控制工程基础基本知识

合集下载

控制工程基础应知应会

控制工程基础应知应会

《控制工程基础》应知应会
一、基本概念及基本原理
1、静态系统的输入输出关系:实时输出只与当时的输入
相关。

2、动态系统的输入输出关系:实时输出不仅与当时输入
相关,且与过去的输入和输出有关。

3、线性系统与非线性系统:输入和输出满足叠加原理的
系统,否则为非线性系统。

4、开环控制系统与闭环控制系统:开环系统指没有输出
反馈的一类系统,否则称为闭环控制系统。

5、与开环系统相比较,闭环系统有哪些优缺点?
6、按控制器结构分类,控制系统分为哪几类?
7、什么是调节系统、跟踪系统和伺服系统?
8、控制系统的三大性能指标是什么?
9、什么是系统的传递函数?
10、学会化简控制系统的框图
11、学会用梅森公式求解系统的传递函数
12、用公式表述系统型次为I=0、1、2时单输入单输出系
统的位置误差系数、速度误差系数、加速度误差系数。

13、用公式表述系统相角稳定裕量和增益稳定裕量。

14、画出PID控制器的原理图并用传递函数描述数学模
型。

15、什么是时域分析法,其性能指标参数有哪些?
16、什么是频域分析法,其性能指标参数有哪些?
17、什么是时域ROUTH判据?什么是频率域的拟奎斯特
判据
18、控制器设计的一般步骤有哪些?
19、什么是脉冲传递函数?
20、离散系统用什么数学方法描述?如何求解?
21、什么是离散系统的稳定性ROUTH判据?
22、采用频率对离散系统稳定性的影响如何?
二、计算分析题:
2-2,2-6,2-11,2-13,3-5,3-16,4-6,4-7,4-14,5-3,6-5,6-8,。

控制工程必备知识点总结

控制工程必备知识点总结

控制工程必备知识点总结一、控制系统的基本概念1. 控制系统的定义和基本组成控制系统是一个通过对系统输入信号进行调节,使得系统输出信号满足特定要求的系统。

控制系统由输入、输出、反馈和控制器等基本组成部分构成。

2. 控制系统的分类控制系统根据其控制方式可以分为开环控制系统和闭环控制系统。

开环控制系统只能通过输入信号来控制系统输出,而闭环控制系统可以通过反馈信号来对系统进行调节。

3. 控制系统的性能指标控制系统的性能指标包括稳定性、灵敏度、鲁棒性、动态性能等,这些指标反映了控制系统对信号变化的响应能力和稳定性。

二、控制系统的建模与分析1. 控制系统的数学模型控制系统的数学模型是控制工程的核心,它描述了系统的输入输出关系以及系统内部的动力学特性。

控制系统的数学模型可以用微分方程、差分方程、状态方程等形式进行描述。

2. 控制系统的传递函数传递函数是控制系统数学模型的一种常用表示形式,它描述了系统输入和输出之间的传输特性。

控制系统的传递函数可以通过系统的输入输出数据进行辨识或通过系统的数学模型进行求解。

3. 控制系统的频域分析频域分析是控制系统分析的重要方法之一,它将控制系统的动态响应从时域转换到频域,通过频域特性来分析控制系统的稳定性、干扰抑制能力等。

4. 控制系统的状态空间分析状态空间分析是控制系统分析与设计的另一种常用方法,它描述了系统的状态变量与输入输出变量之间的关系,并可以用于分析控制系统的稳定性、可控性和可观测性等。

5. 控制系统的稳定性分析控制系统的稳定性分析是控制工程中的重要内容,它用于评估控制系统的稳定性,并设计满足稳定性要求的控制器。

三、控制系统的设计与实现1. 控制系统的控制器设计控制系统的控制器设计是控制工程的核心内容之一,它通过对系统数学模型的分析和综合,设计出满足性能指标要求的控制器。

2. 控制系统的闭环控制闭环控制系统通过对系统的反馈信号进行处理,实现对系统输出的精确控制,提高系统的鲁棒性和鲁棒性。

控制工程基础

控制工程基础

控制工程基础控制工程基础控制工程是应用数理科学、工程科学和计算机科学等,对动态系统进行建模、分析、设计和实现的一门学科。

它的基础知识包括:系统理论、信号与系统、自动控制理论、数字信号处理、电子电路、计算机科学基础等,是自动化技术、机械工程、电子工程、信息工程、材料科学、冶金工程、化工工程、生物工程以及安全工程等众多工程领域的基础学科。

