人教版21章一元二次方程知识点总结(可编辑修改word版)

合集下载

九年级数学人教版(上册)第21章小结与复习

九年级数学人教版(上册)第21章小结与复习

当m=2,x2-2x=2,解得x=1± 3,
所以,原方程的解为x1=3,x2=-1, x3=1+ 3 ,x4=1- 3 .
侵权必究
考点3 一元二次方程的根的判别式的应用
例4 已知关于x的一元二次方程x2-3m=4x有两个不相等
的实数根,则m的取值范围是( A )
A. m 4 B. m<2
3
C. m ≥0
第二十一章 一元二次方程 小结与复习
侵权必究
目录页
要点梳理
考点精讲
课堂小结
当堂练习
侵权必究
要点梳理
✓ 教学目标 ✓ 教学重点
侵权必究
要点梳理 一、一元二次方程的基本概念 1.定义:
只含有一个未知数的整式方程,并且都可以化为 ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的 方程叫做一元二次方程. 2.一般形式:
解析 本题为销售中的利润问题,其基本本数量关系用表析分如 下:设公司每天的销售价为x元.
侵权必究
单件利润 销售量(件) 每星期利润(元)
正常销售
4
32
128
涨价销售
x-20
32-2(x-24)
150
其等量关系是:总利润=单件利润×销售量.
解:(1)32-(x-24) ×2=80-2x; (2)由题意可得(x-20)(80-2x)=150.
侵权必究
解:设销售单价为x元.则月销售量为[500-10(x-50)]kg. 由题意可得 (x-40)[500-10(x-50)]=8000, 解得 x1=60, x2=80, 又 40[500-10(x-50)]≤10000. x≥75. ∴x=60<75(舍去) 答:销售单价应为80元.

九年级数学上册 第二十一章 一元二次方程知识点总结 (新版)新人教版.doc

九年级数学上册 第二十一章 一元二次方程知识点总结 (新版)新人教版.doc

第二十一章一元二次方程21.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。

知识点二一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a ≠ 0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

方程的解的定义是解方程过程中验根的依据。

典型例题:1、已知关于x的方程()x21m-+(m-3)-1=0是一元二次方程,求m的值。

21.2 降次——解一元二次方程21.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a-.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。

第21章-一元二次方程知识点

第21章-一元二次方程知识点

一元二次方程知识点知识点一 一元二次方程的定义只含有 ,并且未知数的 的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是 ②只含有③未知数的 (判断时,需将方程化成一般形式。

)知识点二 一元二次方程的一般形式一元二次方程的一般形式: ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中 是二次项, 叫做二次项系数; 是一次项, 是一次项系数;c 叫做常数项。

注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

例1 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。

(1)x x 2752=; (2)()()832=+-x x ; (3)()()()22343+=+-x x x例2 已知关于x 的方程()()021122=-+--+x m x m m是一元二次方程时,则=m知识点三 一元二次方程的解使方程 的未知数的值叫做方程的解,一元二次方程的解也叫 。

知识点四 解一元二次方程一 直接开平方法若方程可化为()02≥=a a x ,则x 叫做a 的平方根,表示为a x ±=,这种解一元二次方程的方法叫做直接开平方法。

(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。

例 用直接开平方法解下列一元二次方程(1)01692=-x ; (2)()01652=-+x ; (3)()()22135+=-x x二 因式分解法多项式因式分解的常用方法有:提公式法,公式法(平方差公式,完全平方公式)等。

人教版九年级数学上册21章 一元二次方程 知识点复习共41张

人教版九年级数学上册21章  一元二次方程 知识点复习共41张
2
重点难点
重点:一元二次方程的解法及应用. 难点:灵活选用合适的方法解一元二次方程.
3
知识链接
一元二次方程的发展史
人类对一元二次方程的研究经历了漫长的岁月,早在公元 前2000年左右,古巴比伦人已经能解一些一元二次方程.在中 国,《九章算术》“勾股 章中就出现了一元二次方程问题.之 后的丢番图、欧几里得、赵爽、张遂、杨辉对一元二次方程 做出了巨大的贡献.公元12世纪,印度数学家婆什迦罗婆给出
合作探究
先独立完成导学案专题4,再同桌相互交流, 最后小组交流;
38
8
知识点一:一元二次方程及其解的含义
巩固练习
1.关于x的一元二次方程(m2+ 1)x2-2m(1-x)+1=0化成一般形式

