边界层分离ppt课件
合集下载
边界层理论PPT课件

第四节 平板绕流摩擦阻力计算
所以,总阻力
S LB yx
y0
1 2
C
f
2
0
LB
0.664 03B2L
另一方面,由边界层积分方程的解,也可以计算 出层流平面绕流摩擦阻力,
即由
和 x
0
3 2
y
1 2
y
3
4.64 x 4.64 x
0
Rex
可得到
x 3 1
yx y0
y y0 2 0
x
y
y
y
Y
1
p y
2 y
x2
2 y
y 2
y方向动量传输方程
注:x
t
x
x
x
y
x
y
z
z
z
X
1
p x
2x
x2
2 x
y 2
2z
z 2
第8页/共48页
第二节 方程)
平面层流边界层微分方程(普朗特边界层微分
考虑不可压缩流体作平面层流(二维流场),此时质
量力对流动产生的影响较小,则有方程组
m l
m x x
m x
d dx
l
dy x
0
x
BC面在边界层之外,流体沿x方向的速度近似等于υ0,故此由BC面流入 的动量在x方向的分量Ml
M l
m l0
0
d dx
l
dy
x
x
0
4)AD面没有质量流入、流出,但有动量通量存在,其值为τ0,故此由
AD面在单位时间内传给流体的粘性动量为τ0Δx。
2! 2 5! 4 8!
8 11!
n1
边界层分离

第三节 曲面边界层分离现象 卡门涡街
如前所述,当不可压缩黏性流体纵向流过平板时,在边界层 外边界上沿平板方向的速度是相同的,而且整个流场和边界层内 的压强都保持不变。当黏性流体流经曲面物体时,边界层外边界 上沿曲面方向的速度是改变的,所以曲面边界层内的压强也将同 样发生变化,对边界层内的流动将产生影响。曲面边界层的计算
外部流动
尾迹 外部流动 边界层
外部流动
尾迹
外部流动 边界层 (a)流线形物体;(b)非流线形物体 图5-4 曲面边界层分离现象示意图
一、边界层的分离
1、从D到E流动加速,为顺压梯度区;
流体压能向动能转变,不发生边界层分离 2、从E到F流动减速, 为逆压梯度区; E到F段动能只存在损耗,速度减小很快 3、在S点处出现粘滞 ,由于压力的升高产生
fd Sr V
(5-12)
根据罗斯柯(A.Roshko)1954年的实验结果,当 Re大于1000 时,斯特劳哈数 Sr 近似地等于常数,即Sr =0.21。 根据卡门涡街的上述性质,可以制成卡门涡街流量计
测定卡门涡街脱落频率的方法有热敏电阻丝法、超音波束法等
3.分离的条件 — 逆压梯度 4.分离的实际发生 — 微团滞止和倒流
2.分离实例
从静止开始边界层发展情况
扩张管
(上壁有抽吸)
2.分离实例
2.分离实例
二、卡 门 涡 街
圆柱绕流问题:随着雷诺数的增大边界层首先出现分离,分 离点并不断的前移,当雷诺数大到一定程度时,会形成两列几乎 稳定的、非对称性的、交替脱落的、旋转方向相反的旋涡,并随 主流向下游运动,这就是卡门涡街 卡门对涡街进行运动分析得出了阻力、涡释放频率以及斯特 罗哈数的经验公式
如前所述,当不可压缩黏性流体纵向流过平板时,在边界层 外边界上沿平板方向的速度是相同的,而且整个流场和边界层内 的压强都保持不变。当黏性流体流经曲面物体时,边界层外边界 上沿曲面方向的速度是改变的,所以曲面边界层内的压强也将同 样发生变化,对边界层内的流动将产生影响。曲面边界层的计算
外部流动
尾迹 外部流动 边界层
外部流动
尾迹
外部流动 边界层 (a)流线形物体;(b)非流线形物体 图5-4 曲面边界层分离现象示意图
一、边界层的分离
1、从D到E流动加速,为顺压梯度区;
流体压能向动能转变,不发生边界层分离 2、从E到F流动减速, 为逆压梯度区; E到F段动能只存在损耗,速度减小很快 3、在S点处出现粘滞 ,由于压力的升高产生
fd Sr V
(5-12)
根据罗斯柯(A.Roshko)1954年的实验结果,当 Re大于1000 时,斯特劳哈数 Sr 近似地等于常数,即Sr =0.21。 根据卡门涡街的上述性质,可以制成卡门涡街流量计
