函数的表示方法(1)

合集下载

函数的表示方法_1

函数的表示方法_1

0
1
4
2
3
12
4
5
20
映射f:A→B,可理解为以下4点:
1、A中每个元素在B中必有唯一的象 2、对A中不同的元素,在B中可以有相同的象 3、允许B中元素没有原象 4、A中元素与B中元素的对应关系,可以 是:一对一,多对一,但不能一对多
例7 以下给出的对应是不是从集合A到B的映射?
(1)集合A={P|P是数轴上的点},集合B=R,对应关 系f:数轴上的点与它所代表的实数对应;
一般地,我们有:
设A、B是两个非空的数集,如果按照某种 确定的对应关系f,使对于集合A中的任意一个数 x,在集合B中都有唯一确定的数y和它对应,那 么称f:A→B为从集合A到集合B的一个函数
(function),记作:y=f(x), x A
映射
设A,B是两个非空的集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到集 合B的一个映射。
(2)集合A={x|x是新华中学的班级},集合B={x|x 是新华中学的学生},对应关系f:每一个班级都对 应班里的学生;
课后作业: 练习本B
由此可知,映射是函数的推广,函 数是一种特殊的映射。
A 求 正弦 B
1
30 0
2
45 02 2ຫໍສະໝຸດ 60 032
90 0
1
A 求 平方 B
3
9
-3
2
4
-2
1
1
-1
A 开 平方 B
3
9
-3
4
2
-2
1
1 -1
A 乘 以 2B