,二次项系数是
,一次项系数是 ,
常数项是 .
2.关于x的方程(m2-4)x2-(m-2)x-1=0,
当m
时,它是一元二次方程;
当m
时,它是一元一次方程.
9
知识点一:一元二次方程及其解的含义
先独立完成导学案专题1,再同桌相互交流, 最后小组交流;
12
知识点二:一元二次方程的解法
知识回顾 我们学习的一元二次方程的解法有哪些?
直接开平方法、配方法、求根公式法、因式分解法
直接开平方法解 一元二次方程
理论 依据
平方根的定义
x2=p(p≥0)
x= ± p .
转 化
思 (mx+n)2=p(p≥0) mx+n=± p . 想
26
知识点三:一元二次方程根的判别式及根与系数的关系
巩固练习
3.若关于x的方程(a-6)x2- 8x+6=0有实数根,则整数a的最大值是

人教版九年级数学上册 21.1一元二次方程 知识点归纳

人教版九年级数学上册 21.1一元二次方程 知识点归纳

人教版九年级数学上册21.1 一元二次方程知识点归纳如果一个方程只含一种未知数,未知数的最高次数是2,而且等号两边都是整式方程,那么这个方程叫做一元二次方程。

根据以上定义,一元二次方程要满足以下几个特征:①只含有一种未知数。

②未知数的最高次数是2 。

③等号两边都是整式。

④是一个方程。

例1、3x2+4x+1=6、2a2−4=8、4y2=9都是一元二次方程一元二次方程的一般形式:ax2+bx+c=0(a≠0)其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项。

