圆锥曲线中斜率乘积问题为定值的问题

合集下载

第6章 斜率之积为定值一 wps

第6章 斜率之积为定值一 wps

第6章 斜率之积为22b a-2222222222b b b b b a a a a a ⎧⎪⎪⎪⎧-⎪⎨⎪⎩⎪⎪⎧-⎨⎪⎪⎪⎪⎪⎪-⎨-⎪⎪⎪⎪⎪⎪-⎪⎩⎩中点弦椭圆中斜率之积斜率之积双曲线中斜率之积轨迹问题(一)斜率之积轨迹问题(二)斜率之积得应用与有关的定值问题(一)与有关的定值问题(二)本章主要探究圆锥曲线中两条相交直线的斜串之积为22b a -的等价条件,以及充分或必要条件。

6.1节聚焦于中点弦问题;6.2节阐述圆锥曲线斜率之积为22b a-这一问题;6.3节探索满足这一条件的点的轨迹方程。

读完本章,你会意识到其中的结论是多么方便实用,但我们却不希望这些结论仅仅只起到“结论”的作用,我们更希望引导你形成自主探索式的学习思维!6.1中点弦直线与圆锥曲线相交时,若出现了直线的斜率与线段的中点等字眼,则这样的题型往往可以避免使用韦达定理来计算。

对于这个类型的题,首先设出弦的两端点然后代入圆锥曲线并将两式相减,这样就直接联系了中点与直线的斜率的关系,我们把这个方法叫做点差法。

【例6.1】 (2017全国1文 20改编)设A,B 为曲线2:4C x y =上两点,点A 与点B 的横坐标之和为4,则直线AB 的斜率为____【分析】由于点A 与点B 的横坐标之和为4,故求解直线AB 的斜率,只需代入点作差。

【解析】设()()1122,,?,A x y B x y ,因为A,B 是椭圆上两点,所以代入得22211212122244()4x y x x y y x y ⎧=⇒-=-⎨=⎩ 整理可得212121()()4y y x x x x -+=-,由题意212121()41()y y x x x x -+=⇒=-,可得直线AB 的斜率为1.故填1.【例 6.2】 (2018 全国Ⅲ 文理 20)已知斜率为k 的直线l 与椭圆22:143x y C +=交于A,B 两点,线段AB 的中点为(1,)(0)M m m >。