测定卡门涡街脱落频率的方法有热敏电阻丝法、超音波束法等
3.分离的条件 — 逆压梯度 4.分离的实际发生 — 微团滞止和倒流
2.分离实例
从静止开始边界层发展情况
扩张管
(上壁有抽吸)
2.分离实例
2.分离实例
二、卡 门 涡 街
圆柱绕流问题:随着雷诺数的增大边界层首先出现分离,分 离点并不断的前移,当雷诺数大到一定程度时,会形成两列几乎 稳定的、非对称性的、交替脱落的、旋转方向相反的旋涡,并随 主流向下游运动,这就是卡门涡街 卡门对涡街进行运动分析得出了阻力、涡释放频率以及斯特 罗哈数的经验公式
04第四章 边界层理论基础

d ρ ∫ (ux − u0 )ux dy = τ s dx 0
δ
(5—14) ) ——卡门边界层积分动量方程 卡门边界层积分动量方程
适用于层流、湍流,精度取决于 适用于层流、湍流,精度取决于ux=f(x,y) 可预先假定一个速度分布方程,如: x = a + by + cy 2 可预先假定一个速度分布方程, u 代入,求得近似解。 代入,求得近似解。
δ
0
δ
第三节 边界层积分动量方程
一、边界层积分动量方程的推导
方向流动: 只考虑 x 方向流动: d dp ρ ∫ ( u x − u0 )u x d y = τ s + l d x dx 0
作数量级分析时,有 ∂p =0 即边 作数量级分析时, 界层压力p在 方向近似不变 方向近似不变, 界层压力 在y方向近似不变,等于边界 层外面流体的压力,边界层外按理想流 层外面流体的压力, 体处理。 体处理。
∂ 2uy ∂ 2uy 1 ∂p ux + uy =− +v + 2 2 ∂x ∂y ∂y ρ ∂y ∂x
经化简后, 经化简后,得:
(4- 5a)
∂uy
∂uy
(4 - 5b)
1 ∂p ∂ 2ux ∂ux ∂ux ux + uy =− +v 2 ρ ∂x ∂x ∂y ∂y ∂ux ∂uy + =0 ∂x ∂y
d δ dux (4 - 21) ρ ∫ ux (u0 − ux )dy = µ y =0 0 dx dy 次方为例: 以3次方为例: ux = a + by + cy2 + dy3 次方为例 B.C. y = 0, ux = 0 3 2 d ux ux 3 y 1 y y = 0, =0 ⇒ = ⋅ − ⋅ (4 - 22) 2 dy u0 2 δ 2 δ
边界层理论PPT精选文档

EXIT
5.1、边界层近似及其特征
普朗特重视观察和分析力学现象,养成了非凡的直观洞察能力,善 于抓住物理本质,概括出数学方程。他曾说:“我只是在相信自己对物 理本质已经有深入了解以后,才想到数学方程。方程的用处是说出量的 大小,这是直观得不到的,同时它也证明结论是否正确。” 普朗特 指导过81名博士生,著名学者Blasius、Von Karman是其学生之一。我 国著名的空气动力学专家、北航流体力学教授陆士嘉先生(女,1911– 1986)是普朗特正式接受的唯一中国学生,唯一的女学生。
粘性流体流经任一物体(例如机翼与机身)的问题,归结 为在相应的边界条件下解N—S方程的问题。由于N—S方程太复 杂,在很多实际问题中,不能不作一些近似假设使其简化,以 求问题得以近似地解决。简化时,必须符合物理事实,因此首 先看看空气流过静止物体(例如翼型)的物理图画:
位流区
边界层
流动分为三个区域:1. 边界层:N-S化简为边界层方程 2. 尾迹区:N-S方程 3. 位流区:理想流方程
EXIT
5.1、边界层近似及其特征
2、边界层的特征
(1)边界层定义 严格而言,边界层区与主流区之间无明显界线,通常
以速度达到主流区速度的0.99倍作为边界层的外缘。由边 界层外缘到物面的垂直距离称为边界层名义厚度,用δ表 示。
(2)边界层的有涡性 粘性流体运动总伴随涡量的产生、扩散、衰减。边界