温馨提示:①一定要强调a≠0。

因为如果a=0,那么二次项ax2就会等于0,相当于消失了,这样就不符合一元二次方程的定义了。

②a、b、c都是系数,因此带着前面符号的。

③写a、b、c之前,应先把方程化为一般ax2+bx+c=0(a≠0)的形式。

例2、根据ax2+bx+c=0(a≠0),写出−4x2−5x+9=0的a、b、c 。

a=-4,b=-5,c=9 。

例3、根据ax2+bx+c=0(a≠0),写出−4x2−5x+9=10的a、b、c 。

−4x2−5x+9=10移项得:−4x2−5x−1=0a=-4,b=-5,c=-1使方程左右两边相等的未知数的值就是这个一元二次方程的解。

温馨提示:一元二次方程可能有两个解,要写全,不要漏。

例4、x1=3和x2=−3都是x2=9的解,也可以说x2=9的解是±3 。

当一元二次方程出现x2=a(a<0)这种形式,则这个一元二次方程在实数范围内无解。

例5、对于x2=−9,无法在实数范围内找到满足方程的未知数的值,因此在实数范围内x2=−9无解。

九年级上册数学第21章《一元二次方程》知识点梳理完整版

九年级上册数学第21章《一元二次方程》知识点梳理完整版

【学习目标】1.了解一元二次方程及有关概念;九年级数学上册第21 章《一元二次方程》知识点梳理2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:1 2 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为 0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为 2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为 0.要点二、一元二次方程的解法1. 基本思想一元二次方程 −降−次−→ 一元一次方程 2. 基本解法 直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1. 一元二次方程根的判别式一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 中, b 2 - 4ac 叫做一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的根的判别式, 通常用“ ∆ ”来表示,即∆ = b 2 - 4ac(1) 当△>0 时,一元二次方程有 2 个不相等的实数根;(2) 当△=0 时,一元二次方程有 2 个相等的实数根;(3) 当△<0 时,一元二次方程没有实数根.2. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b, x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.要点诠释:1. 一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1) 不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a﹣1)x2+x+a2﹣1=0 的一个根是0,则a 的值为()A.1 B.﹣1 C.1 或﹣1D.【思路点拨】根据方程的解的定义,把 x=0 代入方程,即可得到关于 a 的方程,再根据一元二次方程的定义即可求解.【答案】B;【解析】解:根据题意得:a2﹣1=0 且a﹣1≠0,解得:a=﹣1.故选 B.【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【变式】关于 x 的方程(a2−2a −8) x2+ (a + 2) x −1 = 0 ,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2- =0; (2) (x+a)2= ;(3) 2x2-4x-1=0;(4) (1- )x2=(1+ )x.【答案与解析】(1)原方程可化为 0.5x2=∴x2=用直接开平方法,得方程的根为∴x1= ,x2=- .(2)原方程可化为 x2+2ax+a2=4x2+2ax+∴x2= a2用直接开平方法,得原方程的根为∴x1= a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1= ,x2= .(4)将方程整理,得(1- )x2-(1+ )x=0用因式分解法,得x[(1- )x-(1+ )]=0∴x1=0,x2=-3-2 .【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴(3x-2)(3x-2-1)=0.∴3x-2=0 或 3x-3=0,∴x=2,x= 1.1 3 2(2)原方程可化为:2(t-1)2+(t-1)=0.∴(t-1)[2(t-1)+1]=0.∴(t-1)(2t-1)=0,∴t-1=0 或2t-1=0.∴t= 1,t=1 .1 2 2类型三、一元二次方程根的判别式的应用1 23.(2015•荆门)若关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,则 a 的取值范围是() A .a≥1B . a >1C . a≤1D . a <1【答案】A ;【解析】∵关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a≥1.故选 A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出 a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知 x 1、x 2 是关于 x 的方程 x 2- 2x + t + 2 = 0 的两个不相等的实数根, (1)求 t 的取值范围; (2)设 s = x 2+ x 2 ,求 s 关于 t 的函数关系式.【答案与解析】(1) 因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即 t <-1. (2)由一元二次方程根与系数的关系知: x 1 + x 2 = 2 , x 1x 2 = t + 2 , 从而 s = x 2 + x 2 = (x + x )2 - 2x x = 22 - 2(t + 2) = -2t ,即 s = -2t (t < -1) .1 2 1 2 1 2【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于 x 的一元二次方程 x 2 = 2(1- m )x - m 2 的两实数根为 x , x .1 2(1) 求 m 的取值范围;(2) 设 y = x 1 + x 2 ,当 y 取得最小值时,求相应 m 的值,并求出最小值.【答案】(1)将原方程整理为 x 2 + 2(m -1)x + m 2 = 0 .∵ 原方程有两个实数根.∴ △= [2(m -1)]2 - 4m 2 = -8m + 4 ≥ 0 ,∴ m ≤ 1. 2(2) y = x + x = -2m + 2 ,且 m ≤ 1 . 1 2 2因为 y 随 m 的增大而减小,故当m 1时,取得最小值 1.2类型五、一元二次方程的应用5.如图所示,在长为 10cm,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的 80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为 xcm,由题意得 4x2=10×8×(1-80%).解得 x1=2,x2=-2.经检验,x1=2 符合题意,x2=-2 不符合题意舍去.∴x=2.答:截去的小正方形的边长为 2cm.【总结升华】设小正方形的边长为 x cm,因为图中阴影部分面积是原矩形面积的 80%,所以 4 个小正方形面积是原矩形面积的 20%.举一反三:【变式】(2015 春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙 MN 最长可利用 25m),现在欲砌 50m 长的墙,砌成一个面积 300m2的矩形花园,则 BC 的长为多少 m?【答案】解:设 AB=x 米,则 BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去), 50﹣2x=50﹣30=20.答:BC 的长为 20m.6.某旅行社有 100 张床位,每床每晚收费 10 元,空床可全部租出;若每床每晚提高 2 元,则减少 10 张床位租出;若每床每晚收费再提高 2 元,则再减少 10 张床位租出.以每次提高 2 元的这种方法变化下去,为了每晚获得 1120 元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高 x 个2 元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得 x2-5x+6=0.解得,x1=2,x2=3.