圆锥曲线中的一类定值问题

圆锥曲线中的一类定值问题

结论5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,过点(2,0)Q a -且斜率为11(0)k k ≠的直线l 与椭圆C 交于两点,P M ,点M 关于原点的对称点为N ,设直线PN 的斜率为2k ,则12k k 的值为_________.6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率22e =,且与直线:3l y x =+相切.(1)求椭圆的标准方程;(2)过椭圆上点(2,1)A 作椭圆的弦AP ,AQ ,若AP ,AQ 的中点分别为M ,N ,若MN 平行于l ,则OM ,ON 斜率之和是否为定值?7.已知A 、B 是双曲线()22122:10,0x y C a b a b -=>>的两个顶点,点P 是双曲线上异于A 、B 的一点,O为坐标原点,射线OP 交椭圆()22222:10x y C a b a b+=>>于点Q ,设直线PA 、PB 、QA 、QB 的斜率分别为1k 、2k 、3k 、4k .(1)若双曲线1C 的渐近线方程是12y x =±,且过点15,2⎛⎫ ⎪⎝⎭,求1C 的方程;(2)在(1)的条件下,如果12158k k +=,求ABQ ∆的面积;1122(,),(,x y B x y 也为定值.【答案】B【详解】由抛物线的定义知02pMF y =+,则00524p y y +=,解得02y p =,又点()01,M y 在抛物线C 上,代入2:2C x py =,得021py =,得01y =,12p =,所以()1,1M ,抛物线2:C x y =,因为斜率为k的直线l 过点()1,3Q -,所以l 的方程为()31y k x -=+,联立方程得()231y k x x y⎧-=+⎨=⎩,即230x kx k ---=,设()11,A x y ,()22,B x y ,由根与系数的关系得12123x x kx x k +=⎧⎨=--⎩,则直线AM 的斜率2111111AMx k x x -==+-,直线BM 的斜率2222111BM x k x x -==+-,()()121212111312AM BM k k x x x x x x k k =++=+++=--+=-.2.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【详解】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为y =±34x ,直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图,所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -==…………(2),由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=.3.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【答案】A【详解】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-,由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ ,解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+- 1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120my my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++,代入(*)得121293433y y x y y -+==-, 14yk x =+,22y k x =+ ,122211443k x k x x +∴==-=++.4.如图,已知抛物线24y x =的焦点为F ,过点(2,0)P 的直线交抛物线于AB 两点,直线AF ,BF 分别与抛物线交于点M 、N ,记直线MN 的斜率为1k ,直线AB 的斜率为2k ,则12k k =________.【答案】2【详解】()11,A x y ,()22,B x y ,()33,M x y ,()44,N x y ,则3411223412y y k x x k x x y y --=⋅--2212342234124444y y y y y y y y --=⨯--1234y y y y +=+,设直线AM 的方程为1x ny =+,将其代入24y x =,消去x ,整理得2440y ny --=,∴134y y =-,同理可得424y y =-,有112121223412444k y y y y y yk y y y y ++===--+-+,设直线AB 的方程为2x my =+,代入24y x =,整理得2480y my --=,∴128y y =-,∴11228244k y y k -===--.5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,过点(2,0)Q a -且斜率为11(0)k k ≠的直线l 与椭圆C 交于两点,P M ,点M 关于原点的对称点为N ,设直线PN 的斜率为2k ,则12k k 的值为_________.【答案】12-【详解】设()11,P x y ,()22,M x y ,则()22,N x y --,∴12112y y k x x -=-,12212y y k x x +=+,∴椭圆的离心率22c e a ==,∴2a c =,又222a b c =+,∴22a b c ==,∴椭圆的方程可化为22222x y b +=, ∴直线l 与椭圆C 交于两点,P M ,∴2221122x y b +=,2222222x y b +=,作差得()()2222121220x x y y -+-=,即()()222212122x x y y -=--,∴12121212122122221212y y y y y x y k k x x x x x -+=⋅-=--=-+, 6.已知椭圆2222:1(0)x y C a b a b +=>>的离心率22e =,且与直线:3l y x =+相切.(1)求椭圆的标准方程;(2)过椭圆上点(2,1)A 作椭圆的弦AP ,AQ ,若AP ,AQ 的中点分别为M ,N ,若MN 平行于l ,则OM ,ON 斜率之和是否为定值?【答案】(1)22163x y +=(2)OM ,ON 斜率之和是为定值0.【解析】(1)根据题意知,222222112b a c e a a -==-=,即222a b =,由2222312y x x y bb =+⎧⎪⎨+=⎪⎩,消去y 可得223121820x x b ++-=,因为椭圆2222:1(0)x y C a b a b+=>>与直线:3l y x =+相切,所以判断式()2144431820b ∆=-⨯-=,解得23b =,则26a =,所以椭圆的标准方程为22163x y +=. (2)因为AP ,AQ 的中点分别为M ,N ,直线MN 平行于l ,所以1Q MN P K K ==,2也为定值.。