下面将对控制工程的基础知识进行简要介绍。

一、系统理论系统理论是控制工程的基石,它研究如何将物理、力学、电子学等各种不同类型的系统用一种公共的方式表示,以便于对系统进行分析和设计。

它包括了系统的三个基本部分:输入、输出和系统本身。

系统理论还涉及到系统的稳定性、响应特性、频率特性、自由度、模态等方面的概念和方法。

以温度调节器为例,它的输入和输出分别是设定的温度值和实际的温度值。

它所调节的系统就是温度系统,该系统可以被看作是一个变量到变量的映射函数。

系统理论的目的就是找到如何调整该映射函数的方法,从而让实际的温度值无限趋近于设定值,即实现对于温度的精确控制。

二、信号与系统信号与系统是控制工程中另一个基础概念,它是指在时间或空间上变化的各种信号,并且它们可以用某种系统进行处理。

信号可以是电压、电流、温度、光等,而系统可以是传感器、运算放大器、放大器、滤波器、元件等。

例如,温度调节器的信号就是温度值的变化,系统就是温度调节器本身。

这个系统可以通过控制电路来实现对于温度的控制。

信号与系统理论主要研究信号的特征、传输及处理系统的处理特性,以及信号和系统之间互相作用的规律等。

三、自动控制理论自动控制理论是指通过一定的算法和控制策略来实现目标的自动控制系统。

当系统出现误差时,自动控制系统会自动地对系统进行反馈调整。

该理论是实现各种控制系统的核心。

它不仅涉及到系统的稳定性分析、响应特性、控制系统的设计方法以及控制策略的选择等基本问题,还包括控制器设计、检测和分析等方面。

四、数字信号处理数字信号处理(DSP)是将模拟信号转化为数字信号,并对这些数字信号进行处理的技术。

控制工程基础提纲

控制工程基础提纲
控制工程基础
二. Bode稳定性判据:利用系统开环Bode图判断 闭环系统稳定性
在对数相频特性曲线 0 处补画一条从相角 0 900 0 的线条,然后计算
R , R , R R R , Z P 2R
Bode判据:在Bode图上,开环对数相频在 0 ~ c 范围内,
正穿越-180度线的次数与负穿越-180度线的次数分别为
开环极点
六.根轨迹与虚轴的交点
1. s j 代入特征方程
n
m
D s s pi K * s z j 0
i 1
j1
R jI 0
R 0
I
0
控制工程基础
2. 利用Routh表方法 七. 根轨迹的起始角和终止角
pi
m
z j pi
n
p j pi
j1
j 1
ji
zi
m
z jzi
n
pjzi
j1
j1
ji
要求熟练掌握前六条关于根轨迹的绘制法则,了 解第七条法则。
控制工程基础
Ch4.3 广义根轨迹 一. 系统的等效开环传递函数 二. 根轨迹绘制法则在广义根轨迹绘制中的应
用 三. 从根轨迹的角度,理解附加开环零点的作

控制工程基础
第五章 线性系统的频域分析法
60 -
40 -
1
-40dB/dec
20 -
-
0.1 1
-20 -
10
100
-40 -
-60dB/dec 2
控制工程基础
Ch5.3频率域稳定性判据 一. Nyquist稳定性判据:利用系统开环
Nyquist曲线判断闭环系统稳定性。 Z: 系统闭环在S右半平面中的极点个数 P: 系统开环在S右半平面中的极点个数 R: 开环围绕点(-1,0j)反时针的圈数 三者关系:

控制工程基础(总结)

控制工程基础(总结)