∴ 当 x=2 时,2x=4;当 x=3 时,2x=6.答:每床每晚提高 4 元或6 元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高 x 个2 元,则床费为(10+2x)元,由于每晚每床提高 2 元,出租出去的床位减少 10 张,则出租出去的总床位为(100-10x)张,据此可列方程.一元二次方程及其解法(一)直接开平方法【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于 x 的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1 是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1 是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为 0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于 x 的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则 x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于 x 的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:(1) ;(2) .【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.的方程都不是一元二次方程,缺一不可.举一反三:关联的位置名称(播放点名称):一元二次方程的概念-例 1】【变式】判断下列各式哪些是一元二次方程.①x2 +x +1 ;②9x2 - 6x = 0 ;③1y2= 0 ;④5x2-1+ 4 = 0 ;2 2x⑤x2+xy - 3y2= 0 ;⑥3y2= 2 ;⑦(x +1)(x -1) =x2.【答案】②③⑥.【解析】①x2 +x +1不是方程;④5x2-12x+4 = 0 不是整式方程;⑤ x2+xy - 3y2= 0 含有 2 个未知数,不是一元方程;⑦(x + 1)(x -1) =x2化简后没有二次项,不是 2 次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x2-4x+2=0; (2) .【答案与解析】(1)两边都乘-1,就得到方程3x2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2.(2)两边同乘-12,得到整数系数方程6x2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中 c=-2 不能写为 c=2,(2)题中不能写为.举一反三:关联的位置名称(播放点名称):一元二次方程的形式-例 3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项:(1)3x2 = 5x - 2 ;(2)a(x +1)(x -1) = 2 -x .【答案】(1)3x2 - 5x+2=0 ,二次项系数是 3、一次项系数是-5、常数项是 2.(2)a(x +1)(x -1) = 2 -x 化为ax2 +x -a - 2 = 0, 二次项系数是 a、一次项系数是 1、常数项是-a-2.⎩ ⎩类型三、一元二次方程的解(根)3. 如果关于 x 的一元二次方程 x 2+px+q =0 的两根分别为 x 1=2,x 2=1,那么 p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3【答案】A ;【解析】∵ x =2 是方程 x 2+px+q =0 的根,∴ 22+2p+q =0,即 2p+q =-4 ①同理,12+p+q =0,即 p+q =-1 ②⎧2 p + q = -4, ⎧ p = -3,联立①,②得⎨ p + q = -1, 解之得: ⎨q = 2.【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用 2,1 代替方程中未知数 x 的值,得到两个关于 p 、q 的方程,解方程组可求 p 、q 的值.类型四、用直接开平方法解一元二次方程4. (2016 春•仙游县月考)求下列 x 的值 (1)x 2﹣25=0 (2)(x+5)2=16.【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决.【答案与解析】解:(1)∵x 2﹣25=0, ∴x 2=25, ∴x=±5.(2)∵(x+5)2=16, ∴x+5=±4,∴x=﹣1 或﹣9.【总结升华】应当注意,形如 =k 或(nx+m )2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式 1】用直接开平方法求下列各方程的根:(1)x 2=361;(2)2y 2-72=0;(3)5a 2-1=0;(4)-8m 2+36=0.【答案】(1)∵ x2=361,∴ x=19 或 x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6 或y=-6.(3)∵5a2-1=0,5a2=1,a2= ,∴a=或 a=- .(4)∵-8m2+36=0,-8m2=-36,m2= ,∴m=或m=- .【变式 2】解下列方程:(1) (2015 •东西湖区校级模拟)(2x+3)2-25=0;(2)(2014 秋•滨州校级期末)(1﹣2x)2=x2﹣6x+9. 【答案】解:(1)∵ (2x+3)2=25,∴ 2x+3=5 或 2x+3=-5.∴x1=1,x2=-4.(2)∵(1﹣2x)2=x2﹣6x+9,∴(1﹣2x)2=(x﹣3)2,∴1﹣2x=±(x﹣3),∴1﹣2x=x﹣3 或1﹣2x=﹣(x﹣3),4∴x1=,x2=﹣2.3一元二次方程的解法(二)配方法【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为 1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式a2± 2ab +b2= (a ±b)2.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为 0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (2016•淄博)解方程:x2+4x﹣1=0.【思路点拨】首先进行移项,得到 x2+4x=1,方程左右两边同时加上 4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【答案与解析】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+ ,x2=﹣2﹣.【总结升华】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0;(2)x2+6x+8=0.【答案】(1)方程变形为 x2-4x=2.两边都加 4,得 x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6.解这个方程,得x-2= 或 x-2=- .于是,原方程的根为x=2+ 或x=2- .(2)将常数项移到方程右边 x2+6x=-8.两边都加“一次项系数一半的平方”=32,得x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2 或 x=-4.类型二、配方法在代数中的应用2.若代数式M = 10a2 +b2 - 7a + 8 ,N =a2 +b2 + 5a +1 ,则M -N 的值()A.一定是负数B.一定是正数C.一定不是负数D.一定不是正数【答案】B;【解析】(作差法)M -N = 10a2+b2- 7a + 8 - (a2+b2+ 5a +1)=10a2 +b2 - 7a + 8 -a2 -b2 - 5a -1= 9a2 -12a + 7 = 9a2 -12a + 4 + 3 = (3a - 2)2+ 3 > 0 .故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5 的值一定小于 0.【答案与解析】解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8×()2=﹣8(x﹣)2﹣,∵(x﹣)2≥0,∴﹣8(x﹣)2≤0,∴﹣8(x ﹣)2﹣ <0, 即﹣8x 2+12﹣5 的值一定小于 0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【变式】求代数式 x 2+8x+17 的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0 时,代数式 x 2+8x+17 的最小值是 1.4.