发电机氢气冷却系统
发电机氢气系统(水氢氢)

11
完整编辑ppt
除湿装置
氢气去湿装置采用冷凝式,基本工作原理是 使进入去湿装置内的氢气冷却至-10℃以下,氢 气中的部分水蒸汽将在干燥器内凝结成霜,然后 定时自动(停用)化霜,霜溶化成的水流进集水 箱(筒)中,达到一定量之后发出信号,由人工 手动排水。使发电机内氢气含水分逐渐减少。冷 凝式氢气去湿装置的制冷原元件是压缩机。经过 冷却脱水的氢气回送至发电机之前重新加温至 18℃左右,加温设备也设置在去湿装置内。氢气 的循环仍然依靠发电机内风扇两端的压差,去湿 装置本身的气阻力约1k1P2 a(100mm水柱),故完整氢编辑ppt
缺点:
1、需要一套复杂的气体置换系统 2、氢气的渗透力强,对密封要求高 3、氢气与空气(氧气)混合到一定比例(4~74%)时,遇火将发生爆 炸,威胁发电机的安全运行
返回
35
完整编辑ppt
露点
露点温度是指空气在水汽含量和气压都
不改变的条件下,冷却到饱和时的温度。
形象地说,就是空气中的水蒸气变为露珠
时候的温度叫露点温度。露点温度本是个
16
完整编辑ppt
17
完整编辑ppt
纯度分析仪
气体纯度分析仪是用以测量机内氢气 和二氧化碳纯度的分析器,使用前还须进 行2h(小时)通电预热,其反馈的数据和 信号才准确。
18
完整编辑ppt
氢气湿度仪
在发电机氢气干燥装置的入口和出口 各装有一台氢气温湿度仪,以便在线监测 发电机内氢气的湿度状况。
7、气体置换期间,干燥装置进出口管路上的 氢气湿度仪必须切除。
8、置换期间,应检查发电机密封油系统运行 正常,油气压差维持在0.056MPa左右。
9、气体置换期间,现场严禁吸烟或者动火工 作,排氢气时,速度2应3 缓慢,排污口附近完整编辑ppt
电厂发电机氢气冷却系统

氢气作为冷却介质,在循环过程中不会产生有害物质,对环境无污染。
氢气冷却系统具有较高的冷却效率,可降低发电机的能耗,提高电厂的经济效益。
高效节能
环保无污染
与水冷却系统相比
氢气冷却系统无需担心冻结和腐蚀问题,且冷却效果优于水冷却系统。
与空气冷却系统相比
氢气具有更高的热传导性,使得氢气冷却系统的冷却效果远优于空气冷却系统。同时,氢气冷却系统噪音低,运行更平稳。
05
CHAPTER
氢气冷却系统的应用与实例
某电厂原有发电机冷却系统存在效率低下、故障率高等问题,严重影响发电机的安全运行和发电效率。
改造背景
对原有冷却系统进行全面升级改造,采用先进的氢气冷却技术,包括氢气循环泵、冷却器、过滤器等关键设备的选型和配置。
改造方案
改造后,发电机冷却效率显著提高,故障率大幅降低,发电量明显增加,取得了显著的经济效益和社会效益。
高效冷却器设计
采用先进的冷却器设计,提高氢气的降温效率,保证发电机的稳定运行。
精密过滤器
采用高精度过滤器,去除氢气中的微小颗粒和水分,保证氢气的纯净度和系统的安全性。
自动化控制系统
采用先进的自动化控制系统,实时监测和调整系统内的氢气压力、温度和流量等参数,确保系统的稳定运行和发电机的安全。
04
CHAPTER
氢气冷却系统的性能与特点
氢气具有极高的热传导性,能够快速将发电机产生的热量带走,确保发电机在适宜的工作温度下运行。
高效冷却
氢气在发电机内部循环,使得各部件的温度分布更加均匀,减少局部过热现象。
温度均匀
可靠性高
氢气冷却系统经过精心设计,部件选用高品质材料制造,具有较高的可靠性和稳定性。
维护简便
发电机氢气系统

邹县四期1#机工厂型式试验数据
定子线圈报警温度 定子线圈跳闸温度 (出水) (出水) ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃
设计值
