zero point, X1.0 is commanded. If the programmer wishes the tool to move to a position one inch above the program zero point, Y1.0 is commanded. The control will automatically determine how many times to rotate each axis drive motor and ball screw to make the axis reach the commanded destination point . This lets the programmer command axis motion in a very logical manner. Refer to fig.2, 3.Fig.2Fig.3All discussions to this point assume that the absolute mode of programming is used6. The most common transfer and unit machine word used to designate the absolute mode is G90. In the absolute mode, the end points for all motions will be specified from the program zero point. For beginners, this is usually the best and easiest method of specifying end points for motion commands. However, there is another way of specifying end points for axis motion.In the incremental mode (commonly specified by G91), end points for motions are specified from the tool's current position, not from program zero. With this method of commanding motion, the programmer must always be asking "How far should I move the tool?" While there are times when the incremental mode can be very helpful, generally speaking, this is the more cumbersome and difficult method of specifying motion and beginners should concentrate on using the absolute mode.Be careful when making motion commands. Beginners have the tendency tothink incrementally. If working in the absolute mode (as beginners should), the programmer should always be asking "To what position should the tool be moved?" This position is relative to program zero, NOT from the tools current position.Aside from making it very easy to determine the current position for any command, another benefit of working in the absolute mode has to do with mistakes made during motion commands. In the absolute mode, if a motion mistake is made in one command of the program, only one movement will be incorrect. On the other hand, if a mistake is made during incremental movements, all motions from the point of the mistake will also be incorrect.Assigning program zeroKeep in mind that the transfer and unit machine control must be told the location of the program zero point by one means or another. How this is done varies dramatically from one transfer and unit machine and control to another8. One (older) method is to assign program zero in the program. With this method, the programmer tells the control how far it is from the program zero point to the starting position of the machine. This is commonly done with a G92 (or G50) command at least at the beginning of the program and possibly at the beginning of each tool.Another, newer and better way to assign program zero is through some form of offset. Refer to fig.4. Commonly machining center control manufacturers call offsets used to assign program zero fixture offsets. Turning center manufacturers commonly call offsets used to assign program zero for each tool geometry offsets.Fig. 4Flexible manufacturing cellsA flexible manufacturing cell (FMC) can be considered as a flexible manufacturing subsystem. The following differences exist between the FMC and the FMS:1.An FMC is not under the direct control of thecentral computer. Instead, instructions from the centralcomputer are passed to the cell controller.2.The cell is limited in the number of part families itcan manufacture.The following elements are normally found in an FMC:•Cell controller•Programmable logic controller (PLC)•More than one machine tool•A materials handling device (robot or pallet)The FMC executes fixed machining operations with parts flowing sequentially between operations.High speed machiningThe term High Speed Machining (HSM) commonly refers to end milling at high rotational speeds and high surface feeds. For instance, the routing of pockets in aluminum airframe sections with a very high material removal rate1. Over the past 60 years, HSM has been applied to a wide range of metallic and non-metallic workpiece materials, including the production of components with specific surface topography requirements and machining of materials with hardness of 50 HRC and above. With most steel components hardened to approximately 32-42 HRC, machining options currently include: Rough machining and semi-finishing of the material in its soft (annealed) condition heat treatment to achieve the final required hardness = 63 HRC machining of electrodes and Electrical Discharge Machining (EDM) of specific parts of dies and moulds (specifically small radii and deep cavities with limitedaccessibility for metal cutting tools) finishing and super-finishing of cylindrical/flat/cavity surfaces with appropriate cemented carbide, cermet, solid carbide, mixed ceramic or polycrystalline cubic boron nitride (PCBN)For many components, the production process involves a combination of these options and in the case of dies and moulds it also includes time consuming hand finishing. Consequently, production costs can be high and lead times excessive.It is typical in the die and mould industry to produce one or just a few tools of the same design. The process involves constant changes to the design, and because of these changes there is also a corresponding need for measuring and reverse engineering .The main criteria is the quality level of the die or mould regarding dimensional, geometric and surface accuracy. If the quality level after machining is poor and if it cannot meet the requirements, there will be a varying need of manual finishing work. This work produces satisfactory surface accuracy, but it always has a negative impact on the dimensional and geometric accuracy.One of the main aims for the die and mould industry has been, and still is, to reduce or eliminate the need for manual polishing and thus improve the quality and shorten the production costs and lead times.Main economical and technical factors for the development of HSMSurvivalThe ever increasing competition in the marketplace is continually setting new standards. The demands on time and cost efficiency is getting higher and higher. This has forced the development of new processes and production techniques to take place. HSM provides hope and solutions...MaterialsThe development of new, more difficult to machine materials has underlined the necessity to find new machining solutions. The aerospace industry has its heat resistant and stainless steel alloys. The automotive industry has different bimetal compositions, Compact Graphite Iron and an ever increasing volume of aluminum3. The die and mould industry mainly has to face the problem of machining highhardened tool steels, from roughing to finishing.QualityThe demand for higher component or product quality is the result of ever increasing competition. HSM, if applied correctly, offers a number of solutions in this area. Substitution of manual finishing is one example, which is especially important on dies and moulds or components with a complex 3D geometry.ProcessesThe demands on shorter throughput times via fewer setups and simplified flows (logistics) can in most cases, be solved by HSM. A typical target within