解析几何中斜率之积为定值的问题探究
专题7.13:解析几何中五类定点定值问题的研究与拓展

过点 (1,0).若对任意的实数 m,定直线 l 被圆 C 截得的弦长为定值,则直线 l 的方程为
________. 2x+y-2=0
【探究拓展】
探究 1:已知 F1 、 F2 分别为椭圆 C1 :
( 1) 若 直 线 l 过 点 A(4, 0) , 且 被 圆 C1 截 得 的 弦 长 为 线 l 的方程;
2 3,求直
(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互
相垂直的直
线 l1 和 l2 ,它们分别与圆 C1 和圆 C2 相交,且直线 l1 被圆 C1 与直线 l2 被圆 C2 截得的弦长相等,试求所有满足条件的点
又
|
MF1
|
5 3
,则y015 ……②,3
由①②解得 x0
2 6 3
, y0
2 3
椭圆 C1 的两个焦点 F1(0,1) , F2 (0, 1) ,点 M 椭圆上,
由椭圆定义 2a | MF1 | | MF2 |
( 2 6 0)2 ( 2 1)2
3
3
( 2 6 0)2 ( 2 1)2 4
(x
x1 ,
y
y1 )
( x2
x,
y2
y)
,即
x1
y1
x2 y2
(1 )x (1 ) y
⑤ ⑦得 : x12 2 x22 (1 2 )x
⑥ ⑧得 : y12 2 y22 3y(1 2 ) 两 式 相 加 得
微专题:椭圆中斜率之积为定值的问题探究

微专题:解析几何中斜率之积为定值(2221ab k k -=•)的问题探究【教学重点】掌握椭圆中2221ab k k -=•的形成的路径探寻及成果运用理性判断【教学难点】运算的设计和化简活动一:2221ab k k -=•形成的路径探寻1. 若AB 是椭圆)0(12222>>=+b a by a x 上的不过原点的弦,点P 是弦AB 的中点,且直线OP,AB的斜率都存在,求PO ABK K •.【解析】 :设点()0,y x P,()11,y x A ,()22,y x B ,则有;;)2(1)1(1222222221221=+=+bya xb y a x (代点作差)将①式减②式得,,,所以所以,即22ab K K POAB-=•.【结论形成总结】【结论1】 若AB 是椭圆)0(12222>>=+b a by a x 上的非直径的弦,点P 是弦AB 的中点,且直线OP,AB 的斜率都存在,则1222-=-=•e ab K K POAB .2.已知AB 是椭圆)0(12222>>=+b a by a x 上过原点的弦,点P 是椭圆异于A,B 的任意一点,若直线PA,PB 的斜率都存在,记直线PA,PB 的斜率分别为21k k ,.求21k k •的值。
【解法1】:设()0,y x P,()11,y x A 又因为A,B 是关于原点对称,所以点B 的坐标为()11-,-y x B ,所以212021201010101021x x y y x x y y x x y y k k --=++•--=•.又因为点()00,y x P ,()11,y x A 在椭圆上,所以有;;)2(1)1(1221221220220=+=+b y a x b y a x两式相减得,2221202120-ab x x y y =--,所以2221ab k k -=•.【方法小结】本解法从设点入手,利用“点在曲线上”代点作差使用“点差法”。
解答题题型归纳之解析几何(解析版)

专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b +y 2a =1,由已知条件推导出a 2=b 2+50,6b 2a +9b =12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b +y 2a =1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k −2>3,即有(k 2+1)(k−2)k −2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m (3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =2=2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a +1b =1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k ,x 1x 2=−21+2k ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k =21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|22=√2,即|−1+p2|2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)2,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =2√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a +12b =1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。
解析几何中的定点、定值问题教案(定稿)

解析几何中一类定点和定值的问题【教学目标】(l)通过圆的直径的一个简单性质类比到椭圆,学生能通过自主探究得到椭圆的直径的一个性质;(2)会从不同视角证明这个性质;(3)能证明性质成立的充要条件,并能利用性质解决相关问题;(4)通过问题解决领悟其中蕴涵的数学思想方法,在探究与发现中体验数学之美.【教学难、重点】解题思路的优化.【教学方法】探究式、讨论式【教学过程】一、回归问题背景,追溯题根本质。
选修2-1课本(人教版)第41页上例3的一个问题:设点A ,B 的坐标分别为(-5,0)(5,0),直线,AM 、BM 相交于点M ,且它们的斜率之积为94-,求点M 的轨迹方程。
(斜率之积为94,则为教材55页探究问题) 请同学们思考:问题1 设点A ,B 的坐标分别为(-2,0)(2,0),直线AM 、BM 相交于点M ,且它们的斜率之积为41-(或41),求点M 的轨迹方程。
答案1422=+y x (y ≠0)(第41页例2)(或1-422=y x (y ≠0)) 你本题采用直接法求轨迹方程,最终发现动点M 的轨迹是双曲线,而且注意到斜率这样一个条件,因此要剔除x 轴上的点,非常好!请同学们继续思考,如果将直线,AM 、BM 的斜率乘积改为-1,则定点M 的轨迹如何? (为了了解学生对此方法的掌握情况,教师指定一名学生回答)变式:设点A ,B 的坐标分别为(-2,0)(2,0),直线AM 、BM 相交于点M ,且它们的斜率之积为-1,求点M 的轨迹方程。
答案422=+y x (y ≠0)(可用几何法)通过以上问题,你有什么发现?学生讨论交流后提出了发现:设点A ,B 的坐标分别为(-2,0)(2,0),直线,AM 、BM 相交于点M ,且它们的斜率之积为k ,求点M 的轨迹方程。
的轨迹可以是直线、圆、椭圆、双曲线等等(剔除某些点)设计意图 作为本节课的引入,问题直接源自课本,入口浅,能有效激发学生兴趣,为后续学习奠定情感基础;另一方面也统领本节课,为接下来的学习埋下伏笔,留下悬念,有利于学生主动去探索研究,可谓寓意深刻值得一提的是,问题提问注意了差异性教学,有些问题鼓励学生自己回答(素质教好学生);有些问题则指定学生回答(如一名中等生,学困生)二、 提出目标 明确任务什么是定值问题:在变化过程中存在不变量的问题,今天研究解析几何中的定值问题.思考一问题1.设点A ,B 的坐标分别为(-2,0)(2,0),M (与A,B 不重合)为圆422=+y x 的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?问题2.点A,B 为椭圆1422=+y x 长轴上的两个顶点.M (与A,B 不重合)为椭圆的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?问题3.点A,B 为双曲线1-422=y x 实轴上的两个顶点.M (与A,B 不重合)为双曲线的任意一点,则直线AM 、BM 的斜率之积是不是定值,如果是定值求出定值?通过几何画板探究结论,要求学生观察完后进行证明。
微专题:椭圆中斜率之积为定值的问题探究

微专题:椭圆中斜率之积为定值的问题探究微专题:解析几何中斜率之积为定值的问题探究教学重点】掌握椭圆中斜率之积为定值的运算设计和化简。
教学难点】如何理性判断问题的路径探寻及成果运用。
活动一:斜率之积为定值的路径探寻假设AB是椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$上的一条不过原点的弦,点P是弦AB的中点,且直线OP和AB的斜率都存在,求$K_{AB} \cdot K_{PO}$。
解析】设点$P(x,y)$,$A(x_1,y_1)$,$B(x_2,y_2)$,则有$\frac{1}{2}\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{a^2-b^2}$(代点作差)。