78 82 99 100 125 ≤120 130 150 ≤130 130 48
试验值
保证值
额定负荷时转子线圈运行温度(冷氢) 最大负荷时转子线圈运行温度(冷氢) 转子线圈报警温度 额定负荷时定子铁芯运行温度 最大负荷时定子铁芯运行温度 定子铁芯报警温度 额定负荷时定子端部结构件温度 最大负荷时定子端部结构件温度 发电机进口风温
t/h ℃ ℃ μs/cm MPa(g) ℃ ℃ t/h MPa(g) MPa(g) m3 m3/24h
68
122 48 67 ≤0.5 0.31 4(2×2) 39 45 860 0.52 0.54 143 ≤12 143 6.1 ≤12 48
1、系统组成
氢冷系统主要由氢气汇流排(供氢系统)、二 氧化碳汇流排(供二氧化碳系统)、二氧化碳 蒸发器(加热器)、氢气控制装置、氢气干燥 器(氢气去湿装置)、循环风机、发电机绝缘 过热监测装置(发电机工况监测装置)、发电 机漏液检测装置和发电机漏氢检测装置(气体 巡回检测仪)组成
发电机产生的热量通过氢气耗散,氢气的散热 能力相当于空气的8倍。为了获得更加有效的 冷却效果,发电机中的氢气是加压的 氢气来自中央制氢站,通过软管与汇流排连接。 减压阀将氢压减至所需压力,然后送到氢气控 制装置再减压至发电机所需的压力(0.5MPa)
2) 二氧化碳汇流排
为了防止氢气和空气混合成爆炸性的气体,在 向发电机充入氢气之前,必须要用二氧化碳将 发电机内的空气置换干净。同理,在发电机停 机排氢后,也要用二氧化碳将发电机内的氢气 置换干净
发电机氢气冷却系统报告

毕业设计(论文) `题目发电机氢气冷却系统院系专业班级学生姓名指导教师二○15年六月发电机氢气冷却系统摘要随着电厂装机容量的提升,发电设备的冷却环节越来越重要,所用到冷却介质也是多种多样。
在对发电机进行冷却技术当中,氢冷技术是最为成熟、应用最为广泛的几种技术之一。
由于氢气本身的特点以及工作环境的要求,氢冷系统当中有几项十分重要的环节,如氢气的置换、冷却、干燥、密封。
这几个环节直接决定着整个系统的冷却效果,也是发电机安全工作的重要影响因素。
关键词:发电机;氢冷技术;置换;冷却;干燥;密封Generator Hydrogen Cooling SystemAbstractWith the increase of installed capacity, the process of generator-cooling is more and more important . The kind of coolant medium is also miscellaneous. Among the methods about cooling generators, hydrogen-cooling is one of the most mature and widely technology.Because of the characteristics of hydrogen and the demand of operational environment, Hydrogen Cooling System has some important parts, such as replacing, cooling, drying and leaking proof hydrogen. These links directly determine the cooling effect of the whole system, which essential to the safety of generators.Keywords:Hydrogen-cooling; replacing; cooling; drying; leaking