the die and mould industry is to completely machine fully hardened small sized tools in one setup. Costly and time consuming EDM processes can also be reduced or eliminated with HSM.Design & developmentOne of the main tools in today's competition is to sell products on the value of novelty. The average product life cycle on cars today is 4 years, computers and accessories 1.5 years, hand phones 3 months... One of the prerequisites of this development of fast design changes and rapid product development time is the HSM technique.Complex productsThere is an increase of multi-functional surfaces on components, such as new design of turbine blades giving new and optimized functions and features. Earlier designs allowed polishing by hand or with robots (manipulators). Turbine blades with new, more sophisticated designs have to be finished via machining and preferably by HSM . There are also more and more examples of thin walled workpieces that have to be machined (medical equipment, electronics, products for defence, computer parts) Production equipmentThe strong development of cutting materials, holding tools, machine tools, controls and especially CAD/CAM features and equipment, has opened possibilities that must be met with new production methods and techniques5.Definition of HSMSalomon's theory, "Machining with high cutting speeds..." on which, in 1931,took out a German patent, assumes that "at a certain cutting speed (5-10 times higher than in conventional machining), the chip removal temperature at the cutting edge will start to decrease..."Given the conclusion:" ... seems to give a chance to improve productivity in machining with conventional tools at high cutting speeds..."Modern research, unfortunately, has not been able to verify this theory totally. There is a relative decrease of the temperature at the cutting edge that starts at certain cutting speeds for different materials.The decrease is small for steel and cast iron. But larger for aluminum and other non-ferrous metals. The definition of HSM must be based on other factors.Given today's technology, "high speed" is generally accepted to mean surface speeds between 1 and 10 kilometers per minute or roughly 3 300 to 33 000 feet per minute. Speeds above 10 km/min are in the ultra-high speed category, and are largely the realm of experimental metal cutting. Obviously, the spindle rotations required to achieve these surface cutting speeds are directly related to the diameter of the tools being used. One trend which is very evident today is the use of very large cutter diameters for these applications - and this has important implications for tool design.There are many opinions, many myths and many different ways to define HSM. Maintenance and troubleshootingMaintenance for a horizontal MCThe following is a list of required regular maintenance for a Horizontal Machining Center as shown in fig.5. Listed are the frequency of service, capacities, and type of fluids required. These required specifications must be followed in order to keep your machine in good working order and protect your warranty.fig. 5DailyTop off coolant level every eight hour shift (especially during heavy TSC usage).Check way lube lubrication tank level.Clean chips from way covers and bottom pan.Clean chips from tool changer.Wipe spindle taper with a clean cloth rag and apply light oil.Weekly•Check for proper operation of auto drain on filter regulator.On machines with the TSC option, clean the chip basket on the coolant tank.Remove the tank cover and remove any sediment inside the tank. Be careful to disconnect the coolant pump from the controller and POWER OFF the control before working on the coolant tank . Do this monthly for machines without the TSC option.Check air gauge/regulator for 85 psi.For machines with the TSC option, place a dab of grease on the V-flange of tools. Do this monthly for machines without the TSC option.Clean exterior surfaces with mild cleaner. DO NOT use solvents.Check the hydraulic counterbalance pressure according to the machine's specifications.Place a dab of grease on the outside edge of the fingers of the tool changer and run through all tools".MonthlyCheck oil level in gearbox. Add oil until oil begins dripping from over flow tube at bottom of sump tank.Clean pads on bottom of pallets.Clean the locating pads on the A-axis and the load station. This requires removing the pallet.•Inspect way covers for proper operation and lubricate with light oil, if necessary.Six monthsReplace coolant and thoroughly clean the coolant tank.Check all hoses and lubrication lines for cracking.Annually•Replace the gearbox oil. Drain the oil from the gearbox, and slowly refill it with 2 quarts of Mobil DTE 25 oil.•Check oil filter and clean out residue at bottom for the lubrication chart.Replace air filter on control box every 2 years.Mineral cutting oils will damage rubber based components throughout the machine.TroubleshootingThis section is intended for use in determining the solution to a known problem. Solutions given are intended to give the individual servicing the TRANSFER AND UNIT MACHINE a pattern to follow in, first, determining the problem's source and, second, solving the problem.Use common senseMany problems are easily overcome by correctly evaluating the situation. All machine operations are composed of a program, tools, and tooling. You must look at all three before blaming one as the fault area. If a bored hole is chattering because of an overextended boring bar, don't expect the machine to correct the fault.Don't suspect machine accuracy if the vise bends the part. Don't claim hole mis-positioning if you don't first center-drill the hole.Find the problem firstMany mechanics tear into things before they understand the problem, hoping that it will appear as they go. We know this from the fact that more than half of all warranty returned parts are in good working order. If the spindle doesn't turn, remember that the spindle is connected to the gear box, which is connected to the spindle motor, which is driven by the spindle drive, which is connected to the I/O BOARD, which is driven by the MOCON, which is driven by the processor. The moral here is don't replace the spindle drive if the belt is broken. Find the problem first; don't just replace the easiest part to get to.Don tinker with the machineThere are hundreds of parameters, wires, switches, etc., that you can change in this machine. Don't start randomly changing parts and parameters. Remember, there is a good chance that if you change something, you will incorrectly install it or break something else in the process6. Consider for a moment changing the processor's board. First, you have to download all parameters, remove a dozen connectors, replace the board, reconnect and reload, and if you make one mistake or bend one tiny pin it WON'T WORK. You always need to consider the risk of accidentally damaging the machine anytime you work on it. It is cheap insurance to double-check a suspect part before physically changing it. The less work you do on the machine the better.组合机床虽然各种组合机床的功能和应用各不相同,但它们有着共同的优点。