层就是涡层,当流体绕过物面时,无滑移边界条件相当于 使物面成为具有一定强度的连续分布的涡源。
对于曲率不大的弯曲物面,上述边界层方程也近似成立。 只是要将x和y按上述曲线坐标处理即可。当然如果曲率过大, 则沿法向压强保持不变的条件就很难满足了。
EXIT
5.2、平面不可压缩流体层流边界层方程
5.1、边界层近似及其特征
普朗特重视观察和分析力学现象,养成了非凡的直观洞察能力,善 于抓住物理本质,概括出数学方程。他曾说:“我只是在相信自己对物 理本质已经有深入了解以后,才想到数学方程。方程的用处是说出量的 大小,这是直观得不到的,同时它也证明结论是否正确。” 普朗特 指导过81名博士生,著名学者Blasius、Von Karman是其学生之一。我 国著名的空气动力学专家、北航流体力学教授陆士嘉先生(女,1911– 1986)是普朗特正式接受的唯一中国学生,唯一的女学生。
粘性流体流经任一物体(例如机翼与机身)的问题,归结 为在相应的边界条件下解N—S方程的问题。由于N—S方程太复 杂,在很多实际问题中,不能不作一些近似假设使其简化,以 求问题得以近似地解决。简化时,必须符合物理事实,因此首 先看看空气流过静止物体(例如翼型)的物理图画:
位流区
边界层
流动分为三个区域:1. 边界层:N-S化简为边界层方程 2. 尾迹区:N-S方程 3. 位流区:理想流方程
EXIT
5.1、边界层近似及其特征
2、边界层的特征
(1)边界层定义 严格而言,边界层区与主流区之间无明显界线,通常
以速度达到主流区速度的0.99倍作为边界层的外缘。由边 界层外缘到物面的垂直距离称为边界层名义厚度,用δ表 示。
(2)边界层的有涡性 粘性流体运动总伴随涡量的产生、扩散、衰减。边界
层就是涡层,当流体绕过物面时,无滑移边界条件相当于 使物面成为具有一定强度的连续分布的涡源。
对于曲率不大的弯曲物面,上述边界层方程也近似成立。 只是要将x和y按上述曲线坐标处理即可。当然如果曲率过大, 则沿法向压强保持不变的条件就很难满足了。
EXIT
5.2、平面不可压缩流体层流边界层方程
第5章-边界层理论基础PPT课件

第五章 边界层理论
虽然对Re很小的流动,惯性力可以忽略, 但对于Re很大的流动,粘性力却不能忽略, 否则会带来很大的误差,这是何故?
如水和空气,其粘度都很小,在处理其高
速流动时,如果忽略粘性力的影响,就会
导致与实际不符的错误结果。这个矛盾在
普兰德(Plandt)提出边界层学说之后,才获
得令人满意的解答。 -
-
20
卡门边界层方程即适用于层流,也适用 于湍流。
例:流体沿平板壁面流动时层流边界层 的计算,主要目标是边界层厚度和曳力 子数的计算
大量观察和测量得知ux与y的关系与抛 物线近似,因此可假设:
uxabycy2dy3 a,b,c,d 待定
边界条件:
-
21
y 0处ux 0 a 0
dux dy
-
5
随着边界层的厚度逐渐增加,边界层内
部也会发生变化,在边界层厚度较小处,
其内部流动为层流,该区域称为层流边
界层,当其厚度达到其临界厚度δc或临
界距离xc时,其内的流动逐渐经过一过
渡区转变为湍流,此后的边界层称为湍
流边界层,即使在这区域靠近壁面极薄
的一层流体内,仍然维持层流,称为层
流内层。
-
6
临界距离xc的长度与壁面前缘的形状、粗 糙度、流体性质和流速大小有关。壁面愈 粗糙xc愈短。
-
10
但实际中流速ux接近u0到一定程度时,便 可赋予其有应用价值的边界层厚度定义:
(1)
取ux达到u0的99%时的y值,即
ux u0
0 .9 9
处,y的值即为边界层厚度。
(2)可假设一个表示边界层内速度分布的
公式,如抛物线方程,计算当ux达到
u0时的y值,即为边界层厚度。
虽然对Re很小的流动,惯性力可以忽略, 但对于Re很大的流动,粘性力却不能忽略, 否则会带来很大的误差,这是何故?