将$AB$的斜率$k_{AB}$表示为$\frac{y_1-y_2}{x_1-x_2}$,$OP$的斜率$k_{OP}$表示为$\frac{y}{x}$,则有:begin{aligned} K_{AB}&=\frac{y_1-y_2}{x_1-x_2}=\frac{(y_1-y)+(y-y_2)}{(x_1-x)+(x-x_2)} \\ &=\frac{y_1-y}{x_1-x} \cdot \frac{y-y_2}{x-x_2}=-\frac{b^2}{a^2} \cdot\frac{x-x_2}{y-y_2} \\ K_{PO}&=\frac{y}{x}=-\frac{b^2}{a^2} \cdot \frac{x_1-x_2}{y_1-y} \end{aligned}$$因此,$K_{AB} \cdot K_{PO}=\frac{b^4}{a^4} \cdot\frac{(x-x_2)(x_1-x_2)}{(y-y_2)(y_1-y)}=-\frac{b^2}{a^2}=e^2-1$。
结论形成总结】结论1】若$AB$是椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$上的非直径的弦,点$P$是弦$AB$的中点,且直线$OP$和$AB$的斜率都存在,则$K_{AB} \cdot K_{PO}=-\frac{b^2}{a^2}=e^2-1$。
微专题:椭圆中斜率之积为定值的问题探究

微专题:解析几何中斜率之积为定值(2221ab k k -=•)的问题探究【教学重点】掌握椭圆中2221ab k k -=•的形成的路径探寻及成果运用理性判断【教学难点】运算的设计和化简活动一:2221ab k k -=•形成的路径探寻1. 若AB 是椭圆)0(12222>>=+b a by a x 上的不过原点的弦,点P 是弦AB 的中点,且直线OP,AB的斜率都存在,求PO ABK K •.【解析】 :设点()0,y x P,()11,y x A ,()22,y x B ,则有;;)2(1)1(1222222221221=+=+bya xb y a x (代点作差)将①式减②式得,,,所以所以,即22ab K K POAB-=•.【结论形成总结】【结论1】 若AB 是椭圆)0(12222>>=+b a by a x 上的非直径的弦,点P 是弦AB 的中点,且直线OP,AB 的斜率都存在,则1222-=-=•e ab K K POAB .2.已知AB 是椭圆)0(12222>>=+b a by a x 上过原点的弦,点P 是椭圆异于A,B 的任意一点,若直线PA,PB 的斜率都存在,记直线PA,PB 的斜率分别为21k k ,.求21k k •的值。
【解法1】:设()0,y x P,()11,y x A 又因为A,B 是关于原点对称,所以点B 的坐标为()11-,-y x B ,所以212021201010101021x x y y x x y y x x y y k k --=++•--=•.又因为点()00,y x P ,()11,y x A 在椭圆上,所以有;;)2(1)1(1221221220220=+=+b y a x b y a x两式相减得,2221202120-ab x x y y =--,所以2221ab k k -=•.【方法小结】本解法从设点入手,利用“点在曲线上”代点作差使用“点差法”。
诱人性质 独特解法 源于探究——“两直线斜率乘积为定值”定理及其应用

于
因为 直 线 PA、 P B 的斜 率 都 存 在 , 所 以
( 2 )若 AB 是 圆 O 的 弦 , M 是 AB 的 中 点 , 当 直
女 m・
b 二 ,
一 一
一 三 。丑 y o +yl
zn — 1 . r( ) 1 I了 , l
Y ≥ o — 二 - Y ,一
并介绍定理的应用. 1 .定 理 的 提 出
P T 、 ( 的 斜 率 都 存 在 时 , 那 么 ・ 一 一 等 .
这 里 我们 对 定 理 ( 1 ) 、 ( 2 ) 进行证明 : ( 1 ) 设 点 AC x 1 , Y 1 ) , P ( “ _ , , ) , 则知 B ( 1 , 一 一 1 ) 因 为 A、 P 都在 椭 圆 上 , 所 以
r —
线 AB、 O M 的斜率都存在时 , 有是 c M・ 志 A B 一一1 ;
( 3 )若 PT 是 圆 0 的 切 线 , P是切点, 当 直 线
“ 。 ( i
PT 、 O P的斜率都存在时 , 那么 k o e— k v r 1 . 1 . 2 椭 圆可以看成是 由圆 “ 伸缩 ” 而成, 那 么与 圆中的“ 两直线斜率 乘积 为定值 ” 的性质 相对应 地在 椭圆 中是否还保留?又有什 么变异?