组合机床及其自动生产线外文文献翻译、中英文翻译

组合机床及其自动生产线外文文献翻译、中英文翻译

XX外文翻译专业学生姓名班级学号指导教师外文资料名称CONSTITUTE MACHINE TOOL AND ITSAUTOMATION ASSEMBLY LINE外文资料出处:JOURNAL OF HEFEI UNIVERSITY OF(用外文写)TECHNOLOGY附件: 1.外文资料翻译译文2.外文原文组合机床及其自动生产线摘要:组合机床及其自动生产线是集机电于一体的自动化程度较高的制造技术和成套工艺装备,它的特征是高效、高质、经济实用,因而被广泛用于工程机械、交通、能源、军工、轻工、家电等行业。

本文根据工厂需要,设计一台能高效加工大批量产品的专用组合机床。

文章从工艺方案设计、总体设计、部件设计等几部分进行设计。

关键词:组合机床;自动控制;机床;许多情况下,成型加工出来的工件必须在尺寸和光洁度方面进一步精整,以满足它们的设计技术要求。

为满足精度公差,需要从工件上去掉小量的材料。

通常机床就是用于这种加工的设备。

通过切削工具使工件成型达到所需的尺寸,机床通过其基础构件的功能作用,以控制相互关系,支持、夹紧工具和工件,基本部件列举如下:a) 床身. 这是个主要部件,它为主轴、拖板箱等提供了一个基础和连接中介,在负载作用下,它必须使形变和振动保持最小。