已知 a2- 3a + b 2 - b + 37= 0 ,求 a - 4 2 16的值.【思路点拨】解此题关键是把 37拆成 9+ 1,可配成两个完全平方式.16 4 16【答案与解析】将原式进行配方,得⎛ a 2- 3a + 9 ⎫ + ⎛ b 2 - b +1 ⎫ = 0 ,4 ⎪ 2 16 ⎪ ⎝ ⎭ ⎝ ⎭⎛ 3 ⎫2 ⎛ 1 ⎫2即 a - 2 ⎪ + b - 4 ⎪ = 0 , ⎝ ⎭ ⎝ ⎭∴ a - 3 = 0 且b - 1= 0 ,24∴ a = 3,b = 1. 2∴ a - 4 4= 3 - 2= 3 - 2 = - 1 . 2 2【总结升华】本题可将原式用配方法转化成平方和等于 0 的形式,进而求出 a .b 的值.b b1 4【学习目标】一元二次方程的解法(三)--公式法,因式分解法1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定 a、b、c 的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程ax2+bx +c = 0 (a ≠ 0) ,用配方法将其变形为:(x + b)22a=b2- 4ac4a2.①当∆=b2-4ac > 0 时,右端是正数.因此,方程有两个不相等的实根:x1,2 =2a .②当∆=b2 - 4ac = 0 时,右端是零.因此,方程有两个相等的实根:x =-b1,2 2a .③ 当∆=b2 - 4ac < 0 时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为 0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为 0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1) x2+3x+1=0; (2) 2x2 = 4x -1 ;(3) 2x2+3x-1=0.【答案与解析】(1) a=1,b=3,c=1∴x==.∴x1= ,x2= .(2)原方程化为一般形式,得2x2 - 4x +1 = 0 .-b ±∵a = 2 ,b =-4 ,c =1 ,∴b2- 4ac = (-4)2- 4 ⨯ 2 ⨯1 = 8 > 0 .∴ x =4 ± 2 2= 1±2,即x =1+2,x= 1-2.2 ⨯ 2 2 1 2 2 2(3) ∵a=2,b=3,c=﹣1∴b2﹣4ac=17>0∴x=∴x1= ,x2= .【总结升华】用公式法解一元二次方程的关键是对 a、b、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定 a,b,c 的值并计算b2 - 4ac 的值;(3)若b2 - 4ac 是非负数,用公式法求解.举一反三:【变式】用公式法解方程:(2014•武汉模拟)x2﹣3x﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2= .2.用公式法解下列方程:(1) (2014•武汉模拟)2x2+x=2; (2) (2014 秋•开县期末)3x2﹣6x﹣2=0 ;(3)(2015•黄陂区校级模拟)x2﹣3x﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】解:(1)∵2x2+x﹣2=0,∴a=2,b=1,c=﹣2,∴x== = ,-1± 3 -1- 3 -1+ 3 ∴x 1=,x 2=.(2) ∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1= ,x 2= (3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x== ,解得 x 1=,x 2= .【总结升华】首先把每个方程化成一般形式,确定出 a 、b 、c 的值,在b 2- 4ac ≥ 0 的前提下,代入求根公式可求出方程的根.举一反三:【变式】用公式法解下列方程: 2x 2+ 2x = 1;【答案】解:移项,得2x 2 + 2x -1 = 0 .∵ a = 2 ,b = 2 ,c = -1 , b 2 - 4ac = 22 - 4 ⨯ 2 ⨯(-1) = 12 > 0 ,∴ x =-2 ± 12 = , 2 ⨯ 2 2∴ x 1 =2 , x 2 = 2 .类型二、因式分解法解一元二次方程3.(2016•沈阳)一元二次方程 x 2﹣4x=12 的根是() A .x 1=2,x 2=﹣6 B .x 1=﹣2,x 2=6 C .x 1=﹣2,x 2=﹣6D .x 1=2,x 2=6【思路点拨】方程整理后,利用因式分解法求出解即可.【答案】B【解析】解:方程整理得:x 2﹣4x ﹣12=0, 分解因式得:(x+2)(x ﹣6)=0,解得:x1=﹣2,x2=6,故选 B【总结升华】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2) (3x -1)(x -1) = (4x +1)(x -1) .【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即(2x + 3)2= 0 ,∴x =x =-3 .1 2 2(2) 移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以x1=1 ,x2=-2 .【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉 x=1 这个根.举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3 x(2 x+1) =4 x+2【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0X1=-6,x2=-5.(2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=0x =-1, x =2.1 2 2 35.探究下表中的奥秘,并完成填空:一元二次方程两个根二次三项式因式分解x2﹣2x+1=0x1=1,x2=1 x2﹣2x+1=(x﹣1)(x﹣1)x2﹣3x+2=0x1=1,x2=2 x2﹣3x+2=(x﹣1)(x﹣2)x1= ,x 2=﹣13x2+x﹣2=3(x﹣)(x+1)2x2+5x+2=2(x+)(x+2)x1=﹣,x2=﹣2将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论.【答案与解析】填空:﹣,﹣3;4x2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax2+bx+c=0 的两个根为 x1、x2,则ax2+bx+c=a(x﹣x1)(x﹣x2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程根的判别式及根与系数的关系【学习目标】1.会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2.掌握一元二次方程的根与系数的关系以及在各类问题中的运用.【要点梳理】知识点一、一元二次方程根的判别式1.一元二次方程根的判别式一元二次方程ax 2+bx +c = 0(a ≠ 0) 中,b 2- 4ac 叫做一元二次方程ax 2+bx +c = 0(a ≠ 0) 的根的判别式,通常用“ ∆”来表示,即∆=b 2- 4ac(1)当△>0时,一元二次方程有 2 个不相等的实数根;(2)当△=0时,一元二次方程有 2 个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定a,b.c的值;③计1 2 算b 2 - 4ac 的值;④根据b 2 - 4ac 的符号判定方程根的情况.2. 一元二次方程根的判别式的逆用在方程 ax 2 + bx + c = 0(a ≠ 0) 中,(1) 方程有两个不相等的实数根⇒b 2 - 4ac ﹥0; (2) 方程有两个相等的实数根⇒b 2 - 4ac =0; (3) 方程没有实数根⇒b 2 - 4ac ﹤0.要点诠释:(1) 逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为 0 这一条件;(2) 若一元二次方程有两个实数根则 b 2 - 4ac ≥0.知识点二、一元二次方程的根与系数的关系1. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b , x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于 x 1、x 2 的对称式的值.此时,常常涉及代数式的一些重要变形;如:① x 2 + x 2 = (x + x )2 - 2x x ; 1 2 1 2 1 2② 1 +1 x 1 x 2= x 1 + x 2 ; x 1 • x 2 ③ x x 2 + x 2 x = x x (x + x ) ; 1 2 1 2 1 2 1 2。