《函数的表示法》(第1课时)教学设计

《函数的表示法》(第1课时)教学设计

函数的表示法(第1课时)教学设计一、内容和内容解析1.内容函数的表示法.2.内容解析在“对应关系”说的基础上建立了函数概念之后,随即而来的任务就是研究函数本身.而函数的呈现形式就是“函数的表示”问题.学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所必须的,而且是加深理解函数概念,以及向学生渗透数形结合方法的过程.函数的表示法是在已有函数概念的基础上进行学习的,是对函数知识的深化.这部分内容也是函数内容的重要基础.本节的主要内容是在初中已经接触过函数的三种表示法——解析法、列表法和图象法的基础上,明确三种表示法各自的优点及适用对象;通过函数y=|x|引出分段函数的概念,并通过具体实例(例6)熟悉分段函数概念,掌握研究分段函数的一般思想和方法.基于以上分析,确定本节课的教学重点:使学生面对数学问题时,会根据不同的需要选择恰当的方法(解析法、列表法、图象法)表示函数;掌握分段函数概念.二、目标和目标解析1.目标(1)了解解析法、列表法、图象法各自的优点及适用对象;使学生面对数学问题时,会根据不同的需要选择恰当的方法表示函数.(2)了解分段函数的概念,明确分段函数是一个函数,掌握研究分段函数的一般思想和方法.2.目标解析达成上述目标的标志是:(1)学生通过教科书第67页例4,以及之前的学习经验,能自主总结出解析法、列表法、图象法各自的特点;能举出具体实例说明三种表示法的适用情况.(2)学生能理解绝对值函数向分段函数的转化过程,通过具体实例体会分段函数是一个函数而不是几个函数.三、教学问题诊断分析学生在初中学习函数概念时,接触过函数的三种表示法:解析法、列表法、图象法,但是对其并没有深入研究.尤其是在高中阶段“对应关系”说意义下重新建立了函数概念的基础上,函数的三种表示法又有怎样的特点呢?这就是本节课第一个教学问题.针对这一问题,教科书引入了一个实际问题,其本质为离散的一次函数模型,此问题三种表示法均适用,进而可直观地比较出三种表示法各自的特点.而后可根据不同表示法各自的适用范围,选择恰当的方法表示函数.三种表示法各自的特点清楚了,那么它们在研究具体函数问题时,是如何起到相应的作用的呢?于是教科书中举出了绝对值函数的例子(例5),从而引出了高中阶段非常重要的、实际问题中广泛应用的一类函数——分段函数.这是本节课第二个教学问题.通过例5、例6的学习,可让学生体会解析法、图象法在处理连续函数问题时的威力,同时也体现出研究函数的一个非常重要思想——数形结合.正所谓“数缺形时少直观,形少数时难入微”,数形结合研究函数是贯穿整个高中的思想方法.四、教学支持条件分析在研究绝对值函数(分段函数,例5)和最大值函数(例6)的过程中,可借助图形计算器、几何画板、Geogebra等技术工具画出函数图象,观察得出结论,体现信息技术在数学教学和学习过程中的辅助探究与检验作用.五、教学过程设计引导语:我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法.解析法,就是用数学表达式表示两个变量之间的对应关系,如3.1.1的问题1,2.列表法,就是列出表格来表示两个变量之间的对应关系,如3.1.1的问题4.图象法,就是用图象表示两个变量之间的对应关系,如3.1.1的问题3.这三种方法是常用的函数表示法.(一)函数的表示法问题1:某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.(1)你能用函数的三种表示法分别表示函数y=f(x)吗?(2)比较函数的三种表示法,它们各自的特点是什么?(3)所有函数都能用解析法表示吗?列表法与图象法呢?请你举出实例加以说明.师生活动:教师给出问题(1)后,让每位学生自己写出函数表达式、列表格、画图象,注意再次强调“研究函数,先看定义域”.之后让同桌互相核对结果,尤其注意函数图象是否为五个离散的点.然后出示问题(2),小组讨论,总结归纳三种表示法各自的优点,最后与教师一起总结出结论(可用PPT展示):出示问题(3),找学生代表回答,例如可回答:不是,3.1.1的问题3、问题4就不能用解析法表示;3.1.1的问题1不能用列表法表示;3.1.1的问题4不能用图象法表示.答案均可从教科书中找到,如果学生理解了3.1.1的知识,回答此问题并不困难.设计意图:问题(1)是让学生回忆并熟悉三种表示法的具体呈现过程,并再次强调定义域的决定作用;问题(2)是为了让学生总结归纳三种表示法各自的优点,明确特征,方可合理运用;问题(3)是突出三种方法各自的局限性,从而在处理实际问题挑选方法时合理回避不需要的表示法.问题2:(教科书第69页练习1)如图,把直截面半径为25 cm的圆形木头锯成矩形木料,如果矩形的一边长为x(单位:cm),面积为y(单位:cm2),你能把y表示为x的函数吗?师生活动:学生阅读题目后,自主从三种表示法中选择恰当可行的方法解决此问题. 之后教师可利用多媒体手段将答案进行呈现,与其他同学一起点评结果.设计意图:考察学生对三种表示法的特点的理解与把握,以及在实际问题中选择恰当的表示法解决问题的能力.(二)分段函数问题3:(1)你了解函数y=|x|吗?(2)你会画函数y=|x|的图象吗?师生活动:教师出示问题(1),先让学生独立思考,之后可引导学生对不熟悉的绝对值函数y=|x|进行变形,去掉绝对值,转化成熟悉的一次函数,然后规范写法,写成分段函数形式.之后出示问题(2),学生即可很自然地画出相应图象.最后教师引入分段函数概念,强调分段函数是一个函数,而不是几个函数,并介绍其普遍性与应用价值;并总结思路:绝对值函数可转化为分段函数进行研究;对于分段函数的图象,只需分别画出每段的函数图象,并注意端点的开闭即可.教科书中对分段函数给出的是描述性定义,学生只需能判断什么样的函数是分段函数即可,不必纠结于分段函数的确切定义.追问:(教科书第69页练习2)有了问题3的基础,你会画函数y=|x-2|的图象吗?教师让学生自主研究,然后利用多媒体手段将典型作答图象投到屏幕上,叫同学回答解题过程,寻找问题所在,纠正错误,落实正确解题思路.对于中上等水平的班级,可根据时间情况,适当借助图形计算器、几何画板、Geogebra等技术工具,设计参数a,制作动态演示课件,介绍函数y=|x-a|的图象变化情况.设计意图:问题(1)是让学生从解析式入手,转化成熟悉的函数,为问题(2)解决画函数图象问题做铺垫,体现了转化与化归思想;问题(2)则是考查学生对图象法表示函数的掌握程度.追问是对问题3举一反三,考查学生的理解、掌握程度.师生活动:给学生充分画图的时间,有初中的基础,学生基本都可画出图3.1-4,然后对最大值函数M(x)做适当解读:当x每取一个值时,f(x)与g (x)各有唯一一个函数值与之对应,而M(x)对应的则是两个函数值中的较大者,由函数定义可知,M(x)是x的函数.当最大值函数解释清楚后,学生可很自然地对图3.1-4进行处理,得到图3.1-5所示的函数M(x)的图象;利用图象和解方程知识,学生一般可顺利求出M(x)的解析式.追问:你能用其他方法求出M(x)的解析式吗?先小组讨论,然后找有想法的同学分享思路,最终达成共识.设计意图:问题4是训练学生同时研究两个函数的能力,以及对新概念的分析理解能力,感受分段函数的另一种构造方式及其图象和解析式的求法,加深对分段函数的理解与运用.追问是引导学生从不同的角度分析问题,解决问题,进一步加深对分段函数的理解.问题5:(教科书第69页练习3)给定函数f(x)=-x+1, g(x)=(x-a)2,x ∈R(1)你能画出函数f(x),g(x)的图象吗?师生活动:学生自主完成练习,然后找代表分享思路与结果.有了问题4的铺垫,学生对最小值函数的理解应比较到位,解决此问题会相对顺利.设计意图:创设熟悉的情境,提出类似的问题,对学生的知识与解题技能进行再巩固.(三)课堂小结、布置作业教师引导学生回顾本节课的学习内容,并引导学生回答下列问题:(1)函数的三种表示法分别是什么?其各自的特点是什么?(2)什么样的函数称为分段函数?分段函数是几个函数还是一个函数?(3)如何画分段函数的图象?师生活动:教师出示问题后,先由学生思考后再进行全班交流,最后教师再进行总结。