b) 拖板箱和导轨. 机床部件(如拖板箱)的移动,通常是在精确的导轨面约束下靠直线运动来实现。

c) 主轴和轴承. 角位移是围绕一个旋转轴线发生的。

该轴线的位置必须在机床中极端精确的限度内保持恒定,而且是靠精密的主轴和轴承来提供保证。

d) 动力装置. 电机是为机床普遍采用的动力装置,通过对各个电机的合适定位,使皮带和齿轮传动装置减少到最少。

e) 传动连杆机构. 连杆机构是个通用术语,用来代表机械、液压、气动或电动机构,这些机构与确定的角位移和线位移相互关联。

加工工艺主要由两部分组成:a) 粗加工工艺. 粗加工,金属切除率高,因而切削力也较大,但其所要求的精度较低。

文献翻译-组合机床CAD系统开发与研究

文献翻译-组合机床CAD系统开发与研究

外文资料The aggregate machine-tool CAD system development and researchAbstract aggregate machine-tool CAD is in Window 95/98, Wndows under the NT4.0 environment, designs personnel's special-purpose CAD system with VC5.0 and the AutoCAD R14 ADS/ARX technology development face the aggregate machine-tool.This software technological advance, performance reliable, function strong, convenient practical, has provided the modernized design tool for our country aggregate machine-tool profession. Key word: Aggregate machine-tool CAD jig CAD multi-axle-box CAD1 uses the aggregate machine-tool CAD technology imperativeThe aggregate machine-tool is with according to serialized, the standardized design general part and the special purpose machine which composes according to the work piece shape and the processing technological requirement design special-purpose part, belongs to the disposable design, the disposable manufacture piecework product.Therefore, the design quantity is big, the design work is complex.In the current competition intense market economy, the user to the engine bed technical sophistication, the quality reliability as well as the goods supply cycle all requests very high, but guaranteed these many factors the key is the design. In the past that backward manual design method has not been able to satisfy the product design the request, uses the CAD technology, throws off the chart board, has become the current technological revolution the tidal current, imperative.2 aggregate machine-tool CAD the application present situationOverseas aggregate machine-tool CAD technology research starts the comparison early.At the beginning of the 70's, some industry developed country first starts in the multi-axle-box CAD aspect to study. Has entered since in particular for the 90's, along with the computer technology development, the interactive cartography and the databasemanagement system and so on the development and the application, causes the aggregate machine-tool CAD technology day by day practical also the use scope expands unceasingly, the developed country has used the CAD technology generally in the aggregate machine-tool design.At present, to CAD/CAM integrative system development.In recent years, according to us to American several main engine bed factories (BURGMAST, KINGSBURY, companies and so on INGERSOLL LAMB, CINCINNATI, MILACRON, CROSS) the understanding, its CAD technology obtained the universal application. In which most noticeable is INGERSOLL Corporation has 50 interactive CAD workstation composition software and hardware environment, caused it to realize nearly 100% CAD.On the domestic machine tool design portfolio using CAD understanding earlier. The beginning of the 1970s, Dalian Machine Tool Institute portfolio started on the research in this area of work. 1978 state as a combination of mechanical CAD machine industrial projects, and instructed the Shanghai Jiaotong University. Dalian Machine Tool Institute portfolio, a ministry official in charge of the Institute of Automation, Dalian Polytechnic University, Qinghua University, Beijing University of Technology, Shanghai Institute of mechanical and electrical products and other units to participate in the drilling machine CAD combination of research, This raised our portfolio Machine CAD technology in the district. After 10 years of efforts and achieved initial results.However, the combination of machine CAD system is 12-27 in VAX II and Micro VAX II on the development, hardware investment, which is difficult to use. By the time the hardware and software environment for the restrictions, narrow scope of application software, users inconvenient.3 Development portfolio dedicated machine CAD system software CAD technology is the contemporary electronic information technology an important component of , CAD technology to be commercialized as the mostimportant high-tech industries. The supporting software and hardware, on the basis of different industries, different professions secondary development software, developed for the industry, The dedicated professional commercial software can not only make good economic returns, but will make significant social benefits."Ninth Five-Year Plan" period state auto industry as a pillar industry of the national economy, for the industry to provide a combination of technologies and equipment to machine tool industry to develop rapidly. Along with the development of the auto industry, machine designed to enhance portfolio quality, shorten the design cycle has become an extremely urgent task. Combined Machine CAD technology and can shorten the design cycle and improve design quality, enterprises in the sector improve its competitive edge, enterprises will bring about significant economic benefits.Dalian is China's important industrial base, as a combination of Machine Tool Industry Technology and Development Center in Dalian Machine Tool Institute portfolio, industry should play the leading role for the realization of design automation, enhance technological innovation and product competitiveness. promoting our portfolio machine design standards, as soon as possible combination of machine tool industry to provide factory-functional, flexible operation, with a friendly interface, high technological content portfolio Machine CAD software.4 software with the technical basis for the development of microelectronicsTechnology, computer performance has been greatly improved. P II has now dominated the market, P III began listing its CPU performance has been close to the years before the target workstation. Foreign CAD software to the PC Window95/98, Windows NT transplant, such as Pro / Engineer, I-Sui, such as CADDS5. Computer Graphics Accelerator in improving performance,the entity can basically the movement and rotation. PC CAD is a development direction, the corresponding hardware to lower than many workstations. After years of efforts, we use Windows SDK software development technology, Windows environment more dynamic process of technical data exchange (DDE). Database technique (ODBC), Graphics software technology and the development of secondary targets OLE technology (OLE), Development of a generic combination of mechanical CAD and CAD machine integrated CAD system. 