proof;目录目录发电机氢气冷却系统 (2)Generator Hydrogen Cooling System (3)Abstract (3)目录 (4)1、绪论 (5)1.1发电机冷却技术背景 (5)1.2发电机常见的冷却方式 (5)1.3发电机氢冷方式普及原因 (5)1.4论文的主要内容 (6)2、氢气置换的实现方式 (7)2.1氢气置换总则 (7)2.2氢气置换的实现方法——中间介质置换法 (7)2.3采用中间介质置换法应注意的事项: (8)3、氢气冷却系统 (9)3.1氢气冷却器简介 (9)3.2氢冷器的构造 (9)4、氢气干燥系统 (10)4.1未经处理的氢气湿度大的原因 (10)4.2湿氢气的危害 (10)4.3氢气干燥器的工作原理及运行方式(以冷凝式干燥器为例) (10)5、密封油系统 (11)5.1密封油系统简介及其功能 (11)5.2密封油系统工作流程及运行方式 (11)5.3密封油的运行时的注意事项 (12)参考文献 (13)1、绪论1.1发电机冷却技术背景在电力生产过程中,当发电机运转将机械能转化成电能时,不可避免的会产生能量损耗。
发电机氢冷系统介绍

引言概述:发电机氢冷系统是一种常见的发电机冷却技术,通过使用氢气来冷却发电机内部的线圈,以提高发电机的效率和可靠性。
本文将介绍发电机氢冷系统的工作原理、组成结构以及优势。
正文内容:一、工作原理1.1氢气冷却的原理氢气具有很高的热导率和低的密度,使其成为一种理想的冷却介质。
当氢气进入发电机内部的线圈时,它会带走线圈产生的热量,使线圈保持在合适的温度范围内,避免过热导致断电和损坏。
1.2冷却系统的工作原理发电机氢冷系统主要由氢气供应系统、冷却系统和循环系统组成。
氢气在供应系统中被压缩和过滤,然后通过冷却系统进入发电机内部。
冷却系统通过散热器将热量排出,然后再将冷却过的氢气重新循环到发电机内部,形成一个闭环循环。
二、组成结构2.1氢气供应系统氢气供应系统包括氢气储气罐、压缩机和过滤系统。
储气罐用于储存氢气,压缩机将氢气压缩到适当的压力,过滤系统则用于除去杂质和水分。
2.2冷却系统冷却系统包括冷却器和散热器。
冷却器是用于将氢气冷却的装置,通常采用氢气与液体或气体之间的热交换原理。
散热器是用于将冷却后的氢气中的热量转移到周围环境中的设备。
2.3循环系统循环系统主要是用于将冷却过的氢气重新循环到发电机内部。
它包括循环管道、泵和阀门等设备,以确保氢气能够顺畅地流动,并且氢气的压力和温度保持在合适的范围内。
三、优势3.1高热导率和低密度氢气具有比空气更高的热导率和更低的密度,能够更有效地带走发电机产生的热量,并且减少发电机的整体重量。
3.2良好的散热性能由于发电机氢冷系统中的氢气能够快速冷却发电机内部的线圈,因此可以显著提高发电机的散热性能,降低温升。
3.3高可靠性和安全性氢气是一种非常稳定和可靠的冷却介质,它不会产生腐蚀和污染问题,并且能够有效地防止发电机内部的线圈过热和烧毁。
3.4节能环保相对于传统的水冷或风冷系统,发电机氢冷系统能够更好地节约能源和资源,同时还能减少对环境的影响。
3.5适用于高功率发电机由于氢气具有优良的散热性能和热导率,因此适用于高功率发电机的冷却需求,能够保持发电机的高效运行。
发电机氢气系统及定冷水系统培训完整资料

发电机氢气系统及定冷水系统培训完整资料氢系统设计要求1.发电机氢冷系统(含置换介质系统)及氢气压力自动控制装置应能满足发电机充氢、自动补氢、排氢及中间气体介质置换工作的要求,应能自动监测和保持氢气的额定压力、规定纯度及冷氢温度等。
2、发电机氢冷系统为闭式氢气循环系统,热氢通过发电机的氢气冷却器由冷却水冷却。