函数的表示方法(1)教案及说课稿

函数的表示方法(1)教案及说课稿

人教B版数学必修1第二章函数2.1.2 函数的表示方法(第1课时)教案及说课稿新宾县朝鲜族中学李锦玉2019年10月11日2.1.2 函数的表示方法(第1课时)教案教学目标:知识与技能掌握函数的三种表示方法:列表法、图象法、解析法,体会表示方法的特点。

过程与方法能根据实际情景选择恰当的方法表示一个函数以获取有用的信息,培养学生灵活运用知识的能力;初步体会用函数知识解决实际问题的方法。

情感态度与价值观体会数形结合思想在理解函数概念中的重要作用,在图形的变化中感受数学的直观性。

重点函数的三种表示方法的简单运用。

难点根据不同的需要选择恰当的表示方法表示一个函数。

教学准备教学环节问题预设师生互动设计意图引入课题课前作业:某种笔记本的单价是2元,买X 个笔记本需要y元。

你能用几种方法表示这个函数?想一想:每个函数都可以有列表法、图象法、解析法三种形教师:出示课前作业题,展示学生作业。

师生:共同检查评议。

教师:提示解题规律学生举例说明在学生原有认知的基础上,借助“现实生活中的实例”为学习函数表示法作铺垫,注重知识之间的联系,调动2.1.2 函数的表示方法(第1课时)说课稿根据本节教材的特点和教学内容的结构特征,依据学生的认知规律,结合学生的实际水平,制定本节课的教学设计说明如下:一、说教材《函数的表示方法》是高中新教材人教B版必修1第二章第一节第二部分的内容。

学生在初中已经接触过较简单函数的一些不同表示方法,在高中阶段继函数的概念、定义域、值域之后学习函数的表示方法,这部分属于函数三要素之一,即对应关系的表达方式。

学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的,同时,基于高中阶段所接触的许多函数均可用几种不同的方法表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。

二、说学情本人所教的高一学生(16人)课堂纪律较好,但数学基础不够扎实,思维不够活跃,逻辑推理和分析概括的能力较弱。

函数的表示方法教案 苏教版必修1

函数的表示方法教案 苏教版必修1

函数的表示方法(1)教学目标:1.进一步理解函数的概念,了解函数表示的多样性,能熟练掌握函数的三种不同的表示方法;2.在理解掌握函数的三种表示方法基础上,了解函数不同表示法的优缺点,针对具体问题能合理地选择表示方法;3.通过教学,培养学生重要的数学思想方法——分类思想方法.教学重点:函数的表示. 教学难点:针对具体问题合理选择表示方法.教学过程:一、问题情境 1. 情境.下表的对应关系能否表示一个函数:2.问题.如何表示一个函数呢? 二、学生活动1.阅读课本掌握函数的三种常用表示方法; 2.比较三种表示法之间的优缺点. 3.完成练习 三、数学建构 1.函数的表示方法: 2.三种不同方法的优缺点: 列表法—用列表来表示两个变量之间函数关系的方法 解析法—用等式来表示两个变量之间函数关系的方法 图象法—用图象来表示两个变量之间函数关系的方法3.三种不同方法的相互转化:能用解析式表示的,一般都能列出符合条件的表、画出符合条件的图,反之亦然;列表法也能通过图形来表示.四、数学运用(一)例题例1 购买某种饮料x听,所需钱数为y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数,并指出该函数的值域.跟踪练习:某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,则销售量就减少10个.(1)列表:(2)图象:(3)解析式:将条件变换成:“某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出110个”例2 如图,是一个二次函数的图象的一部分,试根据图象中的有关数据,求出函数f(x)的解析式及其定义域.(二)练习:1.1 nmile(海里)约为1854m,根据这一关系,写出米数y关于海里数x的函数解析式.2.用长为30cm的铁丝围成矩形,试将矩形的面积S(cm2)表示为矩形一边长x(cm)的函数,并画出函数的图象.3.已知f(x)是一次函数,且图象经过(1,0)和(-2,3)两点,求f(x)的解析式.4.已知f(x)是一次函数,且f(f(x))=9x-4,求f(x)的解析式.五、回顾小结1.函数表示的多样性;2.函数不同表示方法之间的联系性;3.待定系数法求函数的解析式.六、作业课堂作业:课本35页习题1,4,5.。

1.2.2 函数的表示法 第一课时 课件(人教A版必修1)