5 Combination Machine CAD system softwarePortfolio Machine CAD system software using C + + language, in the Windows environment for the development of the combination of machine design parameters of the graphic information management system. Database systems with C + + language independent preparation of the financial database software and operating system parameters graphic systems into one. formed powerful parametric graphic information management system. Modular Machine CAD system including removable fixture CAD system, Modular Machine Automatic Line program 3D CAD graphics system, the total portfolio Machine CAD system, Portfolio Map Machine CAD systems and machine tool's multi-axle box CAD system.5.1 Combination fixture mechanical CAD system using parametric CAD graphics information management technology and interactive design methods, developed portfolio fixture CAD system, its widespread applicability, practical and promote the use of broad prospects. Combination fixture CAD system, in accordance with its main functions can be divided into four modules : Location Support System CAD system, Clamping CAD system, CAD-oriented systems and devices typical fixture clamping force of the computer-aided analysis and calculation.5.1.1 Location Support System CAD systems for supporting the system by positioning support, Auxiliary support and spacing element composition. Location Support refers to the processing maintain a certain positionworkpiece components; Auxiliary support is only for the processing of the rigidity and stability of an activity-supporting components. Building support plate, supporting block, ancillary support, fixed-pin, telescopic pin parametric graphics library and database performance through inquiries Location Support System database, Positioning support amending parameters graphic parameters, the use of interactive design method, positioning support CAD system.5.1.2 clamping CAD system clamping usually by clamping force, Transmission among agencies and clamping element is composed of three parts. Part of clamping force for the purpose of generating power source, and will pass on the middle forces drive; Middle drive as a Force that is, to change the direction of force and size, which can produce self-locking, to ensure that the processing power source or disappeared, the role of the workpiece in the cutting force despite reliable clamping; Clamping elements to bear by the middle of the drive transmission clamping force, and direct contact with the workpiece clamping action and implementation. Clamping established tank, clamping components, direct clamping bodies, self-locking clamping mechanism parameters of the graphics and performance database, Clamping inquiries by the Performance database changes clamping mechanism parameters graphic parameters, the use of interactive design, Clamping achieve CAD.5.1.3 device-oriented CAD system installation guide role is to ensure that the tool and workpiece and the tool of inter - The exact location, raising tool system supports rigid. Correct selection, design-oriented devices, assurance of the accuracy and processing of reliable machine plays an important role in the work. Establish a fixed-oriented packages, "roll-forward" - oriented devices, , "roll-forward" device parameters oriented graphics library and database performance through inquiry-oriented device performance database, revised guidance deviceparameters graphic parameters, the use of interactive design method, CAD-oriented devices.5.1.4 typical fixture clamping force computer-aided analysis and calculation of the machine to ensure normal reliable working conditions, the clamping force the smaller the better. If blindly increasing the clamping force, which will result in the following consequences : increased fixture drive size; To improve clamping force and linked to the fixture so rigid fixture is too big; increase the clamping of the workpiece in the deformation and effects processing accuracy. Therefore, the right to determine clamping force is important. Typical fixture clamping force computer-aided analysis and calculation : the clamping screw clamping force analysis and calculation Wedge Clamp the clamping force analysis and calculation, the eccentric clamping clamping force analysis and calculation Clamping other agencies clamping force analysis and calculation.Combination fixture interactive CAD system design methods, the use of flexible, widespread applicability, meet all the technical requirements. Fixture system through the establishment of various components of the graphics library, parts of the parameters of graphics library, Parameter graphics information management system, interactive mapping portfolio fixture.5.2 Combination Machine automatic alignment options CAD 3D graphics system, the total portfolio Machine CAD system, Portfolio Map Machine CAD System 5.2.1 portfolio automatic alignment machine 3D graphics CAD System The CAD system can automatically determine portfolio machine line, drawing portfolio machine automatically 3D graphics, Universal Machine portfolio management structure and performance parts database. This three part by the three independent process to achieve, Using Windows environment more dynamic process of technical data exchange (DDE).achieving three independent process dynamic data exchange, completed the following types of machine configuration combinations Machine Design : more horizontal axle box processing, multi-axle