我们容易得 到 , 椭圆 + 一 1 ( n >6 >o , 0为
)
“ 。
故定理得证.
( 2 )设 点 A( x 1 , y ) , B( x 2 , Y 2 ) , 线 段 AB 的 中 点 为M( x 0 , y o )
因为 A、 B都在椭 圆上 , 所以
a 2 - b 2— 1, + 一 1 ,
椭圆两直线斜率之积结论

椭圆两直线斜率之积结论一、结论的定义与性质椭圆两直线斜率之积结论是指在椭圆上任意取两点,连接这两点的直线的斜率之积等于定值。
这个定值与椭圆的参数有关,但与点的位置无关。
这一结论具有普遍性和可预测性,适用于所有椭圆和直线。
二、结论的证明方法证明椭圆两直线斜率之积结论的方法有多种,其中一种比较常见的方法是通过参数方程进行证明。
参数方程是描述椭圆形状和大小的一种数学表示方法,通过引入参数方程,我们可以将椭圆的几何性质转化为代数表达式,从而利用代数方法进行证明。
具体证明步骤如下:首先,设椭圆的参数方程为x=acosθ,y=bsinθ(θ为参数)在椭圆上任取两点,分别设为P1(x1,y1)和P2(x2,y2)计算连接这两点的直线的斜率k1和k2,即k1=dy1/dx1,k2=dy2/dx2利用椭圆参数方程的导数公式,可以计算出k1*k2的表达式,最终证明它是一个定值。
三、结论的推广与应用椭圆两直线斜率之积结论不仅适用于普通椭圆,也适用于其他形状的曲线,如抛物线、双曲线等。
此外,该结论还可以扩展到高维空间中的超球等类似形状。
在应用方面,这个结论可以用于解决一些与曲线相切、与曲线长度相关的问题。
四、结论的拓展与引申椭圆两直线斜率之积结论可以拓展到其他数学领域,如解析几何、微分几何、线性代数等。
例如,在解析几何中,这个结论可以用于研究曲线的性质和构造新的曲线方程;在微分几何中,这个结论可以用于研究曲面的性质和构造新的曲面方程;在线性代数中,这个结论可以用于研究矩阵的性质和构造新的矩阵方程。
五、结论在数学问题中的应用椭圆两直线斜率之积结论可以应用于以下数学问题:求解与椭圆相关的曲线方程;研究椭圆上的线段长度之比;求解与椭圆相关的最值问题;利用这一结论构造新的数学命题和定理。
六、结论在其他领域的应用除了在数学领域的应用外,椭圆两直线斜率之积结论还可以应用于其他领域:天文学:在天文学中,这个结论可以用于研究行星和卫星的运动轨迹;物理学:在物理学中,这个结论可以用于研究物体的运动轨迹和受力分析;工程学:在工程学中,这个结论可以用于研究机械部件的运动轨迹和优化设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题:解析几何中斜率之积为定值(2221a b k k -=•)的问题探究【教学重点】掌握椭圆中2221ab k k -=•的形成的路径探寻及成果运用理性判断【教学难点】运算的设计和化简活动一:2221ab k k -=•形成的路径探寻1. 若AB 是椭圆)0(12222>>=+b a by a x 上的不过原点的弦,点P 是弦AB 的中点,且直线OP,AB的斜率都存在,求PO ABK K •.【解析】 :设点()0,y x P,()11,y x A ,()22,y x B ,则有;;)2(1)1(1222222221221=+=+bya xb y a x (代点作差)将①式减②式得,,,所以所以,即22ab K K POAB-=•.【结论形成总结】【结论1】 若AB 是椭圆)0(12222>>=+b a by a x 上的非直径的弦,点P 是弦AB 的中点,且直线OP,AB 的斜率都存在,则1222-=-=•e ab K K POAB .2.已知AB 是椭圆)0(12222>>=+b a by a x 上过原点的弦,点P 是椭圆异于A,B 的任意一点,若直线PA,PB的斜率都存在,记直线PA,PB的斜率分别为21kk,.求21kk•的值。
【解法1】:设()0,yxP,()11,yxA又因为A,B是关于原点对称,所以点B的坐标为()11-,-yxB,所以212212111121xxyyxxyyxxyykk--=++•--=•.又因为点()0,yxP,()11,yxA在椭圆上,所以有;;)2(1)1(122122122220=+=+byaxbyax两式相减得,222122120-abxxyy=--,所以2221abkk-=•.【方法小结】本解法从设点入手,利用“点在曲线上”代点作差使用“点差法”。