经典:斜率乘积为定值问题

经典:斜率乘积为定值问题

2.热身练习
(数学之友P40第3题)
推广:
1 3
椭 圆 k1 • k2=
b2 a2
双 曲 线 k1 • k2=
b2 a2
圆 k1 • k2= 1
3.例题讲解
例题1
(数学之友P46第5题)
一般结论:过椭圆 x2 a2
+
y2 b2
= 1一点定p(x0 ,
y0 )
的直线l1, l2分别交椭圆与A,B。若kl1 kl2 = m
斜率乘积为定值问题
1.回归课本
选修2-1 P39第4题
在 A B C 中 , B ( 6, 0) , C ( 6, 0) 直 线 AB, AC 的 斜 率 乘 积 为 9 4, 求 顶 点 A 的 轨 迹 方 程 。
变式1
:9改为-9
4
4
变式2 : 9 4改为m (m0)
变式3:乘积 改为 差 (教材2-1 P59) 抛物线
(ⅱ) y1y2 2
(
x1x2 )2 2
x12 2
x22 2
(1
y12)(1
y22)
1 (y12 y22) y12y22,故y12 y22 1.
又( x12 2
y12
)
(
x22 2
y22)
2,故x12
x22
2.
所以OA2 OB2 x12 y12 x22 y22 3.
评析:本题第(1)问主要考查椭圆及圆的几何性质的应 用;第(2)问是定值问题,切入的关键在于设三点A, B,M的坐标,通过向量条件及三点在椭圆上,寻求 出三来自坐标间的关系,从而使问题获解 。
2
ⅰ( )设
A
(
x1,
y1

圆锥曲线专题:定值问题的7种常见考法(原卷版)

圆锥曲线专题:定值问题的7种常见考法(原卷版)

圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。

2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。

二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。

三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。

四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。

圆锥曲线中斜率之积(和)为定值问题--沈烨

圆锥曲线中斜率之积(和)为定值问题--沈烨

含x与y的式子“点差法”消元
对未知数进行化简或整体代换(特别对于 含 x1 x2, x1x2型的可用韦达定理来代入
题型二 斜率之和为定值
消y
x1 x2 , x1x2型
探究实践、拓展提升
消y
x1 x2 , x1x2型
探究实践、拓展提升
求出坐标 隐含条件
探究实践、拓展提升
隐含条件 消y
1.斜率之积(和)为定值问题的解决策略是什么? 2.这类题的主要思想方法是什么?
题型一 斜率之积为定值
消x or y
y1 y2 , y1 y2型
韦达定理 整体代入


特 殊
不 求
到整
一体
般代

题型一 斜率之积为定值 合理选择直线的设法可避免分类讨论,简化运算
题型一 斜率之积为定值
消y后整 体消除
题型二 斜率之和为定值
x1 x2 , x1x2型
消y
定值问题常用方法: 一般是在一些动态的事物(如动点、动直 线、动弦、动角、动圆、动三角型等)中 寻求不变量. (1)从特殊入手,求出定值,再证明这个 值与变量无关
3.做好这类题还需要什么?
探究实践、拓展提升
知识回顾 Knowledge Review
祝您成功!







填空21 离心率 选15 离心率 选14 离心率 选14 离心率
解答24
直线与 填19 椭圆位 置关系
(面积)
抛物线 填20 性质
椭圆性 填20 质
双曲线 性质
解答24
直线与 椭圆位 置关系
(斜率 之和)
解答24
直线与 解答24 抛物线 位置关 系(斜 率之积)

圆锥曲线题型技巧--- 斜率定值问题

圆锥曲线题型技巧--- 斜率定值问题
圆锥曲线题型技巧---斜率定值问题
一、解答题
1.如图,在平面直角坐标系
2
2
中,椭圆 2 + 2 = 1( >
> 0)的右焦点为
(1,0),离心率为
2.分别过
2

的两条弦 , 相交于点 (异于 , 两点),且 = .
(1)求椭圆的方程;
(2)求证:直线 , 的斜率之和为定值.
2
【答案】(1) +
2 = 1;(2)详见解析.
,

同理由③得
y2 1 x2 2
4
x2 2
y2 1
,

由①④⑤得
x1 2
4 y1 1
x2 2
4 y2 1
0
,
化简得 x1y2 x2 y1 x1 x2 2 y1 y2 4 0 , ⑥
由①得 x1 y2 x2 y1 x1 x2 2 y1 y2 4 0 , ⑦
4 − 1)
= ⋅ 2( 1 2− 3 4)−( 1+ 2)+( 3+ 4)13 分
( 1− 3)( 2− 4)
= 0. 16 分
=
⋅ 2( 2
−2 2+
1

2( 2
( 1−
2 2
− +
1) 1
)