box vertical machining, multi-axle box tilt-processing, the first Horizontal Boring processing, Boring first vertical machining, boring head tilted machining, drilling the first horizontal machining, drilling the first vertical machining, Drilling of the first tilt-processing, tapping the first horizontal machining, the first vertical machining tapping, tapping the first tilt-processing, Milling of the first horizontal machining, milling head vertical machining, milling machining head tilt.5.2.2 total portfolio Machine CAD system map total portfolio machine with automatic computer-aided design and human-computer design interactive design methods. Automatic design of the structure from the program to map out the final completion of a one-time, interactive design is user participation, choice of interactive components, models and determine a method of positioning. Combination machine is used by the serialization, standardized generic components and by the shape of the workpiece and the processing requirements of the dedicated parts of dedicated machine, thus Machine features that determine its computer-aided design methods. Its versatility to be completed by the computer, and a dedicated help from computer users to achieve, that is, to avoid the automatic design of the applicability of poor, narrow face design limitations. Total portfolio machine parameters graphic information management system in Windows development environment of a human-machine interactive located Total system, which integrates the Windows SDK technology, Database technology and graphics software secondary development of the ADS technology, engineering design provides a very convenient, Efficient design of the machine tool map. The system is suitable for drilling, expansion joints, and tasty, boring, milling, etc. Tapping Machine processing, machineconfiguration form of single-position reclining, Li, tilt and composite portfolio machine, mobile work desktop machine combinations, combinations Rotary desktop machine.5.2.3 Combination Machine CAD system portfolio Map Machine Tool schematic design and adjustment team Machine for the important work of one of the drawings, is to identify combinations machine linked size, composition Machine Drawing the basis for the total. To accomplish drilling and reaming, boring, Reaming, Tapping and milling processes. Portfolio machining complex matrix. According to the development of the last 10 years combined experience in the CAD machine, the automated design, only a few input parameters will be completed portfolio Machining Map software, but the application of the matrix of small, have limitations. Combination Machine Map parameters graphic information management system software, interactive design, the use of flexible, widespread applicability, meet all the technical requirements. Combination Machine Map parameters graphic information management system from the main spindle and then leverage, the guidance sets, Tool database operating systems, the operating system parameters graphics, Interactive mapping system to determine composition and cutting machine usage module four components. Axlebox over5.3 CAD system more Axlebox CAD systemCAD system more Axlebox CAD system is a specialized application software can be used for drilling and expansion. hinges, milling, drilling and thread offensive attack composite portfolio Machine Tool box design. System for the raw data from the combination of machine design, a plan that is three cards (workpiece map, processing matrix, Machine size map and the associated productivity calculation card), such as spindle coordinates, speed, and on this basis, interactive system to automatically or engaging in various types of work.5.3.1 Multi-axle box drive system design combinationMulti-axle box drive system design combination of multi-axle box machine drive system is a multi-axis, multi-gear, Multi-time complex transmission system. We have adopted a two-axis, three-axis drive, the basic methodology Transmission is the formation of the two basic methods of connecting continuously portfolio called. The complete transmission module coordinates, various geometric interference checking, transmission components strength check. To achieve optimum transmission purposes (minimum number of drive shaft, gear minimal number), using the following design, as illustrated in figure 1, as shown in Figure 2.Figure 1 2 shaft gear design Figure 2 triaxial Gear Design Optimization Optimization0 -- gear shaft has 0 -- have gear shaft1 -- the new design Gear 1 -- Design new gear6 Portfolio Machine CAD software operating environmentSoftware operating environment for the hardware : CPU 486 more, Memory 16 M over all software required disk space 350 M above. Software running the software environment : Windows 95/98, Windows NT 4.0, AutoCAD R14.0 7 Portfolio Machine CAD software has been approved by experts and has a market push 1998The combination of machine CAD software approved by experts. The software technology advanced, reliable performance, strong function, convenientand practical. China machine tool industry portfolio provides a modern design tools, the technology level of a leading position at home. The software has been designed in modular machine tool manufacturing plant and the professional engaged in internal-combustion engines, Engine production of large and medium-sized enterprises in the design and manufacture of modular machine tool sector wider application. Constant portfolio such as Jiangsu Machine Co., the second machine factory in Baoding, Diesel Co., Shandong Huayuan Levin move Engine Company Limited. Enterprises in the transformation of traditional industries, through the use of CAD technology, the electronic play of the power of information technology, improve the design level, and enhance the company's ability to create and product competitiveness, achieved good economic and social benefits.中文译文组合机床CAD系统开发与研究1 采用组合机床CAD技术势在必行组合机床是用按系列化、标准化设计的通用部件和按工件的形状及加工工艺要求设计的专用部件组成的专用机床,属于一次性设计、一次性制造的单件生产产品。