------------------------------------------------------------------------------- 【解法2】椭圆圆化;由圆的结论类比到椭圆中。
过圆222ryx=+上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值1-=•PBPAKK类比上述圆的结论通过伸缩变换椭圆圆化令';'ybyxax==则有()1')'()0(1222222=+⇒>>=+yxbabyax()⎪⎭⎫⎝⎛⇒byaxPyxP0,',;点P,A,B为椭圆上点()⎪⎭⎫⎝⎛⇒byaxAyxA1111,',点p’,A’,B’为新圆上点()⎪⎭⎫⎝⎛--⇒--byaxByxB1111,',由圆上的1-''''=•BPAPkk的关系过渡到PA,PB上22212021202121202120'''')()()()(1)()a ()()b (a b x x y y k k a x x b y y k k B P A P -=--=•⇒-=--=•【方法小结】解法2运用类比联想的方法;由圆的结论过渡到椭圆,学生易于理解,但通过伸缩变换将椭圆圆化的过程对于学生的能力具有一定的要求。
这也正是我们要加强训练的地方。
【结论形成总结】【 结论2】 已知AB 是椭圆)0(12222>>=+b a by a x 的中心弦,点P 是椭圆上任意一点,若直线PA,PB 的斜率都存在,则1222-=-=•e ab K K PBPA .活动二:2221ab k k -=•结论的应用【例1】(1)已知椭圆C :13622=+y x ,直线m 与椭圆C 相交于A,B 两点,且AB 的中点为P(1,1) 则直线m 的方程为【解析】本题具有弦中点的特征所以应用结论121-22=-=•a b K K POAB因为P(1,1)易求1=PO K 的,所以21-=AB K所以直线m 的方程为:x+2y-3=0(2)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆1b4222=+y x 的左、右焦点,B ,C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为. 若21cos 21=∠BF F ,则直线的斜率为 . 【解析】观察图形易发现BC 具有中心弦的特征选用结论2因为21cos 21=∠BF F 所以02160=∠BF F 所以0230=∠OBF ;在2BOF Rt ∆中易知22=BFb OB ==3260=∠O BF所以直线BD 的倾斜角为0120所以直线BD 的斜率为3-K BD =;由结论可知43-22=-=•a b K K CDBD所以43=CD K【方法小结】通过两道小题强化结论的应用;并让学生能够通过图形自主发现中点弦,中心弦的特征,从而合理巧妙的应用结论。
【例2】如图,椭圆13422=+y x 中,A,B 分别为椭圆的左右顶点,2l 是椭圆的右准线, P 是椭圆上的动点,直线AP,BP 分别交2l 于M,N ,求线段MN 的最小值。
【解析】【设K 法】设直线AP 的斜率为K (k>0),则直线AP 的方程为:y=k(x+2); 又MN 的方程为x=4.易求M(4,6K);DCD()012161643134)2(222222=-+++⇒⎪⎩⎪⎨⎧=++=k x k x k y x x k y 又A(-2,0);设()00,y x P 22022043864312162-k k x k k x +-=⇒+-=)(204312kk y +=易得)4312,4386(222k k k k P ++-∴又点B (2,0);所以k K PB43-=;所以直线PB 的方程为:)2(43y --=x k;令x=4得 )23,4(k N -;所以时等号成立)当且仅当21(6236=≥+=k k k MN解法二:【利用中心弦结论43-22=-=•a b K K PBPA 】设直线AP 的方程为:y=k(x+2);因为kK a b K K PB PBPA 43-43-22=⇒=-=•所以直线PB 的方程为:)2(43y --=x k ;易得M(4,6K);)23,4(kN - 所以时等号成立)当且仅当21(6236=≥+=k k k MN解法三:【设点法】设M(4,m)(m>0);N(4,n)(n<0);A(-2,),B(2,0)26nK m K PB PA==;9)(43-1222=-⇒=-==•∴n m a b mn K K PBPA时等号成立)当且仅当3)((6)(2)(=-==-≥-+=n m n m n m MN 【点评】三种方法两个角度:显然从设点和设K 的角度处理问题结合中心弦的结论能够快速计算找到解题的突破口。