输出:
xo
(t)
1 T
t
eT
,
t0
(3)一阶系统的单位速度响应
输入信号: xi (t) t
输出:
xo
(t
)
t
T
t
Te T
,
t0
系统对输入信号导数的响应等于系统对该 输入信号响应的导数。系统对输入信号积分 的响应等于系统对该输入信号响应的积分, 其积分常数由初始条件确定。
时间常数T反映了一阶惯性环节的固有特性, 其值越小,系统惯性越小,响应越快。
控制工程基础
课程总结
《控制工程基础》课程的基本内容
控制系统 工作 控制系统 的组成 原理 的分类
PID校正
控制系统的概念 分析
滞后校正
控制系统
校正
常用校 正方式
设计
对控制系统的基本要求
超前校正
滞后—— 超前校正
稳定性 准确性 快速性
时域分析法 频域分析法
一、控制系统的概念
1. 工作原理:
首先检测输出量的实际值,将突际值与给定值(输入 量)进行比较得出偏差值,再用偏差值产生控制调节信号 去消除偏差。
试判断系统的稳定性。
2.已知开环传递函数,求系统稳定时的某参数的取值。
设某闭环控制系统如图4所示,试确定k为何值时,该系统稳定?
Xi(s)
1
_ s 1
k s(s 4)
X0(s)
3.根据Nyquist图、Bode图直接判断。
五.方框图简化
基于方框图简化法则,试求取图所示方框图对应的传递函数。
Xi(s)
校正的实质就是改变系统零、极点数目和位置。
(二)常用校正方式 1.串联校正 2. 并联校正 3. 复合校正

控制工程知识点总结

控制工程知识点总结

10. 稳态响应 (1)频率特性定义
① 频率特性与传递函数的关系: G ( j ) G ( s ) s j ② 频率特性公式 G( j ) A( )e ③ 稳态响应
j ( )
U ( ) jV ( )
xo( t ) A()A sin(t ())
11. 闭环频域指标
( ) 1 ( ) 2 ( ) n ( )
思路:标准化开环函数→转换成 G(jω) →典型环节 A(ω),φ(ω) →求系统 A(ω),φ(ω) 例 已知系统开环传递函数 G s


10 ,求系统 A(ω),φ(ω) s s 20.2s 1
总结
(2)公式和性质 阻尼自然频率
d n 1 2
上升时间
tr
arccos n 1 2
一定时,n 越大,tr 越小; n 一定时, 越大,tr 越大。 一定,n 越大,tp 越小;n 一定,
越大,tp 越大。
峰值时间 超调量 超调量(反)
tp

2 n 2 s 2 2n s n
8. 时域指标
(1)指标定义(理解记忆) 上升时间 峰值时间 超调量 调整时间 振荡次数 对非振荡系统,指响应从稳态值 10%上升到稳态值 90%所需的时间; 对振荡系统,指响应从零第一次上升到稳态值所需的时间。 响应超过其稳态值到达第一个峰值所需的时间 指响应的最大偏离值 c(tp)与稳态值 c(∞) 之差与稳态值 c(∞)的百分比 指响应到达并保持在稳态值±5%(或±2% )内所需的最短时间 调节时间内,输出偏离稳态的次数
第一部分 知识点
知识点:1. 系统建模;2. 传递函数;3. 方块图;4. 频率特性与传递函数关系;5. 开环\闭 环传递函数;6. 一阶系统;7. 二阶系统;8. 时域指标;9. 最小相位系统;10. 稳态响应; 11. 闭环频域指标;12. 稳定性充要条件;13.劳斯判据;14.开环频率特性;15.频域特性类 型;16. 奈稳定性判据;17. 伯德图;18. 稳定裕度;19. 稳态误差

控制工程基础

控制工程基础

控制工程基础
控制工程是一门工程学科,关注的是如何设计和实现能够自动控制系统的技术。

它涉及到了多个学科领域,包括数学、电子工程、计算机科学和物理学等。

在控制工程中,人们使用数学模型来描述和分析控制系统的行为。

这些模型可以是线性或非线性的,可以是连续时间或离散时间的。

通过分析这些模型,人们可以设计和实现具有特定性能要求的控制系统。

控制工程的基础知识包括:
1. 系统建模:掌握如何将实际控制系统抽象成数学模型的方法,包括连续时间和离散时间的系统建模方法。

2. 控制系统分析:通过对系统模型进行分析,评估系统的稳定性、敏感性和性能。

3. 控制器设计:设计合适的控制器,以实现对系统的稳定性和性能要求。

4. 闭环控制:了解闭环控制系统的原理和特点,以及如何设计和实现闭环控制系统。

5. 实时控制:理解如何在实时环境下进行控制系统设计和实现,以满足系统对响应时间和稳定性的要求。

6. 数字控制:掌握离散时间控制系统的建模和设计方法,以及数字信号处理的基本知识。

7. 监控与优化:学习如何使用传感器和反馈控制技术对系统进行监控和优化。

总之,控制工程基础包括建模、分析和设计控制系统的技术和原理。

这些基础知识是实现自动化控制系统的关键,并广泛应用于工业自动化、机器人技术、航空航天和交通运输等领域。

控制工程基础课程考核知识点.