外文翻译--- 多功能组合机床时代

外文翻译--- 多功能组合机床时代

外文翻译专业机械设计制造及其自动化学生姓名班级学号指导教师专业系主任外文资料名称:Multi-purpose aggregatemachine-tool time外文资料出处:U.S.A. Michigan university附件:1.外文资料翻译译文2.外文原文多功能组合机床时代蒂莫西雅各布斯,丹尼斯阿斯纳斯,卓然飞利浦美国密西根大学王雷译摘要:组合机床加工中心可使加工制造业适应不断变化的需求,有效利用劳动力资源,并在全球范围的市场上更具竞争力。

关键字:组合机床对于多功能组合机床,工业领域内有很多称呼来形容它,如“多任务处理装置”、“多功能机床”、“多程序生产系统”等,它确实可称为加工领域的新星,可降低成本,简化配置,并一直保持在美国本土生产。

过去只有使用多机操作才能完成的任务,现在可以集中到一台机床上加工完成。

由于市场需求的不断变化,产品的生命周期在不断缩短,今天的市场更加强烈需求多任务处理装置概念。

在整个生产环境中推行精益管理时,没有比把零件加工集中到一台机器上完成更精一些传统的制造业厂商认为多功能组合机床过于复杂,很难找到合适的操作人员也就不足为奇了。

在一些劳动力市场,要找到能够对多轴组合机床加工中心进行手工编程的人是不太可能的事。

但资料显示,解决方案可有两个,一个是现代多功能组合机床的直觉式技术,另一个是针对金属加工基本原理及在生产车间现场有关新机床使用中难题创新解决方面的培训。

直觉式技术控制设备采用“带走热量”式设计,有床身、钢制直线滚动导轨、钢制转塔刀架、设备上使用的不同材料,所有这些组合到一起建造成一台机床。

这些都与导热系数、体积膨胀相关。

所有不同尺寸的东西都会以不同的速度生长。

由于这个原因,需要制造热友好机床,以便知道发热的薄弱点在哪里,可以通过合理的机床设计来补偿。

元件是全程运动。

机床滑动产生摩擦并转化为热。

切削加工产生的热屑掉到不同地方,在整个过程中冷却液会混合在其中。

在切削刀具上会持续出现很多不同的温度区域,所以也会有很多东西对热稳定性产生影响。

组合机床外文翻译1500字

组合机床外文翻译1500字

组合机床外文翻译1500字篇一:组合机床毕业设计外文翻译The Aggregate Machine-toolThe Aggregate Machine-tool is based on the workpiece needs, based on a large number of common components, combined with a semi-automatic or automatic machine with a small number of dedicated special components and process according to the workpiece shape and design of special parts and fixtures, composed. Combination machine is generally a combination of the base, slide, fixture, power boxes, multi-axle, tools, etc. From.Combination machine has the following advantages: (1) is mainly used for prism parts and other miscellaneous pieces of perforated surface processing. (2) high productivity. Because the process of concentration, can be multi-faceted, multi-site, multi-axis, multi-tool simultaneous machining. (3) precision and stability. Because the process is fixed, the choice of a mature generic parts, precision fixtures and automatic working cycle to ensure consistent processing accuracy. (4) the development cycle is short, easy to design, manufacture and maintenance, and low cost. Because GM, serialization, high degree of standardization, common parts can be pre-manufactured or mass organizations outsourcing. (5) a high degree of automation, low labor intensity. (6) flexible configuration. Because the structure is a cross-piece, combination. In accordance with the workpiece or process requirements, with plenty of common parts and a few special components consisting of various types of flexible combination of machine tools and automatic lines; tools to facilitate modification: the product or process changes, the general also common components can be reused.Combination of box-type drilling generally used for processing or special shape parts. During machining, the workpiece is generally not rotate, the rotational motion of the tool relative to the workpiece andtool feed movement to achieve drilling, reaming, countersinking, reaming, boring and other processing. Some combination of turning head clamp the workpiece using the machine to make the rotation, the tool for the feed motion, but also on some of the rotating parts (such as the flywheel, the automobile axle shaft, etc.) of cylindrical and face processing.Generally use a combination of multi-axis machine tools, multi-tool, multi-process, multi-faceted or multi-station machining methods simultaneously, productivity increased many times more than generic tools. Since the common components have been standardized and serialized, so can be flexibly configured according to need, you can shorten the design and manufacturing cycle. Multi-axle combination is the core components of general machine tools. It is the choice of generic parts, is designed according to special requirements, in combination machine design process, is one component of a larger workload. It is based on the number and location of the machining process diagram and schematic design combination machine workpiece determined by the hole, cutting the amount of power transmission components and the design of each spindle spindle type movement. Multi-axle power from a common power box, together with the power box installed on the feed slide, to be completed by drilling, reaming and other machining processes. The parts to be processed according to the size of multi-axle box combination machine tool design, based on an original drawing multi-axle diagram, determine the range of design data,the above design, implementation, completion of a two-sided 24-hole machining, achieve better the design requirements.In order to adapt to the development of CNC machine tools in combination , appeared composed of CNC machine tools CNC machining modules. Modular is the result of a combination of machine tool numerical control machine tool combination brings, but also the basis of a combination ofCNC machine tools , CNC machining eiched the universal modular combination of components of the machine, it will cause a fundamental piece for machine tool type changes . Over the past decade , the combination of machine tools and automatic line has made great strides in efficiency, productivity , flexibility and the use of concurrent engineering to develop a more rational, more savings programs. With the development of digital technology, electronic technology , the combination of machine mechanical structure and control system has undergone great changes. With a combination of the following development tools : 1 NC . Combination of CNC machine tools emerge , not only changed in the past by the relay circuit consisting of a combination of machine tool control systems , but also make head or even a combination of the mechanical structure of the machine components of general criteria huge change occurred . 2 modular . NC modular greatly eiched the common combination of components of the machine, it will cause a fundamental change occurred for machine tool parts , according to the principles of modular design , based on the functional analysis division of the combination of multi- axle box for each machine level modules. 