【拓展延伸】在平面直角坐标系xOy 中,设A,B 为椭圆1222=+y x 上异于顶点的两点。
(1)若OA,OB 的斜率之积为21-,求证:22OB OA +为定值; (2)若OA,OB 的斜率之积为21-,求证:线段AB 的中点C 在某个定椭圆上。
【解析】第一小问设),();,(2211y x B y x A ;;212121-==•x x y y K K OBOA 22212221212142x x y y x x y y =⇒-=∴;又因为点A,B 在椭圆上 222221212-22-2y x y x ==∴;代入上式得:12-22-242221222122212221=+⇒•==y y y y x x y y )()(3)(42-22-22221222221212222212122=+-=+++=+++=+∴y y y y y y y x y x OB OA )()((2)设),(00y x C ;因为C 为AB 中点⎩⎨⎧++=++=⇒⎩⎨⎧+=+=)2(24)1(24222221212022212120210210y y y y y x x x x x y y y x x x 平方因为;212121-==•x x y y K K OB OA 0240221212121=+⇒=+∴x x y y x x y y ;所以(1)+(2)×2可得1211124228420202020222221212020=+⇒=+⇒=+++=+yx y x y x y x y x【探究形成结论】在平面直角坐标系xOy 中,设A,B 为椭圆)012222>>=+b a by a x (上异于顶点的两点。
(1)若OA,OB 的斜率之积为;22ab K K OBOA -=•2222b a OB OA +=+则;【解析】设),();,(2211y x B y x A ;;222121ab x x y y K K OBOA -==• 2221422214212212a x x b y y a x x b y y =⇒-=∴;又因为点A,B 在椭圆上 2222222222212212a b a b b a y x b a y x =+=+∴;移项得:)();(2-b a -1-b -a 2222222222212212b a x y b a x y ==∴由(1)⨯(2)得: 2222122214222221422214--a a x x x x b a x a x b y y =+⇒=•=)()(由(1)+(2)得:2222122222221222212a b 2a -b -a b y y b x x y y =+⇒-=+=+∴)()( 222222212122a b y x y x OB OA +=+++=+∴(2)若OA,OB 的斜率之积为22a-b ,求证:线段AB 的中点C 在某个定椭圆上。
设),(00y x C ;因为C 为AB 中点⎩⎨⎧++=++=⇒⎩⎨⎧+=+=)2(24)1(24222221212022212120210210y y y y y x x x x x y y y x x x 平方因为;a222121b x x y y K K OBOA -==• 0a 212212=+∴x x b y y ;所以22)2(b 1a ⨯+⨯)(可得 2220220222221221220222221221220224b 4)2(24)1(2b 4b a y a x y a y y a y a y a x b x x b x b x =+⇒⎩⎨⎧++=++=122a 22220=+∴b y x AB 的中点轨迹方程为:【小结】伴生结论:2222122221y b y a x x =+=+;【巩固练习】1.(2011江苏卷18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12422=+y x 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k ,对任意k>0,证明:PB PA ⊥法一:运用点差法求解;主要应用上述结论推导过程中设点作差的思想方法。