1.2.2 函数的表示法 第一课时 课件(人教A版必修1)
【例4】 已知f(x2+2)=x4+4x2,求f(x)的解析式. 错解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 设t=x2+2,则f(t)=t2-4,∴f(x)=x2-4. 错因分析:本题错解的原因是忽略了函数f(x)的定 义域.上面的解法,似乎是无懈可击,然而从其结 论,即f(x)=x2-4来看,并未注明f(x)的定义域,那么 按一般理解,就应认为其定义域是全体实数.但是f(x) =x2-4的定义域不是全体实数.
图象法
课前自主学习
课堂讲练互动
课后智能提升
典例剖析
题型一 函数的表示法
【例 1】 已知完成某项任务的时间 t 与参加完成 b 此项任务的人数 x 之间适合关系式 t=ax+ ,当 x= x 2 时,t=100;当 x=14 时,t=28,且参加此项任务 的人数不能超过 20 人.
课前自主学习
课堂讲练互动
1 1 解析:令 =t,则 x= ,且 t≠0, x t 1 t ∴f(t)= = (t+1≠0), 1 t+1 1+ t x ∴f(x)= (x≠0 且 x≠-1). x+1
x 答案: (x≠0 且 x≠-1) x+1
课前自主学习
课堂讲练互动
课后智能提升
4.如图,函数 f(x)的图象是曲 线 OAB,其中点 O,A,B 的坐标 1 分别为(0,0),(1,2),(3,1),则 f f3 的值等于________.
课前自主学习
课堂讲练互动
课后智能提升
正解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 令t=x2+2(t≥2),则f(t)=t2-4(t≥2), ∴f(x)=x2-4(x≥2). 纠错心得:采用换元法求函数的解析式时,一 定要注意换元后的自变量的取值范围.如本题中令t =x2+2后,则t≥2.