发电机氢气冷却器宜采用多片套管式结构,发电机氢气冷却器由卖方提供,材质采用BFe30白铜管。
3、发电机应设置氢气干燥器(吸附式),设有氢气湿度在线检测仪(进口),其入口应设树脂型除油器,干燥装置应保证在额定氢压下机内氢气露点不大于-5°C同时又不低于-25℃。
发电机充、补氢气的露点≤-50o C o干燥器氢气处理量应不小于100Nm3/h。
发电机设液位检测报警装置。
4、为了测量氢气冷却器的冷氢和热氢,共埋置4个双支热电阻(PtlOO三线制)。
5、两侧氢气冷却器冷却水流量分别由两个阀门站分路控制,氢气冷却器进出水管路应对称布置。
6、对氢冷发电机氢系统的要求。
1)氢冷却器冷却水直接冷却的冷氢温度一般不超过46o C o氢冷却器冷却水进水设计温度38o C o2 )氢气纯度不低于95%时,应能在额定条件下发出额定功率。
但计算和测定效率时的基准氢气的纯度应为98%o3 )机壳和端盖,应能承受压力为LoMPa历时15分钟的水压试验,以保证运行时内部氢爆不危及人身安全。
4 )氢气冷却器工作水压为0.35MPa以上时,试验水压不低于工作水压的2倍。
5 )冷却器应按单边承受0∙8MPa压力设计。
6 )发电机在旋转中在额定氢压下,漏氢量小于」l_Nm3/24h。
三、氢气系统的主要特征大容量水氢氢冷汽轮发电机,为冷却定子铁芯和转子绕组,要求建立一套专门的供气系统。
这种系统应能保证给发电机补氢和补漏气,自动地监诩口保持电机内的额定压力、规定的纯度以及冷却器端的氢温。
各种不同型号的汽轮发电机,供气系统基本上相同,其主要特征如下:1.氢气由中央制氢站或储氢罐提供。
发电机氢气系统简介

9.停用密封油系统 置换完毕,可进行检 修或保养工作!
置换操作 准备工作:
熟悉用于气体纯度监控氢气控制柜的使用方法。 确保有足够的可用CO2来吹扫空气,危急时有足够 的CO2吹扫出氢气(PI2944>0.3MPa)。 确保二氧化碳进入管道上的气阀安装正确到位。 氢气控制柜相关表计已经进行较准,可投入使用。 确认氢气干燥系统已经投入运行 确认转子处于停止状态或盘车状态 检查Mark VI机组发电机H2和CO2系统无报警存在
流 量 及 阀 门 控 制 表
置换操作 CO2→空气:
1、打开吹扫取样管线隔离阀 HV2957、HV2983 5、确认供氢隔离阀HV-2936关闭 7、确认两三通阀在垂直位置
4、让取样气体通过传感器,面板上“AIRin CO2)” 2、在氢控制柜上:设置为“Purge(Air IN CO2”灯亮 3、按幻灯片20调整氢气控制屏隔离阀,系统状态如23页所示 模式
注:投入密封油系统防止CO2通过轴 6、缓慢打开主排气阀HV-2954 端大量流出,在密封油系统运行初期, 发电机内压力太少,难以保证充分排 10、开启CO2供气阀,进行置换 8、通过PI-2944确认CO2在供应正常 油,浮子阀应走旁路。直到压力足够 进再关闭旁路阀 注:置换期间,发电机的的气压应维 护在0.14-0.35kg/cm2(2-5psig),在 置换后期,发电机内气压会有较大变 注:这将阻止CO2进入过滤器干 9、密封油系统投入运行 化,需要调节HV-2954 的开度对气压 燥器,如果CO2进入过滤器干燥 进行控制, 器,在发电机充H2正常运行时的 第一天内CO2将缓缓流出,这将 导致首日气体分析仪读数不准确。
发电机的发热与冷却及氢气系统简介

氢气系统冷却器
发电机氢冷系统的冷却 为闭式氢气循环系统,热氢通过发电机的 氢气冷却器由冷却水冷却。 发电机氢气冷却器采用绕片式结构 。冷却 器按单边承受0.8MPa压力设计。 氢冷却器冷却水直接冷却的冷氢温度一般 不超过46℃。氢冷却器冷却水进水设计温 度38℃。
完毕,谢谢!