0
+
2
3)( 2 − 4)
4
2
2
+1
考点:直线与椭圆的位置关系
点评:主要是考查了直线椭圆的位置关系的运用,属于基础题。
4k 2 1
x2 8kbx 4b2 8 0 ,
(**)
82

x1

圆锥曲线中斜率之积(和)为定值问题 ppt课件

圆锥曲线中斜率之积(和)为定值问题  ppt课件

ppt课件
8
主要方法:设而不求 整体代入
设而不求-----多个变量
整体代入-----减少变量
关键是消元
含x与y的式子统一消元 为只含x或y的式子
含x与y的式子“点差法”消元
对未知数进行化简或整体代换(特别对于 含 x1 x2, x1x2型的可用韦达定理来代入
ppt课件
9
题型二 斜率之和为定值
消y
ppt课件
7
定值问题常用方法: 一般是在一些动态的事物(如动点、动直 线、动弦、动角、动圆、动三角型等)中 寻求不变量.
(1)从特殊入手,求出定值,再证明这个 值与变量无关
(2)直接推理,计算,并在计算推理过程 中消去变量,从而得到定值
设而不求思想:
在解决数学问题时,先设定一些未知数, 然后把它们当成已知数,根据题目本身 的特点,将未知数消去或代换,使问题 的解决变得简捷。
消y
x1 x2 , x1x2型
ppt课件
10
探究实践、拓展提升
消y
x1 x2 , x1x2型
ppt课件
11
探究实践、拓展提升
求出坐标
隐含条件
ppt课件
12
探究实践、拓展提升
隐含条件 消y
ppt课件
13
1.斜率之积(和)为定值问题的解决策略是什么? 2.这类题的主要思想方法是什么?
3.做好这类题还需要什么?







填空21 离心率 选15 离心率 选14 离心率 选14 离心率
解答24
直线与 填19 椭圆位 置关系
(面积)
抛物线 填20 性质
椭圆性 填20 质

圆锥曲线中的定值定点问题

圆锥曲线中的定值定点问题

2019届高二文科数学新课改试验学案(10)---圆锥曲线中的定值定点问题1.已知椭圆()2222:10x y C a b a b +=>> 的离心率为2,点(在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.2.已知椭圆C :22221x y a b +=过点A (2,0),B (0,1)两点.(I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.3.椭圆()2222:10x y C a b a b +=>>的离心率为12,其左焦点到点()2,1P (I )求椭圆C 的标准方程(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标.<圆锥曲线中的定值定点问题>答案1.【答案】(I )2222184x y +=(II )见试题解析试题解析:【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.32c e a ==.从而四边形ABNM 的面积为定值.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.3.解:(1)1::2:2c e a b c a ==⇒=,设左焦点()1,0F c -1PF ∴==,解得1c =2,a b ∴==∴椭圆方程为22143x y += (2)由(1)可知椭圆右顶点()2,0D设()()1122,,,A x y B x y ,以AB 为直径的圆过()2,0D DA DB ∴⊥即DA DB ⊥ 0DA DB ∴⋅=()()11222,,2,DA x y DB x y =-=-()()()121212*********DA DB x x y y x x x x y y ∴⋅=--+=-+++= ①联立直线与椭圆方程:223412y kx m x y =+⎧⇒⎨+=⎩()()222348430k x mkx m +++-= ()2121222438,4343m mk x x x x k k -∴+=-=++ ()()()2212121212y y kx m kx m k x x mk x x m ∴=++=+++()22222222438312434343k m mk mk m k m k k k -⋅-=-+=+++,代入到① ()222222438312240434343m mk m k DA DB k k k --⋅=+⋅++=+++ 22222412161612312043m mk k m k k -++++-∴=+ ()()22716407220m mk k m k m k ∴++=⇒++=27m k ∴=-或2m k =- 当27m k =-时,22:77l y kx k k x ⎛⎫=-=- ⎪⎝⎭ l ∴恒过2,07⎛⎫ ⎪⎝⎭当2m k =-时,():22l y kx k k x =-=- l ∴恒过()2,0,但()2,0为椭圆右顶点,不符题意,故舍去l∴恒过2,0 7⎛⎫ ⎪⎝⎭3.(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线中斜率乘积问题
为定值的问题
Prepared on 24 November 2020
经典题突破方法---圆锥曲线中斜率乘积为定值的问题
温县第一高级中学数学组 任利民
问题1:平面上一动点(,)P x y 与两点(2,0),(2,0)A B -的连线的斜率之积是
3
4-
,求点P 的轨迹方程221(2)43x y x +=≠± .
问题2:椭圆22
143x y +=上任一点P 与两点(2,0),(2,0)A B -的连线的斜率之
积是
1234k k =-
.
探究:(1)已知椭圆22
221x y a b +=上两点(,0),(,0)A a B a -,椭圆上任意异于
A 、
B 的点P 与A 、B 连线的斜率之积是 2
2
b a -.
(2)已知椭圆22
221x y a b +=上两点(0,),(0,)A b B b -,椭圆上任意异于A 、B 的
点P 与A 、B 连线的斜率之积是 2
2
b a -.
(3)已知椭圆22
221x y a b +=上两定点0000(,),(,)A x y B x y --,椭圆上任意异
于A 、B 的点P 与A 、B 连线的斜率之积是 2
2
b a -.
结论1.设 A 、B 是椭圆22
221(0)x y a b a b +=>>上关于原点对称的两点,点P 是
该椭圆上不同于A ,B 的任一点,直线PA ,PB 的斜率分别为k1,k2,则
2
122
b k k a =-.
探究:(3)设 A 、B 是双曲线22
221(0)x y a b a b -=>>上关于原点对称的两点,
点P 是该双曲线上不同于A ,B 的任一点,直线PA,PB 的斜率是k1,k2,猜想k1k2是否为定值并给予证明.
结论2.设 A 、B 是双曲线22
221(0,0)x y a b a b -=>>上关于原点对称的两点,点
P 是该双曲线上不同于A ,B 的任一点,直线PA ,PB 的斜率分别为k1,k2,