苏教版数学高一必修1学案 2.1.2函数的表示方法

苏教版数学高一必修1学案 2.1.2函数的表示方法

2.1.2函数的表示方法1.在实际情境中,会根据不同的要求选择恰当的方法表示函数.2.理解同一函数可以用不同的方法表示.1.函数的表示方法(1)列表法:用列表来表示两个变量之间函数关系的方法.(2)解析法:用等式来表示两个变量之间函数关系的方法,这个等式通常叫做函数的解析表达式,简称解析式.(3)图象法:用图象来表示两个变量之间函数关系的方法.1.列表法表示函数的优点在于不需要计算就可以直接看出与自变量的值相对应的函数值.这种方法常应用到实际生产和生活中.2.图象法表示函数的优点是通过图象可以直接观察出函数的变化趋势.气象台应用自动记录仪器描绘温度随时间变化的曲线,工厂的生产图象及股市走向图等,就是用图象法表示函数关系的.3.用解析法表示函数关系的优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量所对应的函数值.【做一做1-1】客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了0.5 h,然后以80km/h的速度匀速行驶1 h到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间t之间关系的图象中,正确的是__________.答案:③【做一做1-2】某种杯子每只0.5元,买x只,所需钱数为y元,分别用列表法、图象法、解析法将y表示成x(x∈{1,2,3,4})的函数.解:(1)列表法:(2)图象法(如下图).(3)解析法:y=0.5x,x∈{1,2,3,4}.2.分段函数在定义域内不同部分上,有不同的解析表达式.像这样的函数通常叫做分段函数.分段函数是一个函数而不是几个函数.生活中有很多可以用分段函数描述实际问题的模型,如出租车的计费、个人所得税纳税额等.分段函数的图象由几个不同部分组成,作分段函数图象时,应根据不同定义域上的不同解析式分别作出.分段函数的定义域应为各段上自变量取值的并集,如函数y =⎩⎪⎨⎪⎧1x ,0<x <1,x ,x ≥1的定义域为{x |x >0}.分段函数定义域是各段自变量取值集合的并集,值域是各段函数值集合的并集,在作图时,要特别注意每段端点的虚实.【做一做2】在实际问题中,常常使用表格,有些表格描述了两个变量的函数关系,比如,国内跨省市之间邮寄信函,每封信函的质量和对应邮资如下表:解:图象如图. 解析式为:0.80,020,1.60,2040,2.40,4060,3.20,6080,4.00,80100.m m M m m m <≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪<≤⎪⎩1.如何求函数解析式?剖析:对于基本初等函数,通过待定系数法求之,即利用方程思想.对于实际应用问题,通常是研究自变量、函数与其他量之间的等量关系,从而将函数用自变量和其他量之间的关系表示出来,但不要忘记确定自变量的取值范围.如已知等腰三角形的周长为12,则底边长x 与腰长y 之间的函数关系是y =6-12x ,其中x ∈(0,6).2.如何理解分段函数?剖析:(1)分段函数的表达式是分段表示的,即函数与自变量的关系不是只满足一个式子,而是在不同范围内有不同的对应法则,这样的函数关系是分段函数.(2)分段函数的定义域应为各段上自变量取值的并集,这一点与函数y =x -1+1+x 的定义域的求法不相同.(3)作分段函数的图象时,特别注意端点处点的虚实,如函数y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0的图象为(4)分段函数的表示法是解析法的一种形式.函数y =⎩⎨⎧22-6x ,0<x <11,-44,x ≥11不能写成y =22-6x,0<x <11或y =-44,x ≥11.分段函数的表达式因其特点可以分成两个或两个以上的不同表达式,所以其图象也是由几部分组成的,可以是由光滑的曲线段组成,也可以是孤立的点或几段线段组成;求分段函数的函数值的关键是“分段归类”,即自变量的取值属于哪一区间,就用哪一区间上的解析式.题型一 求函数解析式【例1】(1)已知函数f (x +1)=x 2-3x +2,求f (x ); (2)已知f (x +4)=x +8x ,求f (x 2);(3)已知函数y =f (x )满足2f (x )+1()f x=2x ,x ∈R 且x ≠0,求f (x ); (4)已知一次函数f (x )满足f [f (x )]=4x -1,求f (x ).分析:求解析式的方法较多,如配凑法、换元法、方程法、待定系数法等,关键在于弄清对于“x ”而言,“f ”是怎样的对应法则,至于选择什么符号表示自变量没有关系.要特别注意正确确定中间变量的取值范围,如(2)中设x +4=t ≥4,否则就不能正确确定f (x )的定义域.解:(1)方法一(换元法):令t =x +1,则x =t -1,代入得f (t )=(t -1)2-3(t -1)+2, ∴f (t )=t 2-5t +6,即f (x )=x 2-5x +6. 方法二(配凑法):∵f (x +1)=x 2-3x +2=(x +1)2-5x +1=(x +1)2-5(x +1)+6, ∴f (x )=x 2-5x +6.(2)方法一(配凑法):∵f (x +4)=x +8x =(x +4)2-16,∴f (x )=x 2-16(x ≥4). ∴f (x 2)=x 4-16(x ≤-2,或x ≥2). 方法二(换元法):设x +4=t ≥4, 则x =t -4,x =(t -4)2, ∴f (t )=(t -4)2+8(t -4)=t 2-16. ∴f (x )=x 2-16(x ≥4).∴f (x 2)=x 4-16(x ≤-2,或x ≥2). (3)(方程法)∵x ∈R ,且x ≠0, 由2f (x )+1()f x=2x ,① 将x 换成1x ,则1x换成x ,得12()f x+f (x )=2x .②①×2-②,得3f (x )=4x -2x ,即f (x )=4x 3-23x.(4)(待定系数法)∵f (x )是一次函数, ∴设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x -1.∴⎩⎨⎧a 2=4,ab +b =-1⇒⎩⎪⎨⎪⎧a =2,b =-13或⎩⎨⎧a =-2,b =1.∴f (x )=2x -13或f (x )=-2x +1.反思:对于已知f [g (x )]的表达式,求f (x )的表达式的问题,一般方法是换元法,即设g (x )=t ,解出用t 表示x 的表达式,代入求得f (x )的解析式.在用换元法解这类题时,特别要注意正确确定中间变量t 的取值范围.若题目中已知函数f (x )的函数类型,一般采用待定系数法,如第(4)小题,由于已知函数f (x )是一次函数,故可设f (x )=ax +b (a ≠0).题型二 分段函数的图象与应用【例2】试作出函数y =|x -1|和y =|x -1|+|x +2|的图象.分析:y =|x -1|=⎩⎨⎧x -1,x ≥1,1-x ,x <1,y =|x -1|+|x +2|=⎩⎪⎨⎪⎧-2x -1,x ≤-2,3,-2<x <1,2x +1,x ≥1.解:y =|x -1|的图象如图(1). y =|x -1|+|x +2|的图象如图(2).反思:画带绝对值符号的简单函数的图象的基本方法是先求函数的定义域,然后化简函数解析式,就是去绝对值符号.(1)带一个绝对值符号的函数,根据绝对值的意义去绝对值符号.(2)带两个或两个以上绝对值符号的问题,常用“零点分段法”去绝对值符号,从而把函数写成分段函数的形式,然后作图.如本题(2),令x -1=0,得x =1;令x +2=0,得x =-2.-2和1把数轴分成三部分(如下图所示).【例3】设函数f (x )=⎩⎨⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是__________.解析:因f (1)=12-4×1+6=3,所以原不等式可化为f (x )>3.作出原函数的图象,如下图所示.再作出直线y =3,其交点坐标分别为(-3,3),(1,3)和(3,3),从图象观察即得. 答案:(-3,1)∪(3,+∞)反思:作为填空题,可利用数形结合的方法求解不等式,此方法直观、简洁、准确.题型三 实际应用问题【例4】通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果表明,用f (x )表示学生掌握和接受概念的能力,f (x )的值越大,表示接受的能力越强,x 表示提出和讲授概念的的讲授时间(单位:分钟),可有以下的公式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43,0<x ≤10,59,10<x ≤16,-3x +107,16<x ≤30.(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间? (2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?(3)一道数学难题,需要55的接受能力以及13分钟的讲授时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?解:(1)开讲10分钟后,学生的接受能力值为59,达到最强,并维持6分钟. (2)f (5)=-0.1×52+2.6×5+43=53.5; f (20)=-3×20+107=47,所以开讲后5分钟学生的接受能力比开讲后20分钟强一些.(3)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+43+16.9,f (x )ma x =f (10)=59.令55≤f (x )≤59,解得6≤x ≤10.所以6≤x ≤10时,f (x )∈[55,59],即开讲后10分钟里,学生只有后4分钟接受能力在55以上,然后有6分钟接受能力维持在59;当16<x ≤30时,f (x )=-3x +107.令f (x )≥55,解得x ≤523,即在这段时间里,学生只有43分钟接受能力维持在55以上.综上所述,开讲后学生共有4+6+43=343分钟接受能力在55以上,故老师不能在学生一直达到所需接受能力的状态下讲授完这道难题.反思:实际问题往往都有一个陌生的情境,它需要我们仔细阅读题意.如果题中给的数量比较多,可以逐个理解和研究,然后把实际问题转化为数学问题,建立函数关系进行求解.1设函数f (x )=⎩⎨⎧1-x 2,x ≤1,x 2+x -2,x >1,则1(2)f f ⎡⎤⎢⎥⎣⎦的值为__________. 解析:因为f (2)=22+2-2=4,所以1f (2)=14,1(2)f f ⎡⎤⎢⎥⎣⎦=1()4f =1-21()4=1516. 答案:15162某城市出租车按如下方法收费:起步价6元,可行3 km(含3 km),3 km 后到10 km(含10 km)每走1 km 加价0.5元,10 km 后每走1 km 加价0.8元,某人坐出租车走了12 km ,他应交费______元.解析:把收费y 元看成所走路程x km 的函数, 当0<x ≤3时,应交6元;当3<x ≤10时,应交6+(x -3)×0.5=4.5+0.5x (元);当x >10时,应交4.5+0.5×10+(x -10)×0.8=1.5+0.8x (元). ∴当x =12时,y =1.5+0.8×12=11.1(元). 答案:11.13某客运公司确定客票价格的方法是:如果行程不超过100千米,票价是每千米0.5元,如果超过100千米,超过部分按每千米0.4元定价,则客运票价y (元)与行程数x (千米)之间的函数关系式是__________.解析:根据行程是否大于100千米来求出解析式, 由题意,得当0<x ≤100时,y =0.5x ,当x >100时,y =100×0.5+(x -100)×0.4=10+0.4x .答案:y =⎩⎨⎧0.5x ,0<x ≤100,10+0.4x ,x >100已知函数h (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,1()163h ==16,h (1)=8,求h (x )及其定义域.分析:本题中已知函数的模型,用待定系数法求解析式. 解:设f (x )=k 1x (k 1≠0),g (x )=k 2x (k 2≠0),则h (x )=k 1x +k 2x.由题意得⎩⎪⎨⎪⎧k 13+3k 2=16,k 1+k 2=8.解得123,5k k ⎧⎨⎩=,=.所以h (x )=3x +5x,定义域是(-∞,0)∪(0,+∞).5已知函数f (x )=⎩⎨⎧x 2,x >0,1,x =0,-1x,x <0.(1)画出函数的图象; (2)求f (1),f (-1)的值.分析:分别作出f (x )在x >0,x =0,x <0各段上的图象,合在一起得函数的图象. 解:(1)如图所示.(2)f (1)=12=1,f (-1)=-1-1=1.。