3 speed. As the high-speed processing can reduce the surface roughness and cutting force components , reducing the cutting temperature , improve productivity, so the speed of the machine is just beginning research , especially the main movement of CNC machine tools and feed velocity has reached a very high speed . Conform to the trend of high-speed machine tools , machine tool ‘s speed will be higher. 4 , precision . Because the CNC machine to achieve , so more and more high machining accuracy . 5, full protection technology . Now the machine is fully enclosed features a large , almost all mechanical housings are fully closed . Fully enclosed protection, not only to make the machine more attractive appearance and its production line , but also improves the safety, reliability and ease of maintenance . Combination machine withboth the advantages of low cost and high efficiency in large volume production has been widely used, and can consist of automated production lines. .组合机床组合机床是根据工件加工需要,以大量通用部件为基础,配之以少量的专用部件和按工件形状和加工工艺设计的专用部件和夹具,组成的半自动或自动的专用机床。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Keywords Automated guided vehicle · Lot streaming · Scheduling · Sequencing · Transfer batches
1 Introduction
Most classical shop scheduling models disregard the fact that products are often produced in lots, each lot (process batch) consisting of identical parts (items) to be produced. The size of a job lot (i.e., the number of items it consists of) typically ranges from a few items to several hundred. In any case, job lots are assumed to be indivisible single entities, although an entire job lot consists of many identical items. That is, partial transfer of completed items in a lot between machines on the processing routing of the job lot is impossible. But it is quite unreasonable to wait for the
2 Problem description
and Alfredson [6] examined two- and three-machine flowshops assuming there is no limit on the number of transfer batches so that it is optimal to use unit sized transfer batches. They showed that the two-machine problem with unit sized transfer batches is easily solved by a slight modification of Johnson’s well known algorithm, and also proved that pre-emption of job lots is not necessary in the optimal solution. That is, a job is split into unit sized transfer batches that are processed consecutively (not intermingled with the transfer batches of other job lots). Cetinkaya and Kayaligil [7] and Baker [8] extended this study to obtain a unified solution procedure, which handles separable and inseparable setups, respectively. Cetinkaya [9] and Vickson [10] independently showed that the scheduling problem with either equal or unequal transfer batches decomposes into an easily identifiable sequence of single job problems, even with setup times and transfer times. Sriskandarajah and Wagneur [11] studied the lot streaming and scheduling multiple products in two-machine, no-wait flowshops. Kim et al. [12] proposed a scheduling rule for a two-stage flowshop with identical parallel machines at each stage. On the other hand, studies on job lot scheduling with transfer batches for different shop structures are very limited. Examples of these studies include Dauzere-Peres and Lasserre [13] and Sen and Benli [14], which examine the job shops and open shops, respectively.
On the other hand, flowshop scheduling problems with transfer batches have been examined by various researchers. Vickson
179
Fig. 1. Processing a without transfer batches and b with transfer batches
There are many ways to split a lot: transfer batches may be equal or unequal, with the number of splits ranging from one to the number of units in the job lot. For instance, consider a job lot consisting of 100 identical items to be processed in a three-stage manufacturing environment in which the flow of its operations is unidirectional from stage 1 through stage 3. Assume that the unit processing time at stages 1, 2, and 3 are 1, 3, 2 min, respectively. If we do not allow transfer batches, the throughput time is (100)(1+3+2) = 600 min (see Fig. 1a). However, if we create two equal sized transfer batches through all stages, the throughput time decreases to 450 min, a reduction of 25% (see Fig. 1b). It is clear that the throughput time decreases as the number of transfer batches increases.
entire lot to finish its processing on the current machine, while downstream machines may be idle. It should be obvious that processing the entire lot as a single object can lead to large workin-process inventories between the machines, and to an increase in the maximum completion time (makespan), which is the total elapsed time to complete the processing of all job lots. However, the splitting of an entire lot into transfer batches to be moved to downstream machines permits the overlapping of different operations on the same product while work proceeds, to complete the lot on the upstream machine.
F.C. Çetinkaya (u) Department of Industrial Engineering, Eastern Mediterranean University, Gazimagusa-T.R.N.C., Mersin Turkey E-mail: ferda.cetinkaya@.tr Tel.: +90-392-6301052 Fax: +90-392-3654029
Int J Adv Manuf Technol (2006) 29: 178–183 DOI 10.1007/s00170-004-2493-9
ORIGINAL ARTICLE
Ferda C. C¸ etinkaya
Unit sized transfer batch scheduling in an automated two-machine flow-line cell with one transport agent
Flowshop problems have been studied extensively and reported in the literature without explicitly considering transfer batches. Johnson [1], in his pioneering work, proposed a polynomial time algorithm for determining the optimal makespan when several jobs are processed on a two-machine (two-stage) flowshop with unlimited buffer. With three or more machines, the problem has been proven to be NP-hard (Garey et al. [2]). Besides the extension of this problem to the m-stage flowshop problem, optimal solutions to some variations of the basic two-stage problem have been suggested. Mitten [3] considered arbitrary time lags, and optimal scheduling with setup times separated from processing was developed by Yoshida and Hitomi [4]. Separation of the setup, processing and removal times for each job on each machine was considereceived: 26 July 2004 / Accepted: 22 November 2004 / Published online: 16 November 2005 © Springer-Verlag London Limited 2005
相关文档
最新文档