2
122
b k k a =. 应用拓展:
1.设椭圆22
221(0)x y a b a b +=>>
,A B ,点P 在椭圆上且异于,A B 两点,若直线AP 与斜率之积为12
-,则椭圆的离心率为 .
解析:利用k AP ·k BP =22b a -,可以得到2c e a ====.
2.椭圆C:22
143x y +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 斜
率的取值范围是[2,1]-- ,那么直线1PA 斜率的取值范围是
A. 13[,]24
B. 33[,]84
C. 1[,1]2
D. 3
[,1]4
解析:因为122
2
34
PA PA b k k a ⋅=-
=-,所以123
4PA PA k k -
= ,∵2
[2,1]PA k ∈--
∴133
[,]84
PA k ∈,故选B.
3.如图2,在平面直角坐标系xOy中,F1,F2分别为椭圆22
22
1(0)
x y
a b
a b
+=>>的左、
右焦点,B、C分别为椭圆的上、下顶点,直线BF2与椭圆的另一交点为D.若cos∠F1BF2

7
25,则直线CD的斜率为.
解析:由已知可得2
122
7
cos cos2cos1
25
F BF OBF
∠=∠-=,所以
2
4
cos
5
b
OBF
a
∠==,所以
3
5
c
a
=,又因为
BD
b
k
c
=-,且
BD CD
k k⋅=
2
2
b
a
-,所以
2
2
CD
b b
k
c a
-⋅=-,即
4312
5525
CD
b c
k
a a
=⋅=⋅=.
3.已知椭圆
2
2
:1
2
x
C y
+=,点
125
,,,
M M M为其长
轴AB的6等分点,分别过这五点作斜率为(0)
k k≠的一
组平行线,交椭圆C于点
1210
,,,
P P P,则这10条直线
1
AP,
210
,,
AP AP的斜率的乘积为1
32
-
.
P
10
P
9
P
8
P
7
P
6
P
5
P
4
P
3
P
2
P
1
y
x
B
A O。

相关文档
最新文档