如水和空气,其粘度都很小,在处理其高
速流动时,如果忽略粘性力的影响,就会
导致与实际不符的错误结果。这个矛盾在
普兰德(Plandt)提出边界层学说之后,才获
得令人满意的解答。 -
-
20
卡门边界层方程即适用于层流,也适用 于湍流。
例:流体沿平板壁面流动时层流边界层 的计算,主要目标是边界层厚度和曳力 子数的计算
大量观察和测量得知ux与y的关系与抛 物线近似,因此可假设:
uxabycy2dy3 a,b,c,d 待定
边界条件:
-
21
y 0处ux 0 a 0
dux dy
-
5
随着边界层的厚度逐渐增加,边界层内
部也会发生变化,在边界层厚度较小处,
其内部流动为层流,该区域称为层流边
界层,当其厚度达到其临界厚度δc或临
界距离xc时,其内的流动逐渐经过一过
渡区转变为湍流,此后的边界层称为湍
流边界层,即使在这区域靠近壁面极薄
的一层流体内,仍然维持层流,称为层
流内层。
-
6
临界距离xc的长度与壁面前缘的形状、粗 糙度、流体性质和流速大小有关。壁面愈 粗糙xc愈短。
-
10
但实际中流速ux接近u0到一定程度时,便 可赋予其有应用价值的边界层厚度定义:
(1)
取ux达到u0的99%时的y值,即
ux u0
0 .9 9
处,y的值即为边界层厚度。
(2)可假设一个表示边界层内速度分布的
公式,如抛物线方程,计算当ux达到
u0时的y值,即为边界层厚度。
流体力学第六章边界层理论(附面层理论)

减阻和节能
通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。
通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。
工程流体力学5.3曲面边界层分离现象 卡门涡街

一、曲面边界层的分离现象
在实际工程中,物体的边界往往是曲面(流线型或非流 线型物体)。当流体绕流非流线型物体时,一般会出现下 列现象:物面上的边界层在某个位置开始脱离物面, 并 在物面附近出现与主流方向相反的回流,流体力学中称这 种现象为边界层分离现象,如图5-4所示。流线型物体在 非正常情况下也能发生边界层分离,如图5-4(a)所示。
圆柱体的卡门涡街的脱落频率 f 与流体流动的速度V 和圆柱体
直径 d 有关,由泰勒(F·Taylor)和瑞利(L·Rayleigh)提出下列经验ቤተ መጻሕፍቲ ባይዱ
公式
f
V 0.198
1 19.7
(5-11)
d Re
式(5-11)适用于 250 Re 2105 范围内的流动,式中无量纲数 称为斯特劳哈(V.Strouhal)数 Sr,即
外部流动
外部流动
边界层
尾迹
外部流动
尾迹
边界层
外部流动
(a)流线形物体;(b)非流线形物体 图5-4 曲面边界层分离现象示意图
一、边界层的分离
1、从D到E流动加速,为顺压梯度区; 流体压能向动能转变,不发生边界层分离 2、从E到F流动减速, 为逆压梯度区; E到F段动能只存在损耗,速度减小很快 3、在S点处出现粘滞 , 由于压力的升高产生回流 导致边界层分离,并形成尾涡。
第三节 曲面边界层分离现象卡门涡街
如前所述,当不可压缩黏性流体纵向流过平板时,在边界层 外边界上沿平板方向的速度是相同的,而且整个流场和边界层内 的压强都保持不变。当黏性流体流经曲面物体时,边界层外边界 上沿曲面方向的速度是改变的,所以曲面边界层内的压强也将同 样发生变化,对边界层内的流动将产生影响。曲面边界层的计算 是很复杂的,这里不准备讨论它。这一节将着重说明曲面边界层 的分离现象。
边界层及其分离

是由于粘性造成的。
★ 理想流假设撇开粘性来处理问题是一种很有价值的合乎逻辑的 抽象,可成功解决与粘性关系不大的升力等问题,而与粘性关
系密切的阻力等问题则需用粘性流体力学及其简化理论来解决
2018/8/18
5.2 粘 流
5.2 粘流的流动状态
(1)雷诺试验,1883
① 小V,稳定直线,界限分明
② V↑,波纹,横向运动和振荡
如果作用面的法线方向与坐标轴重合,则合应力可分解为
三个分量,分别为法应力分量和切应力分量。
2018/8/18
粘性流体的应力状态
由此可见,用两个下标可把各个应力分量的作用面方位和投影方向表
示清楚。其中第一个下标表示作用面的法线方向,第二个下标表示应