控制工程基础课程考核知识点.

《控制工程基础》课程考核知识点:第1章绪论考核知识点:(一)机械工程控制的基本含义1.控制论与机械工程控制的关系;2.机械工程控制的研究对象。

(二)系统中信息、信息传递、反馈及反馈控制的概念1.系统信息的传递、反馈及反馈控制的概念;2.系统的含义及控制系统的分类。

第2章控制系统的数学模型考核点:(一)数学模型的概念1.数学模型的含义;2.线性系统含义及其最重要的特征——可以运用叠加原理;3.线性定常系统和线性时变系统的定义;4.非线性系统的定义及其线性化方法。

(二)系统微分方程的建立1.对于机械系统,运用达朗贝尔原理建立运动微分方程式;2对于电气系统运用克希霍夫电流定律和克希霍夫电压定律,建立微分方程式;3.简单液压系统微分方程式的建立。

(三)传递函数1.传递函数的定义;2.传递函数的主要特点:(1)传递函数反映系统本身的动态特性,只与本身参数和结构有关,与输入无关;(2)对于物理可实现系统,传递函数分母中S的阶数必不少于分子中S的阶次;(3)传递函数不说明系统的物理结构,不同的物理系统只要它们的动态特性相同,其传递函数相同;3.传递函数零点和极点的概念。

(四)方块图及系统的构成1.方块图的表示方法及其构成;2.系统的构成(1)串联环节的构成及计算;(2)并联环节的构成及计算;(3)反馈环节的构成及计算;3.方块图的简化法则(1)前向通道的传递函数保持不变;(2)各反馈回路的传递函数保持不变;4.画系统方块图及求传递函数步骤。

(五)机、电系统的传递函数1.各种典型机械网络传递函数的计算及表示方法;2.各种典型电网络及电气系统传递函数的计算及表示方法;3.加速度计传递函数计算;4.直流伺服电机驱动进给系统传递函数计算。

.第3章控制系统的时域分析考核知识点:(一)时间响应1.时间响应的概念;2.瞬态响应和稳态响应的定义。

(二)脉冲响应函数1.脉冲响应函数的定义;2.脉冲响应函数与传递函数的关系;3.如何利用脉冲响应函数求系统在任意输入下的响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制就是在没有人直接参与的情况下,使被控对象的某些物理量准确地按照预期规律变化。

按照有无反馈测量装置分类,控制系统分为两种基本形式,即开换系统和闭环系统。

开环的优缺点,优点是结构简单、价格便宜、容易维修、对元器件的要求高、缺点是精度低容易受环境变化的干扰。

闭环系统也叫反馈系统,优点是精度高,可及时减小干扰引起的偏差。

缺点成本高,结构复杂,可靠性低。

对控制系统的基本要求,稳定性,快速性,准确性。

稳定性的要求是系统首要的工作条件。

传递函数在初始状态为0,线性定常系统条件下,系统输出量的拉式变换与输入量的拉氏变换之比为传递函数。

稳定性就是指动态过程的震荡倾向和系统能够恢复平衡状态的能力。

快速性这是在系统稳定的前提下提出的,是指当系统输出量和给定的输入量之间产生偏差时,消除过程的快慢程度。

准确性是指在调整过程结束后输出量和给定的输入量的之间的偏差,也叫精度,也是衡量系统工作性能的重要指标。

几何表达式,极坐标图,对数坐标图,尼科尔斯图
TR上升时间以稳态值百分之十到稳态值的百分之九十所需时间
Tp响应曲线从零上升到第一个峰值点所需时间
MP最大超调量单位跃阶输入时,响应曲线的最大峰值与稳态值的差
TS响应曲线达到并一直保持在允许误差范围内的最短时间
TD延迟时间响应曲线从零到稳态的百分之五十所需要的时间。

相关文档
最新文档