绝对值--北师大版

合集下载

新北师大版初中数学七年级上册 (初一)2.3 绝对值课件

新北师大版初中数学七年级上册 (初一)2.3 绝对值课件
76、一人生日生命无贵太书相过,知短百,暂事何,荒用今废金天。与放钱弃20。了.7.明2104天.270.不1.74一.210定4.27能0.1.得74.21到04.。7.1824时0。22028年0分2780月时年12748月日分1星144期日-J二星ul二期-2〇二07二.14〇.2年二02七〇0月年十七四月日十四日
判断题 (打“√”或“×”) (1)-2和3互为相反数.( ×) (2)符号不同的两个数绝对值不同.( ×) (3)一个有理数的绝对值总是正数.( × ) (4)-3的绝对值大于-4.( √) (5)如果|x|=5,则x=5.( ×)
若|a|+|b-1|=0, 则a=__0___, b=__1___.
| a | a
(3)当a=0时,|a|=_0__。
负数的绝对值 是它的相反数
0
(a 0) (a 0) (a 0)
0的绝对值是0
|a|≧0
判断:
1、绝对值最小的数是0。(√ )
2、一个数的绝对值一定是正数。( ×)
老 师
3、一个数的绝对值不可能是负数。(√ )
, 我

4、互为相反数的两个数,它们的绝对值一定 !

1 、|2|=__2____,|-2|=__2____


2、若|x|=4,则x=_±__4___
我 来

3、若|a|=0,则a=__0____
4、|- 1 |的倒数是__2____,|-6|的相反数是__-_6___ 2
5、+7.2的相反数的绝对值是_7__.2___
(1)在数轴上表示下列各数,并比较它们的大小:
【小组讨论2】求下列各数的绝对值:-1.5,1.5,-6, +6,-3,3, 0. 【反思小结】归纳:正数的绝对值是______;负数的绝 对值是__________;零的绝对值是______.

北师大版-数学-七年级上册-《绝对值》教学设计

北师大版-数学-七年级上册-《绝对值》教学设计

第二章有理数及其运算3.绝对值一、学生起点分析学生的知识技能基础:学生已经学习了有理数,认识了数轴,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、学习任务分析1.地位和内容相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。

2.教学重点和难点教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

教学难点:利用绝对值比较两个负数的大小。

3. 教学目标(1)借助数轴,理解绝对值和相反数的概念(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,探索新知;第三环节:应用迁移,巩固提高;第四环节:总结反思,知识内化;第五环节:当堂检测,及时反馈;第六环节:拓展延伸,能力提升。

第一环节创设情境,导入新课活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?活动目的:提供几组数让学生进行比较,从而得出相反数的概念。

《绝对值》课件北师大版七年级数学上册

《绝对值》课件北师大版七年级数学上册

新课导入
新知探究
探究活动1:请视察这两对数,它们有什么异同点?你还能列举两个这样的数吗?
符号不同
符号不同
数字相同
数字相同
定义:如果两个数只有符号不同,那么称其中一个数为另一个数的 相反数,也称这两个数互为相反数.
新知探究
- -5 - -3 -2 -1 0 1 2 3 4 5 6 64 视察:-3与 3; -5与 5在数轴上的位置,你能用自己的语言描述一 下它们位置关系吗?你还能举出几对具有这种位置关系的数吗?
分类讨论思想
任何一个有理数的绝对值都是非负数
新知探究 做一做
(1)在数轴上表示下列各数,并比较它们的大小: -1.5,-3,-1,-5
(2)求出(1)中各数的绝对值,并比较它们的大小; (3)你发现了什么?
解:(1)
-5<-3<-1.5<-1
新知探究
(2)求出(1)中各数的绝对值,并比较他们的大小;
(非负性)
比较两个负 数的大小
第3课
绝对值
学习目标
1.借助数轴,理解绝对值和相反数的概念;知道|a|的含义以及互为相反数的两个数在数轴上的位 置关系. 2.能求一个数的相反数和绝对值,会利用绝对值比较有理数的大小. 3.通过运用绝对值解决实际问题,体会绝对值的意义和作用.
重难点
重点:正确理解绝对值的概念,会求一个数的绝对值. 难点:利用绝对值比较两个负数的大小.
问题:
路线不同,
1.它们所跑的路线相同吗? 正负性
2.它们所跑的路程(线段OA、OB的长度)一样吗?