力分量的投影方向。
从而三个面的合应力可表示为 x面 : x xxi xy j xz k y面 : y yxi yy j yz k z面 : z zx i zy j zz k 如果在同一点上给定三个相互垂直坐标面上的应力,那么过该点任意 方向作用面上的应力可通过坐标变换唯一确定。
u x
连续性方程代入
( )=0):
yy p 2
zz p 2
v
v y
w z
不论是否可压缩流体, 本构关系都满足:
p
xy x y
yz y z
w v
u
xx yy zz
3
zx
u w z x
2018/8/18
5.4 粘性流体运动方程---Navier-Stokes方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
13
在分离点之后,会形成尾涡区,同时在物体后端还 会出现具有涡旋运动的尾流,从而导致了物体形体 阻力Fdf的产生。
由于湍流边界层分离点较层流边界层靠后,故形成 尾流较小,形体阻力也较小,但并不意味着总阻力 较层流小。
像圆柱这样具有凸形的物体所产生的阻力都主要来 自自由压差所引起的形体阻力,只有在低Re下才考 虑摩擦阻力。
2.8.2 边界层分离
1
不同形状物体表面上的边界层特征各不相同。
对于平壁板面,其边界层以外的流动是均匀的, 无速度梯度,也无压力梯度的。其边界层内压力在垂 直于流动方向上的变化可以忽略,所以,在同一x距离 处,边界层内外的压力均相同。
若在流动方向上的通道截面积发生变化(收缩或 者扩张),则边界层外的速度和压力沿流动方向均会 发生变化,它将对边界层内的流动有显著影响。正是 由于边界层内的压力沿流动方向的急剧变化,引起了 边界层分离这一重要现象。
8
对比理想流体和不可压缩流体经过圆柱体
9
总结:
1、分离过程:在顺压梯度区(B点前):流体加速 在逆压梯度区(B点后):BP段减速→P点停止→P点后倒流。
2、分离的原因 — 黏性 3、分离的条件 — 存在逆压梯度,且压力梯度与剪应力梯度相比足够大。 4、分离的实际发生 — 微团滞止和倒流
停滞点A的速度为零,压力最大;从A 到B,流速逐渐增加,压力逐渐减小,至B 点,速度达到最大值,压力则为最小值。
4
5
过了B点,流速开始减慢,主流体和
边界层流体均处于减速、增加状态,称为
逆向压力梯度,即 dux 0, dp 。0
dx
dx
在剪应力和逆向压力梯度的双重作用 下,边界层流体的动能逐渐消耗殆尽,而 形成一个新的停滞点P,在该点处速度为 零,压力达到极大值。
6
边界层分离
由于流体是不可压缩的,故后续 流体到达P点时,在高压作用下被迫离 开壁面和原流线方向,将自身部分静 压能转变为动能,脱离壁面并沿另一 条新流线方向向下游流去。
这样,在P点的下游就形成了空白 区,在逆向压力梯度的作用下,必有 一股倒流的流体补充进来,但它们又 不能靠近处于高压下的点P而被迫退回, 形成涡旋。
粘性流体在压力降低区内流动(加速流动), 决不会出现边界层的分离,只有在压力升高区内流 动(减速流动),才有可能出现分离,形成漩涡。 尤其是在主流减速足够大的情况下,边界层的分离 就一定会发生。
10
2.8.2.2边界层分离条件
如上所诉,在边界层分离点前流线图形与理想流体基本相 似,而分离点后则发生了实质性的改变。相应的压力分布也发 生了很大变化,它转而又影响到产生边界层分离的条件。
物体表面为流线型或平壁时,总阻力则以摩擦阻力 为主,形体阻力反而可以忽略不计。
14
分离实例
最终分离点的位置将取决于最终的压力分布和速度分布, 而不是取决于最初的流线图形。
11
如图2-29,在分离点P处,速度分布曲线在壁面处的切线正 好与壁面垂直。
若流体速度较小,在圆柱体壁面形成的边界层为层流边界层 时,分离点将逐渐向上游移。如图2-30(a)
若流速较大,在在圆柱体壁面形成的边界层为湍流边界层时, 分离点位置更加靠后。如图2-30(b)
2
边界层分离(Boundary Layer Separation)
在某些情况下,边界层内流体发成倒流,引起边界层与 固定壁面的分离,并同时产生涡旋的现象。
边界层分离是造成流体能量损失的主要原因之一。
3
2.8.2.1 边界层分离的形成过程
理想流体流经无限长圆柱体