2014年08月
步是电机向大容量发展的保证。
电机的冷却方式分为气冷和液冷两大类 空气 气冷 氢气 水 液冷 油 蒸发冷却介质(氟里昂类、氟碳)
氢气和空气、水与油之间的冷却性能表
介质
空气 氢气(0.414MPa) 油 水
比热
1.0 14.35 2.09 4.16
密度
1.0 0.35 0.848 1.000
所需流量 冷却效果
定子通风系统
机壳和定子铁芯之间的空间是发电机通风 (氢气)系统的一部分。 发电机定子采用径向通风,将机壳和铁芯 背部之间的空间沿轴向分隔成若干段,每 段形成一个环形小风室,各小风室相互交 替分为进风区和出风区。这些小室用管子 相互连通,并能交替进行通风。氢气交替 地通过铁芯的外侧和内侧,再集中起来通 过冷却器,从而有效地防止热应力和局部 过热。
转子通风系统
转子槽内斜流通风 端部两路半通风
转子绕组槽部采用气隙取气斜流内冷方式。利用转 子自泵风作用,从进风区气隙吸入氢气。通过转子 槽楔后,进入两排斜流风道,以冷却转子铜线。氢 气到达底匝铜线后,转向进入另一排风道,冷却转 子铜线后再通过转子槽楔,从出风区排入气隙。在 转子线棒凿了两排不同方向的斜流孔至槽底,于是, 沿转子本体轴向就形成了若干个平行的斜流通道。 通过这些通道,冷却用氢气交替的进入和流出转子 绕组进风口的风斗,迫使冷却氢气以与转子转速相 匹配的速度通过斜流通道到达导体槽的底部,然后 拐向另一侧同样沿斜流通道流出导体。从每个进风 口鼓进的冷风是分成两条斜流通道向两个方向流进 导体,同样,有两条出风通道汇流在一起从出风口 流出进入气隙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文) `题目发电机氢气冷却系统报告院系自动化系专业班级自动化专业1302班学生姓名杨晓丹指导教师马进发电机氢气冷却系统报告摘要发电机在运行的过程中由于能量转换、电磁作用和机械摩擦会产生一定的热量。
为了使发电机温度不超过与绝缘耐热等级相应的极限温度,应采取冷却措施使这些部件有效地散热。
氢气比重小、比热大、导热系数较大、化学性质较稳定,是冷却发电机转子常用的介质。
氢气在发电机的腔室内循环,依次穿过冷热风室,由冷却器冷却。
发电机中的氢气容易发生泄漏,需要在轴与静密封瓦之间形成油膜封住气体。
在发电机检修后,发电机内充满空气,为防止氢气与空气混合产生安全隐患,充入氢气时应先做气密实验,再从下至上向发电机内充满二氧化碳,最后从上至下向发电机内充满氢气。
关键词:发电机;氢气冷却;气体置换;密封油系统Report of hydrogen cooling system forgeneratorAbstractGenerator in the process of running due to energy conversion, electromagnetic and mechanical friction generates heat.Hydrogen cooling system is used to limited the generator temperature exceed the limiting temperature of thermal class for electric machine insulation.Because of Hydrogen gas has small specific gravity,large specific heat,large coefficient of thermal conductivity and relatively stable chemical properties,it is the commonly used medium cooling generator rotor.Hydrogen is circulated in the generator hydrogen and cooled by corner cooler.In order to limite hydrogen leakage,oil seals the