九年级上册数学21章22章知识点

九年级上册数学21章22章知识点

九年级上册数学21章22章知识点第 21 章一元二次方程。

1. 一元二次方程的概念。

形如ax^2 + bx + c = 0(a≠0)的方程叫做一元二次方程,其中ax^2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 一元二次方程的一般形式。

一般形式为ax^2 + bx + c = 0(a、b、c是常数,a≠0)3. 一元二次方程的解法。

- 直接开平方法:适用于形如(x + m)^2 = n(n≥0)的方程。

- 配方法:通过配方将方程化为完全平方式,再求解。

- 公式法:对于一元二次方程ax^2 + bx + c = 0(a≠0),其解为x = (-b ±√(b^2 - 4ac))/(2a),前提是b^2 - 4ac≥0。

- 因式分解法:将方程化为两个因式乘积等于 0 的形式,从而求解。

4. 一元二次方程根的判别式。

对于一元二次方程ax^2 + bx + c = 0(a≠0),Δ = b^2 - 4ac- 当Δ > 0时,方程有两个不相等的实数根;- 当Δ = 0时,方程有两个相等的实数根;- 当Δ < 0时,方程没有实数根。

5. 一元二次方程的根与系数的关系(韦达定理)若方程ax^2 + bx + c = 0(a≠0)的两根为x_1、x_2,则有x_1 + x_2 = -(b)/(a),x_1x_2 = (c)/(a)第 22 章二次函数。

1. 二次函数的概念。

形如y = ax^2 + bx + c(a、b、c是常数,a≠0)的函数叫做二次函数。

2. 二次函数的图象和性质。

- 图象是一条抛物线。

- 当a > 0时,抛物线开口向上,对称轴为x = -(b)/(2a),在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大。

- 当a < 0时,抛物线开口向下,对称轴为x = -(b)/(2a),在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减小。

人教版九年级数学上册第21章《一元二次方程》知识点小结与复习

人教版九年级数学上册第21章《一元二次方程》知识点小结与复习
当 a 0 时,它是一元二次方程;
当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4)x2 -2bx+a=0 当a≠2时是一元二次方程; 当a=2,b≠0时是一元一次方程;
m=

3、当m
时,关于x的方程3x2-
2(3m+1)x+3m2-1=0有两个不相等的实数
根。
4、关于x的一元二次方程mx2+(2m-1)x-
2=0的根的判别式的值等于4,则m=