因流体无黏性,其在整个流场均无能 量损失,在圆柱四周的压力分布和速度分 布完全对称
7
边界层分离
通常将上述边界层脱离壁面的现象称为——边界层分离。 点P称为分离点——紧靠边壁的边界层中顺流和倒流之间的
分界线。 在P点有: ux 0
y y0 在分离点之后,顺流和倒流两区间必然存在一个分界面——
分离面。它是不稳定的,任何微小的扰动,都会造成它的破 裂,而发展成涡旋。
13
在分离点之后,会形成尾涡区,同时在物体后端还 会出现具有涡旋运动的尾流,从而导致了物体形体 阻力Fdf的产生。
由于湍流边界层分离点较层流边界层靠后,故形成 尾流较小,形体阻力也较小,但并不意味着总阻力 较层流小。
像圆柱这样具有凸形的物体所产生的阻力都主要来 自自由压差所引起的形体阻力,只有在低Re下才考 虑摩擦阻力。
2.8.2 边界层分离
1
不同形状物体表面上的边界层特征各不相同。
对于平壁板面,其边界层以外的流动是均匀的, 无速度梯度,也无压力梯度的。其边界层内压力在垂 直于流动方向上的变化可以忽略,所以,在同一x距离 处,边界层内外的压力均相同。
若在流动方向上的通道截面积发生变化(收缩或 者扩张),则边界层外的速度和压力沿流动方向均会 发生变化,它将对边界层内的流动有显著影响。正是 由于边界层内的压力沿流动方向的急剧变化,引起了 边界层分离这一重要现象。
8
对比理想流体和不可压缩流体经过圆柱体
9
总结:
1、分离过程:在顺压梯度区(B点前):流体加速 在逆压梯度区(B点后):BP段减速→P点停止→P点后倒流。
2、分离的原因 — 黏性 3、分离的条件 — 存在逆压梯度,且压力梯度与剪应力梯度相比足够大。 4、分离的实际发生 — 微团滞止和倒流
停滞点A的速度为零,压力最大;从A 到B,流速逐渐增加,压力逐渐减小,至B 点,速度达到最大值,压力则为最小值。
4
5
过了B点,流速开始减慢,主流体和
边界层流体均处于减速、增加状态,称为
逆向压力梯度,即 dux 0, dp 。0
dx
dx
在剪应力和逆向压力梯度的双重作用 下,边界层流体的动能逐渐消耗殆尽,而 形成一个新的停滞点P,在该点处速度为 零,压力达到极大值。
6
边界层分离
由于流体是不可压缩的,故后续 流体到达P点时,在高压作用下被迫离 开壁面和原流线方向,将自身部分静 压能转变为动能,脱离壁面并沿另一 条新流线方向向下游流去。
这样,在P点的下游就形成了空白 区,在逆向压力梯度的作用下,必有 一股倒流的流体补充进来,但它们又 不能靠近处于高压下的点P而被迫退回, 形成涡旋。
粘性流体在压力降低区内流动(加速流动), 决不会出现边界层的分离,只有在压力升高区内流 动(减速流动),才有可能出现分离,形成漩涡。 尤其是在主流减速足够大的情况下,边界层的分离 就一定会发生。
10
2.8.2.2边界层分离条件
如上所诉,在边界层分离点前流线图形与理想流体基本相 似,而分离点后则发生了实质性的改变。相应的压力分布也发 生了很大变化,它转而又影响到产生边界层分离的条件。
物体表面为流线型或平壁时,总阻力则以摩擦阻力 为主,形体阻力反而可以忽略不计。
14
分离实例
最终分离点的位置将取决于最终的压力分布和速度分布, 而不是取决于最初的流线图形。
11
如图2-29,在分离点P处,速度分布曲线在壁面处的切线正 好与壁面垂直。
若流体速度较小,在圆柱体壁面形成的边界层为层流边界层 时,分离点将逐渐向上游移。如图2-30(a)
若流速较大,在在圆柱体壁面形成的边界层为湍流边界层时, 分离点位置更加靠后。如图2-30(b)
2
边界层分离(Boundary Layer Separation)
在某些情况下,边界层内流体发成倒流,引起边界层与 固定壁面的分离,并同时产生涡旋的现象。
边界层分离是造成流体能量损失的主要原因之一。
3
2.8.2.1 边界层分离的形成过程
理想流体流经无限长圆柱体
因流体无黏性,其在整个流场均无能 量损失,在圆柱四周的压力分布和速度分 布完全对称
7
边界层分离
通常将上述边界层脱离壁面的现象称为——边界层分离。 点P称为分离点——紧靠边壁的边界层中顺流和倒流之间的
分界线。 在P点有: ux 0
y y0 在分离点之后,顺流和倒流两区间必然存在一个分界面——
分离面。它是不稳定的,任何微小的扰动,都会造成它的破 裂,而发展成涡旋。