space between the shaft and static seal tile.After the generator maintenance, air is full of inside the generators.There was a safe hidden trouble if hydrogen is mixed into the oxygen.Carbon is blowed from the from the bottom to the full of generator to replace air after Sealing experiment was passed.And hydrogen is blowed from the from the full to the bottom of generator to replace carbon. Keywords:Generator;Hydrogen cooling;Gas replacement;Seal oil system目录1 引言 (5)1.1发电机冷却系统的重要性 (5)1.2氢气冷却的优势 (6)2 发电机氢气系统组成、功能及原理 (7)2.1氢气系统的组成 (7)2.2氢气系统部件的功能及原理 (8)2.3氢气的循环冷却 (8)3 密封油系统 (9)3.1密封原理 (9)3.2密封油系统的组成 (9)4发电机的气体置换 (10)4.1气密试验 (10)4.2二氧化碳和氢气用量估计 (11)4.3二氧化碳置换空气 (12)4.4氢气置换二氧化碳 (12)4.5二氧化碳置换氢气 (12)参考文献 (13)1 引言1.1发电机冷却系统的重要性发电机在工作的过程中由于能量转换、电磁作用和机械摩擦会产生一定的热量,要使发电机的温度保持在材料限定温度范围内,就要配备发电机冷却系统。
发电机的冷却与大型汽轮发电机的发展、发电机的绝缘寿命、发电机的金属性能息息相关。
当发电机转速n ,磁通密度B ,电流密度J 不变时,有以下关系:电动势Fe E WB F δ∝(1) 电流Cu I JF ∝(2) 功率4Fe Cu P EI B F F l δ∝∝∝(3) 成本3C l ∝(4) 其中,W ——电枢匝数,J——电枢电流密度,B δ——气隙磁通密度,Fe F ——定子铁芯截面,Cu F ——定子线圈截面。
l ——铁芯有效长度。
将(4)式带入(3)式,则/l C P ∝。
增加铁芯有效长度,就能增大成本和功率的比率。
由上式可知,发电机的功率越大,则经济性越高。
然而发电机的损耗与3l 成正比,发电机的散热与2l 成正比。
随着发电机功率的增大,发电机的单位面积散热降低。
所以想要发展大型汽轮发电机,就必须增强发电机的散热能力,发电机冷却系统是发展大型汽轮机的关键。
汽轮机在运行时产生的热也会影响到部件的绝缘寿命,蒙辛格尔提出器件的绝缘寿命与电机连续运行温度呈指数变化,公式为: (ln 2/)0m T L A e -=(5) 其中,0A ——当温度为0摄氏度时的绝缘寿命,T——绝缘持续温度,m ——常数。
实验表明,温度上升十度左右,绝缘寿命减短一半。
发电机部件的散热对器件的绝缘寿命影响较大。
金属的强度和硬度随温度的升高而降低,以下是发电机常用的铜、铝、银铜、钎焊的温度特性曲线:1.2氢气冷却的优势流体换热的能力与气体压力、密度、容积比热有关。
以下是冷却介质的性能比较:氢气冷却下优点:1.氢气比重小,阻力损耗小;2.氢气比热相对其他气体大;3.氢气的导热系数较大;4.氢气的相对传热系数约为空气的1.4倍;5.氢气化学价较为稳定。
冷却介质有空气、水和氢气供选用。
空气冷却效果差、损耗大,而水冷却面临着的是转子的高速旋转、供水装置的复杂,以及水的腐蚀等重大技术问题。
氢气的冷却效果虽然不及水冷却,但它的冷却作用远远超过空气冷却,2 发电机氢气系统组成、功能及原理2.1氢气系统的组成发电机氢气系统的组成部分主要为:1.供氢系统,包括供氢汇流排和压力控制装置;2.供二氧化碳装置;3.气体压力、纯度和湿度检测装置;4.氢气干燥装置;5.发电机漏油、漏水监测装置。