函数的表示法

函数的表示法

函数的表示法1.函数的表示方法:解析法、列表法、图象法.①解析法就是把两个变量的函数关系,用一个数学表达式来表示,这个等式叫做函数的解析表达式,简称解析式.②列表法就是列出表格来表示两个变量之间的函数关系.③图象法就是用函数的图象表示两个变量之间的函数关系.2.分段函数在函数定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.对分段函数的概念必须注意:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)分段函数的图象是由几个不同的部分组成,作分段函数的图象时,应根据不同定义域上的不同解析式分别作出.3.映射(1)A到B的映射与B到A的映射往往不同;(2)集合A中每一个元素在集合B中必有唯一的元素和它对应(允许B中元素没有被A中元素对应);(3)A中元素与B中元素,可以是“一对一”,“多对一”不能是“一对多”.(4)函数是集合A,B为非空数集的一种特殊映射,映射是函数概念的推广题型一映射概念的理解例1:(1)在下列对应关系中,哪些能构成A到B的映射?,(2)设集合P={x|0≤x≤4},Q={y|0≤y≤2},下列的对应不表示从P到Q的映射的是()A.f:,y=xB.f:xy=xC.f:xy=xD.f:x→y=点评:在映射中,集合A的“任一元素”,在集合B中都有“唯一”的对应元素,不会出现一对多的情形.只能是“多对一”或“一对一”形式.变式迁移1:判断下列对应关系哪些是从集合A到集合B的映射.(1)A=(2)A=R,B=对应关系f:(3)A=Z,B=Q,对应关系f:(4)A=,对应关系f:。