一元二次方程的根与系数的关系: (韦达定理)
如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 ,
那么X1+x2= -
2(a-2)x+a2-5=0有实数根,且两 根之积等于两根之和的2倍,求a的值。
【例4】已知x1,x2是关于x的方程 x2+px+q=0的两根,x1+1,x2+1是关 于x的方程x2+qx+p=0的两根,求常 数p、q的值。
拓展练习:
1、当a,c异号时,一元二次方程ax2+bx+c=0的根的
情况是
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
9 32 41
3 41
x 22
3 41 3 41 x1 4 , x2 4
注:当一元二次方程二次项系数不为1且
难以用因式分解时常用公式法比较简便。
b2 4ac 0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点四 数与数字的关系 两位数=(十位数字)×10+个位数字 三位数=(百位数字)×100+(十位数字)×10+个位数字 连续的整数:设其中一数为 x,另一数为 x+1;(x-
1,x,x+1)。 连续的奇数:设其中一数为 x,另一数为 x+2;(x-
2,x,x+2)。 连续的偶数:设其中一数为 x,另一数为 x+2;(x-
2、二次根式的性质 1.(1)三个非负性:
2
① a ≥≥0(a 0) ② a a ≥0(a≥ 0) ③ a2 a ≥0( a 为任意实数).
x a b , x a b ,当 b<0 时,方程没有实数根。
三种类型:(1) x2 aa 0的解是 x a ; (2) x m2 nn 0的解是 x n m ;
(3) mx n2 cm 0, 且c 0的解是 x c n 。
m
2、配方法: 配方法的理论根据是完全平方公式 a2 2ab b2 (a b)2 ,把公式
中的 a 看做未知数 x,并用 x 代替,则有 x2 2bx b2 (x b)2 。
(一)用配方法解二次项系数为 1 的一元二次方程 用配方法解二次项系数为 1 的一元二次方程的步骤:
(1) 把一元二次方程化成一般形式 (2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这
个数;
(3)把原方程变为 x m2 n 的形式。
五、一元二次方程的应用
知识点一 列一元二次方程解应用题的一般步骤
(1) 审题,(2)设未知数,(3)列方程,(4)解方程,(5)检验,(6)作答。
关键点:找出题中的等量关系。
(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间 的数量关系.这一步是解决问题的基础;
(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就 是问什么设什么,间接设元虽然所设未知数不是我们所要求的, 但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元 直接影响着列方程与解方程的难易;
(4)若 n 0 ,用直接开平方法求出 x 的值,若 n﹤0,原方程无解。
(二)用配方法解二次项系数不是 1 的一元二次方程
当一元二次方程的形式为 ax2 bx c 0a 0, a 1时,用配方法
解一元二次方程的步骤: (1)把一元二次方程化成一般形式 (2) 先把常数项移到等号右边,再把二次项的系数化为 1:方
注意:(1)二次项、二次项系数、一次项、一次项系数,常数 项都包括它前面的符号。 (2)要准确找出一个一元二次方程的二次项系数、一次项系数和常 数项,必须把它先化为一般形式。 (3)形如 ax2 bx c 0 不一定是一元二次方程,当且仅当 a 0 时是 一元二次方程。
二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当
x b
b2 2a
4ac
,求出
x1 ,
x2 。
4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法这
种方法简单易行,是解一元二次方程最常用的方法。 因式分解法的理论依据:如果两个因式的积等于 0,那么这两个
方程中至少有一个等于 0,即若 pq=0 时,则 p=0 或 q=0。 用因式分解法解一元二次方程的一般步骤:(1)将方程的右边
知识点二 用一元二次方程解与增长率(或降低率)有关的问题
增长率问题的有关公式:
增长数(增长了多少)=基数×增长率
实际数(增长后的值)=基数+增长数 增长率问题与降低率问题的数量关系及表示法:
1. 若基数为 a,增长率 x 为,则一次增长后的值为 a1 x, 两次增长后的值为 a1 x2 ;
2. 若基数为 a,降低率 x 为,则一次降低后的值为 a1 x,
x b b2 4ac (b2 4ac 0) 2a
用求根公式法解一元二次方程的步骤是:
(1)把方程化为 ax2 bx c 0a 0的形式,确定的值 a,b.c (注意符
号);
(2)求出 b2 4ac 的值;并判断方程根的情况;
(3)若 b2 4ac 0 ,则把 a,b. 及 b2 4ac 的值代人求根公式
比例为 1:(1+x)】