路程一样,到 原点的距离相 等(不管方向)
归纳总结
距离 原点的距离
典例剖析
解: |-21|=21

七年级数学寒假专题-绝对值北师大版

七年级数学寒假专题-绝对值北师大版

七年级寒假专题:绝对值北师大版【本讲教育信息】一. 教学内容:寒假专题一:绝对值二. 重点、难点:绝对值是中学数学的重要概念,有理数加减法是整式和其它运算的基础,它们是教学的重点,也是难点,如何突破这个难点,降低有理数的教学难度,提高有理数教学的效率,是我们面对的不得不深入思考的问题。

在教学有理数概念时,通过分析有理数的结构,明确有理数是由符号和绝对值组成的,从而引出绝对值概念,这样把有理数的绝对值与小学学习的数统一起来,以利于知识的迁移,也为突出符号教学开了头。

数轴通过分析把一个数用数轴上的点表示,明确一个数的符号决定表示该数的点在原点的哪一边,绝对值决定表示该数的点到原点的距离。

因此,我们说,一个数的绝对值就是数轴上表示这个数的点到原点的距离,有了绝对值概念,就可以用绝对值概念定义相反数即符号相反,绝对值相等的两个数(规定0的相反数为0),这比“只有符号不同的两个数互为相反数”更明确,清楚。

有理数的减法是转化为加法来计算的,实际上有理数的加法和减法本质上没有区别,都是代数和,因此,我们可以把加减法放在一起学习。

首先在学习相反数时,符号化简,“同号得正,异号得负”化简符号后,归纳出有理数加减法法则:两个有理数相加减,化简符号后,同号相加,取相同的符号,并把绝对值相加;异号相减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数的和为零。

一个数与零相加仍得这个数。

注意,无论加减,化简符号后看成是省略了加号只剩下符号和绝对值的式子。

如-3+(+2)化简为-3+2看成是-3与+2的和,省略了加号,读作-3加+2或-3与+2的和。

再如,-3-(+2)化简为-3-2,看成是-3与-2的和,省略了加号,读作-3加-2或-3与-2的和。

这样,计算-3-2就是同号相加,取相同的符号“-”,并把绝对值(这里的绝对值直接认同小学学习过的数)相加即3+2=5,结果是-5。

计算-3+2是异号相减,取绝对值(这里的绝对值直接认同小学学习过的数)大的符号“-”并用较大的绝对值减较小的绝对值即3-2=1,结果是-1。

北师大版七年级数学上册相反数与绝对值--练习题

北师大版七年级数学上册相反数与绝对值--练习题

北师大版七年级数学上册相反数与绝对值--练习题北师大版七年级数学上册相反数与绝对值--练题一、选择题1、绝对值等于它本身的数有()。

A、个;B、1个;C、2个;D、无数个。

2、下列说法正确的是()。

A、—|a|一定是负数;B、只有两个数相等时它们的绝对值才相等;C、若|a|=|b|,则a与b互为相反数;D、若一个数小于它的绝对值,则这个数为负数。

3、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()。

A、a>|b|;B、a|b|;D、|a|<|b|。

4、如果a>0,则的取值范围是()。

A.>0;B.≥0;C.≤0;D.<0.5、下列各数中,互为相反数的是()。

A、│和-B、│-│和-;C、│-│和;D、│-│和。

6、下列说法错误的是()。

A、一个正数的绝对值一定是正数;B、一个负数的绝对值一定是正数;C、任何数的绝对值都不是负数;D、任何数的绝对值一定是正数。

7、│a│=-a,a一定是()。

A、正数;B、负数;C、非正数;D、非负数。

8、下列说法正确的是()。

A、两个有理数不相等,则这两个数的绝对值也一定不相等;B、任何一个数的相反数与这个数一定不相等;C、两个有理数的绝对值相等,则这两个有理数不相等;D、两个数的绝对值相等,且符号相反,则这两个数是互为相反数。