2.2氢气系统部件的功能及原理1.氢气干燥器是用来除去发电机内氢气中的水份而设的。
当发电机中的氢气含水量过高将会对发电机造成多方面的不良影响,我厂在发电机外设置专用的氢气干燥器,它的进氢管路接至转子风扇的高压侧,它的回氢管路接至风扇的低压侧,从而使机内部分氢气不断地流进干燥器内得到干燥。
其中我厂氢气去湿装置采用冷凝式(即分子筛式),其基本原理是:将进入去湿装置内的氢气冷却到- 10℃左右,氢气中的部份水蒸汽将在干燥器内凝结成霜,然后定时自动化霜,霜溶化成的水流进集水箱(筒)中,达到一定量之后发出信号,由人工手动排水。
经过冷却脱水的氢气在送回发电机之前被加热到18℃左右,加温设备也设置在去湿装置内,经过这一处理过程,从而使发电机内氢气中水份逐步减少。
2.氢气循环风机:氢气循环风机用于冷凝式氢气去湿装置系统中,在发电机停机或盘车状态下,开启循环风机,以确保氢气至湿装置的正常循环。
3 )氢气泄露报警器:氢气泄露报警是为了报告何处有氢气泄露情况而设置的,它在冷水、氢冷水、发电机A、B、C三相分相母线等部位都设有氢气浓度高检测报警元件。
4 )油水探测报警器:当发电机内部漏进油或水,油水将流入报警器内。
报警器内设置有一只浮子,浮子上端载有永久磁铁,在报警器上部设有磁性开关。
当报警器内油水积聚液位上升时,浮子随之上升,当达到一定值时永久磁铁吸合,磁性开关接通报警装置,运行人员接到报警信号后,即要进行手动操作报警器底部的排污阀进行排污,并要及时调整密封油压和检查油、水的来源。
5.置换控制阀:置换控制阀是几只阀门的集中组合、装配而成。
发电机正常运行时,这几只阀门必须全部关闭,只有发电机需要进行气体置换时,才由人工手动操作这几只阀门,按照发电机内气体置换要求进行操作。
2.3氢气的循环冷却氢气只在发电机的腔室中循环,一般有四个冷风室,五个热风室(四进五出,进是冷风,出是热风,以200MW为例子),发电机转子的端部通常有热套的风扇,运行中是随着转子在转动的,依靠这两个风扇将发电机四角氢气冷却器冷却后的冷风(氢气)吹入发电机定转子之间的腔室,然后穿出去,依次穿越冷热风室,到中间热风室后,从定子腔室外边出来,后又经四角冷却器冷却进行新的循环。
3 密封油系统3.1密封原理由于大型发电机组结构复杂,结合面多,而且氢气渗透性很强。
所以漏氢现象时有发生。
漏氢影响到机组的安全运行,必须引起高度重视。
密封油系统能有效防止氢气的泄漏。
向高速旋转的轴与静止的密封瓦之间注入一连续的油流,来形成一层油膜封住气体,从而使机内的气体不外溢,外面的空气也不至于进入机内。
氢气发电机都采用轴封,轴封是指汽轮发电机的转轴和端盖之间的密封装置。
为了使氢气沿转子从发电机机壳的泄漏降至最低,在发电机的两端都设有轴封。
密封油从密封油的供应单元进入密封箱中的密封环中。
在正常运行状态时密封油处于真空状态。
3.2密封油系统的组成发电机密封油系统如图所示,由两个各自独立又互相联系的系统组成。
向密封瓦空气侧供油,密封油与空气接触的一侧油路称为空侧密封油系统。
向密封瓦氢侧供油,密封油只与氢气接触的一侧油路称为氢侧密封油系统。
空侧密封油系统主要包括空侧回油密封箱、排烟风机、空侧交流密封油泵、直流密封油备用泵、油-氢差压调节阀、两台空侧密封油冷却器(互为备用)和一台电加热器。
此外来自润滑油系统的两路高压和低压密封油源通过一油-氢差压调节阀接入密封油泵出口母管,在交、直流密封油泵均故障时提供备用密封油源。
为防止氢气泄露,机组正常运行时空侧密封油压要始终比发电机氢压高出一定的值,不允许断油。
氢侧密封油系统主要包括氢侧回油控制箱、氢侧交流密封油泵、氢侧密封油冷却器、氢侧密封油加热器、两个氢-空侧密封油压平衡阀。
由于发电机密封瓦为双流环式,允许氢侧油路短期断油运行,故不设氢侧直流密封油备用泵。
当氢侧油泵突然断油时,密封瓦以单流环式运行,可以密封发电机内的氢气,只是时间长了会导致发电机内氢纯度下降,因而增加排污量和补氢量。
4发电机的气体置换4.1气密试验发电机和氢系统在安装完毕后,应对其进行.01MPa和额定氢压值的空气密封试验。