患者: 第一轮后:共(1+x)个 第二轮后:共 1+ x +(1+x)x =(1+x)•(1+x),即(1+x)2 个 第三轮后: 共(1+x)2 + (1+x)2 • x =(1+x)2 •(1+x),即(1+x)3 个 第 n 轮后:共(1+x)n 个
[注意:上面例举的是传染源为“1”的情况得到的结论。若传 染源为 a,则第 n 轮后患者共为:a(1+X)n 个]
(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中 的等量关系,再根据这个相等关系列出含有未知数的等式,即 方程.找出相等关系列方程是解决问题的关键;
(4)“解”就是求出所列方程的解; (5)检验 应注意的是一元二次方程的解,有可能不符合题意,如线 段的长度不能为负数,降低率不能大于 100%等等.因此,解出方程 的根后,一定要进行检验. (6)作答
边为 x+a 或(X-a)则 1 x(x+a)=S 或 1 x(x-a)=S
2
2
斜边 c 一定,两直角边和(和为 a)一定:设其中一边为 x,另一
边为 a-x,则 x2+(a-x)2=c2
④斜边 c 一定,两直角边差(差为 a)一定:设其中一边为 x,另一
边为 x+a 或 x-a 则 x2+(x+a)2=c2 或 x2+(x-a)2=c2 知识点九 赛制循环问题:【单循环比双循环少了一半】
两次降低后的值为 a1 x2 。
两次增长后的总和等于基数+第一次降低后的值+第二次降低后的值
知识点三 用一元二次方程解与市场经济有关的问题 与市场经济有关的问题:如:营销问题、水电问题、水利问题
等。与利润相关的常用关系式有: (1)每件利润=销售价-成本价; (2)利润率=(销售价—进货价)÷进货价×100%; (3)销售额=售价×销售量
知识点六 翻一番即表示为原量的 2 倍,翻两番即表示为原量的 4 倍.
知识点七 银行利率应用题(含利滚利问题): 年利息=本金×年利率(年利率为 a%) 存一年的本息和:本金×(1+年利率) ,即本金×(1+ a%) 存两年的本息和:本金×(1+年利率)2, 即本金×(1+a%)2 存三年的本息和:本金×(1+年利率)3, 即本金×(1+a%)3 存 n 年的本息和:本金×(1+年利率)n, 即本金×(1+a%)n
程的左、右两边同时除以二项的系数; (3)在方程的左、右两边加上一次项系数绝对值的一半的平方
把原方程化为 x m2 n 的形式;
(4)若 n 0 ,用直接开平方法或因式分解法解变形后的方程。
3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解
一元二次方程的一般方法。 一元二次方程 ax2 bx c 0(a 0) 的求根公式:
知识点八 几何类题:①等积变形,②动态几何问题,③梯子问题,
④航海问题,⑤几何与图表信息,⑥探索存在问题,⑦平分几何图
形的周长与面积积问题,⑧利用图形探索规律
最常见的如:求直角三角形的边。
面积 S 一定,两直角边和(和为 a)一定:设其中一边为 x,另一
边为 a-x,则 1 x(a-x)=S
2
面积 S 一定,两直角边差(差为 a)一定:设其中一边为 x,另一
2,x,x+2)。 和一定的两数(和为 a):设其中一数为 x,另一数为 a-x 差一定的两数(差为 a):设其中一数为 x,另一数为 x+a 积一定的两数(积为 a):设其中一数为 x,另一数为 a/x 商一定的两数(商为 a):设其中一数为 x,另一数为
ax(x/a)
知识点五 传染问题: 传染源:1 个【 每一轮 1 个可传染给 x 个】【前后轮患者数的
循环的 2 倍。类似于本题其它题型如:相互握手;铁路沿线有 n 个
站点要设计多少种车票;一条线段上有 n 个点(含两个端点),① 该线段上共有 n(n-1)条有向线段,②该线段上共有 1 n(n-1)条
2
线段。
一、二次根式的相关概念
1.平方根:如果一个数的平方等于 a,那么这个数就叫 a 的平 方根,其中正的平方根 a 叫做 a 的算术平方根。
化为 0(即化为一般式);(2)将方程左边分解成两个一次因式的 乘积。(3)令每个因式分别为 0,得两个一元一次方程。(4)解这 两个一元一次方程,它们的解就是原方程的解。
关键点:(1)要将方程右边化为 0(即化为一般式);(2)熟 练掌握多项式因式分解的方法,常用方法有:提公式法,公式法 (平方差公式,完全平方公式)、十字相乘法。
2.二次根式:形如 a a ≥ 0的式子叫做二次根式;
3.同类二次根式:二次根式化成最简二次根式后,如果被开方 数相同,那么这几个二次根式称为同类二次根式.
4.最简二次根式: 满足两个条件:①被开方数的因数是整数,因式是整式;②被 开方数中不含能开得尽方的因数或因式.
特别提示:二次根式 a 有意义的条件是 a ≥ 0.
单循环:设参加的球队为 x,则全部比赛共 1 [x(x-1)]场;
2
双循环:设参加的球队为 x,则全部比赛共 x(x-1)场; 注:双循环公式 X(X-1),单循环公式 1 X(X-1),其实也就可以理
2
解为单循环循环赛就是和每个对手比赛 1 次(对手数量=参赛队数量
-1),而每场比赛有 2 队参加,就得除以 2。双循环比赛场次是单
注意:一元二次方程解法的选择,应遵循先特殊,再一般,即先 考虑能否用直接开平方法或因式分解法,不能用这两种特殊方法时, 再选用公式法,没有特殊要求,一般不采用配方法,因为配方法解 题比较麻烦。
相关文档
最新文档