9、-│a│=-3.2,则a是()。

A、3.2;B、-3.2;C、 3.2;D、以上都不对。

10、如果2a2a,则a的取值范围是()。

A.a>0;B.a≥0;C.a≤0;D.a<0.11、若│a│=8,│b│=5,且a+b>0,则a-b的值是(。

)。

A.3或13;B.13或-13;C.3或-3;D.-3或-13.12、a<0时,化简结果为(。

)。

3a2A.0;B.-1;C.-2a;D.-3.13、如果2a2a,则a的取值范围是()。

A.a>0;B.a≥0;C.a≤0;D.a<0.二、判断题1、-|a|=|a|;(错误)。

北师大版七年级数学上册《绝对值》

北师大版七年级数学上册《绝对值》

A.1 个
B.2 个
C.3 个D.4个 Nhomakorabea究新知知识点 2 绝对值
观察下列每对数,并把它们在数轴上标出:
6和- 6,2和 -2,1和-1
-6
-2 -1 1 2
6
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
表示每对数的两个点在数轴上有什么特点? 表示每对数的两点分别位于原点的两边且到原点的距离相等.

21 . 解:|-21|=21;

+
4 9
|=
|0|= 0;
|-7.8|=7.8; 49|21|;=21.
方法点拨:求一个数的绝对值的方法:先判断这个数是 正数、0、还是负数,再根据正数和0的绝对值是它本身, 负数的绝对值是它的相反数,求出这个数的绝对值.
巩固练习
变式训练
2018的绝对值是( C
答:|-1.5|=1.5,|-3|=3,|-1|=1,|-5|=5. |-1|﹤|-1.5|﹤|-3|﹤|-5|
(3)你发现了什么? 答:两个负数比较大小,绝对值大的反而小.
探究新知
素养考点 利用绝对值比较两个负数的大小
例 比较下列每组数的大小(1)-1和-5; (2)-56和-2.7
解法一 (利用数轴比较两个负数的大小) 还可以怎么比较?
A.
1 2018
C. 2018

B. -2018
D.
1 2018
探究新知
知识点 3 利用绝对值比较两个负数的大小 做一做
(1)在数轴上表示下列各数,并比较它们的大小: -1.5,-3,-1,-5
-5
-4
-3
-2 −1.5 -1
0
1

北师大七年级数学上册《绝对值》课件(共25张PPT)

北师大七年级数学上册《绝对值》课件(共25张PPT)

A.5
B.-5
1 C.5
D.-15
答案:A
2.下列各组数中,互为相反数的是( )
A.2 和-2
B.-2 和12
C.-2 和-12
D.12和 2
答案:A
3.一个数的相反数是12,则这个数是( )
A.-12 C.-2
1 B.2 D.2
答案:A
4.相反数等于本身的数为( )
A.正数
B.负数
C.零
答案:C
本身
相反数
0
4.(1)正数的绝对值是它_____;负相数等的绝对值是它
的_______;0的9绝对值是___.
(2)互为相反数的两个数的绝对值_____.如小-9和9的
绝对值都是____.
(3)两个负数比较大小,绝对值大的反而____.
1.什么是相反数?它如何表示? 2.绝对值如何理解? 3.两个负数如何比较大小?
3 绝对值
自 主预 习
1.了解相反数、绝对值的概念,会求有理数的相反 数和绝对值.(重点)
2.会利用绝对值比较两个负数的大小.(难点) 3.在绝对值概念的形成过程中,渗透数形结合的思 想.
相反数
互为相反数
1.如果两个数只0 有符号不同,互那为么相称反其数中一个数为
另一个数的________,也称这两个数___________.特别
A.12
B.0
答案:D
C.1
D.-2
9.下列各式中,正确的是( )
A.|-0.1|≤|0.01|
B.|-13|<14
C.-|-23|>|-34| 学科网
答案:D
D.-|18|>-17
10.写出一个x的值,使|x-1|=x-1成立.你写出的x的