变式迁移2:下列对应是否是从A到B的映射,能否构成函数?(1)A=R,B=R,f:x;(2)A=,B=;(3)A=[0,+],B=R,f:x(4)A={x|x是平面内的矩形},B={x|x是平面内的圆},f:作矩形的外接圆.题型二分段函数的图象及应用例2:求下列函数的图象及值域:y=;点评:本例利用图象法求函数值域,其关键是准确作出分段函数的图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图象时要特别注意区间端点处对应点的实虚之分.变式迁移:作出下列各函数的图象:(1)y=1-x,x∈Z;(2)y=|x-1| (x∈R).例3:分段函数的求值问题;已知函数f(x)=(1)求f[f()]的值;(2)若f(a)=3,求a的值.变式迁移:设f(x)=若f(a)>a,求实数a的取值范围。

高一数学函数的常用表示方法

高一数学函数的常用表示方法

钱数y
5 10 15 20 25
例4 下表是某校高一(1)班三名同学在高一 学年度六次数学测试的成绩及班级平均分表。
解:从表中可以知道每位同学在每次测试中的成 绩,但不太容易分析每位同学的成绩变化情况。 如果将“成绩”与“测试时间”之间的关系用函 数图象表示出来,如下表,那么就能比较直观地 看到成绩变化地情况。这对我们地分析很有帮助。
由空调汽车票价的规定,可得到以下函数解析式:
2, 0<x ≤ 5
y=
3, 5 < x ≤ 10 4, 10 < x ≤ 15
5, 15 < x≤20
根据函数解析式,可画出函数图象,如下图
y 5 4 3○ 2 ○○ 1
○ ○
0 5 10 15 20
有些函数在它的定义 域中,对于自变量的 不同取值范围,对应 关系不同,这种函数 通常称为分段函数。
神鹿电竞 神鹿电竞比分网 https:// 神鹿电竞 神鹿电竞比分网
2.1.2函数表示法 课件
例5 画出函数y=|x|的图象.
解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.
y
5 4 3 2 1
-3 -2 -1 0 1 2 3
x
例6.某市空调公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算)。
已知两个相邻的公共汽车站间相距为1公里,如果 沿途(包括起点站和终点站)有21个汽车站,请 根据题意,写出票价与里程之间的函数解析式, 并画出函数的图象。
解:设票价为y,里程为x,则根据题意, 如果某空调汽车运行路线中设21个汽车站,那么汽车 行驶的里程约为20公里,所以自变量x的取值范围是 (0,20]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2, 3, y 4, 5,
0 < x 5, 5 < x 10,
y 5
10 < x 15, 3 15 < x 20, 2
1
0 5 10 15 20 X
4
图公交车票价.gsp
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
图象法的优点:直观形象,反映变化趋势。
列表法的优点:不需要计算就可以直接看出 与自变量的值所对应的函数值。 并不是所有的函数都能用解析法表示。
例2、下表是某校高一(1)班三名同学在高一 学年六次数学测试的成绩及班级平均分表。
成绩 姓名 测试 序号
第 1次
第 2次
第 3次
第 4次
第 5次
第 6次
王伟 张成 赵磊
例1 某种笔记本每个5元,买x(x∈{1,2,3,4,5} 个笔记本需要y(元).试用三种表示方法表示 函数y=f(x). 解:这个函数的定义域是集合{1,2,3,4,5}, 函数解析式为: y=5x, (x∈{1,2,3,4,5}), 用列表法可将函数表示为: 笔记本数x 钱数y 1 5 2 10 3 15 4 20 5 25
16:00
1993 34560.5
20:00 24:00
再如,某天一昼夜温度变化情况如下表
12:00
-2
-5
4
9
8.5
3.5
-1
数学用表中的三角函数表,银行里的利息表,列车时刻表等 系的.公共汽车上的票价表
列表法的优点: 不必通过计算就知道当自变量取某些值时函数的 对应值。
3.图像法:用函数图像表示两个变量之间的对应 关系。
它的图像如图所示,由五个孤立的点 A (1, 5),B (2,10),C(3,15),D(4,20), E(5,25)组成. 25
20
15 点评: C 1、作图时一定要注意 10 B 函数的定义域。 5 A 2、函数图像可以是一 些孤立的点。 01 2 3 4 5
.
.
.
.
. E D
.
解析法有两个优点:1、简明;2、给自变量 可求函数值。
A中的元素x称为原像, B中的对应元素y称为x的像.
xx
说明:(1)这两个集合A、B,它们可以 是数集,也可以是点集或其它集合,这两 个集合有先后顺序,A到B的映射与B到A 的映射是截然不同的。其中f表示具体的对 应法则,可以用文字叙述; (2)集合A中的任何一个元素都有像,并且 象是唯一的; (3)不要求集合B中每一个元素都有原像, 即B中可能有些元素不是集合A中的元素的 xx 像;
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的. 例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
• 函数的图像从“形”的方面揭示了函数的 变化规律,是数学的图形语言,图像法是 解决函数问题的常用方法,利用函数的图 像既有利于掌握各类函数的性质,又能运 用“数形结合”的方法去解决某些问题。 • 函数的三种表示法之间具有内在联系,它 们之间可以相互转化。
(2)函数与映射有什么区别与联系? 函数是一种特殊的映射,是从非空数集 到非空数集的映射。 函数概念又可以叙述为:设A,B是两个 非空数集,f是A到B的一个映射,那么映 射f:A→B就叫做A到B的函数。 在函数中,原像的集合称为定义域,像 的集合称为值域。