3绝对值-初中七年级上册数学(教案)(北师大版)

3绝对值-初中七年级上册数学(教案)(北师大版)
2.教学难点
-难点1:绝对值的抽象理解。对于绝对值的抽象概念,学生可能难以理解其背ቤተ መጻሕፍቲ ባይዱ的数学意义。教师需要通过数轴、实际例子等直观手段帮助学生理解。
-举例:通过数轴上点的移动,解释绝对值表示距离的概念。
-难点2:绝对值的性质理解。性质的理解需要学生具备一定的逻辑思维能力,尤其是对称性的理解,学生可能会感到困惑。
-举例:用数轴上的点来解释|-a| = |a|,展示无论点在数轴的正方向还是负方向,到原点的距离是相同的。
-难点3:绝对值方程的求解。学生在求解含绝对值的一元一次方程时,可能会不知道如何处理绝对值符号。
-举例:讲解如何将含绝对值的方程分为两种情况讨论,如求解方程|x - 2| = 3,需要分别讨论x - 2 ≥ 0和x - 2 < 0的情况。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“绝对值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数学抽象能力:通过绝对值的学习,使学生理解数的非负性和距离概念,提高数学抽象思维。
2.培养学生的逻辑推理能力:在学习绝对值的性质和计算过程中,引导学生运用逻辑推理,分析解决问题。
3.培养学生的数学建模能力:让学生在实际问题中运用绝对值,建立数学模型,解决具体问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值表示一个数与0之间的距离,它是非负的,无论这个数是正数、负数还是0。绝对值在数学中非常重要,它帮助我们理解数的大小关系和距离概念。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 绝对值
情景引入
4千米
3千米
在一条东西方向的公路上有一辆小汽车与一辆
大客车,因限速60千米/时,哪辆车先到路口的红绿 灯?
4
3
-4 -3 -2 -1 0 1 2 3
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
一个数a的绝对值就是数轴上表示这个数的点 与原点之间的距离。一个数的绝对值应该怎么样 去记呢?
互为相反数的两个数的绝对值相等
问题2:一个数的绝对值与这个数有什么关系?
正数的绝对值是它本身;负数的 绝对值是它的相反数;0的绝对值是 0
巩固训练
1.绝对值等于8的正数是 绝对值等于8的负数是 绝对值等于4的数是
。 。 。
2.计算: (1) |-2|+3 (3) |-10.8|-|5.1|
(2) |-3|×|-5| (4) |-81|÷|-9|
应用探讨
如图,有A、B、C三处的海 拔高度分别是-100米、-210米、 -300米。
海平面 A
1、三处的地势从高到低排列,结果是 B 什么?
C 2、-100,-210,-300的绝对值分别是多少?
3、你发现了什么?
两个负数比较大小,绝对值大的反而小。
ቤተ መጻሕፍቲ ባይዱ
像-5、4的绝对值应该如何记呢?
│-5│=5
│4│=4
你能表示下列各数的绝对值吗?
+2,-6,0
练习:
1 . 口答
|+5.8|=
. |-3.6|=
. |0|=
.
|100|= . |-2005|= .
2 .求下列各数的绝对值: -21,+4/9,0,-7.8
问题讨论:
问题1:互为相反数的两个数的绝对值有什么关系?
相关文档
最新文档