注意: (1)有时表示函数的式子可以不止一个, 对于分几个式子表示的函数,不是几个函数, 而是一个函数,我们把它称为分段函数.
(2) 函数图象既可以是连续的曲线,也可 以是直线、折线、离散的点等等。
(1)理解函数的三种表示方法, 在具体的实际问题中能够选用恰 当的表示法来表示函数; (2)注意分段函数的表示方法 及其图像的画法.
班级平均分
98 90 68 88.2
87 76 65 78.3
91 88 73 85.4
92 75 72 80.3
88 86 75 75.7
95 80 82 82.6
请你对这三位同学在高一学年度的数学学习情 况做一个分析。
y
100 90 80 70 60
班 的 平 均 分
王伟 张城
赵磊 1 2 3 4 5 6
例4: 某市“招手即停”公共汽车的票价按下列 规则制定:(1)在5公里以内(含5公里),票价2元; (2) 5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算). 如果某线路的总里程为20公里,请根据题意,写出 票价与里程之间的函数解析式,并画出函数的图象.
解: 设票价为y元,里程为x,由题意可得x∈(0,20 由已知可得函数解析式为: 2, 0 < x 5, 3, 5 < x 10, y 4, 10 < x 15, 5, 15 < x 20,
(2)对于坐标平面内任何一个点A,都有唯一 的有序实数对(x,y)和它对应; (3)对于任意一个三角形,都有唯一确定的面 积和它对应;
一、映射:一般地,设A、B是两个非空 集合,如果按照某种对应法则f,对于集 合A中的任何一个元素,在集合B中都有 唯一的一个元素和它对应,那么这样的对 应(包括集合A、B以及A到B的对应法则) 叫做集合A到集合B的映射,记作: f : AB
2.1.2 函数的表示方法
3.你知道函数的表示方法通常有几种吗?
函数的表示方法通常有三种,它
列表法、图像法 和解析法。
们是
1.解析法:就是把两个变量的函数关系,用一 个等式表示,这个等式叫做函数的解析表达式, 简称解析式.
函数的三种表示方法
解析法的优点: (1)函数关系清楚; (2)容易从自变量的值求出其对应的 函数值; (3)便于研究函数的性质。
注意:解析法表示函数是中学研究函数的主要 表示方法;用解析法表示函数时,必须注明函数 的定义域.
2.列表法:列出表格来表示两个变量的 的对应关系。
例如: 国内生产总值 :
单位:亿元
1990 年份 生产总值 185921662.5
8:00
1992 26651.9
日常生活中存在着丰富的对应关系.
(1)对于高一八班的每一位同学,都有一个学号 与之对应.
(2)我国各省会,都有一个区号与之对应. (3)我国各大中小城市,都有一个邮政编码 与之对应. (4)顺德区的各种机动车辆,都有一个车牌号 与之对应.
初中数学中也学过一些对应. (1)对于任何一个实数a,数轴上都有唯一的 点P和它对应.
x
例3 请画出函数
x x≥0 y= -x x<0
y | x | 的图像:
解: 由绝对值的意义,有
所以,函数图像为第一和第二象限的角平 y 分线.
4 3 2 1 -1 0 1 2 3 x
例4: 某地区出租车收费按下列规则制定:(1) 在1公里以内(含5公里),票价3元; (2) 1公里以上,每增加0.5公里,票价增加1 元(不足0.5公里的按0.5公里计算). 如果某线路的总里程为5公里,请根据题 意写出票价与里程之间的函数解析式,并画 出函数的图象.
相关文档
最新文档