整式及其运算

合集下载

整式及其运算

整式及其运算

知识点3 整式及其因式分解一、分类:单项式和多项式统称为整式。

整式可分为单项式和多项式1.单项式:定义:数与字母的积组成的式子,单独一个数或字母也叫单项式。

系数:单项式中的数字因数。

次数:所有字母的指数和。

注意:单独一个字母a 的系数为1,次数为1。

单独一个数字比如3的系数为3次数为02.多项式:定义:几个单项式的和。

项数:含几个单项式是几项式。

次数:次数最高项的次数。

二、计算1.加减:(1)去括号:括号前是+时,去掉括号和括号前的+,括号内各项不变号 括号前是-时,去掉括号和括号前的-,括号内各项要变号(2)合并同类项。

①同类项:所含字母相同,并且相同字母的指数也相同的项。

②合并同类项:系数相加,字母和字母的指数不变。

2. 乘除:(1)公式:a m .a n =a m+n , (a m )n =a mn , (ab)n =a n b n(2) 计算:单项式乘单项式:系数相乘,相同的字母按照同底数幂的乘法相乘 单项式乘多项式:用单项式去乘多项式的每一项再把结果相加多项式乘多项式:用一个多项式的每一项去乘另一个多项式的每一项再把结果相加 平方差公式:(a+b )(a-b)=a 2-b 2完全平方公式:(a+b )2=a 2+2ab+b 2 (a-b )2=a 2-2ab+b 2 注意:3.除法:a n ÷a m =a m-n (a ≠0) a 0=1(a ≠0), p paa 1=-(a ≠0) 单项式除以单项式:系数相除,相同的字母按照同底数幂的除法相除 多项式除以单项式:用多项式的每一项去除以单项式再把结果相加第三讲整式(A 卷)一、选择题1. 下列各式计算正确的是( )A .222()a b a b +=+B .235a a a +=C .824a a a ÷=D .23a a a ⋅= 2.下列计算正确的是( )A .a 2•a 3=a 5B . a 2+a 3=a 5C . (a 3)2=a 5D .a 3÷a 2=13.下列运算正确的是( )A.()236aa = B. 22a a a ⋅= C. 2a a a += D. 632a a a ÷=4. 下列运算正确的是A. (-a 3)2= a 5B. (-a 3)2=-a 6C. (-3a 2)2=6a 4 D . (-3a 2)2= 9a 422222222)()(42)(2)(b a b a ab ab b a b a ab b a b a --+=+-=+-+=+5.下列式子正确的是( )A .(a -b )2=a 2-2ab +b 2B .(a -b )2=a 2-b 2C .(a -b )2=a 2+2ab +b 2D .(a -b )2=a 2-ab +b 2 6. 计算()23ab 的结果是( )A .6abB .26a b C .29ab D .229a b 7.下列计算中,不正确的是( ) A .﹣2x+3x=x B . 6xy 2÷2xy=3yC .(﹣2x 2y )3=﹣6x 6y 3D . 2xy 2•(﹣x )=﹣2x 2y 28. 如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是( )A . M =mnB . M =n (m +1)C .M =mn +1D .M =m (n +1)二、填空1.如图9所示,图中每一个小方格的面积为1,则可根据面积计算得到如下算式:()127531-+⋅⋅⋅++++n = . (用n 表示,n 是正整数)2. 一件商品的进价为a 元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为 元.3. 如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=-1时,代数式2ax 3+3bx+4的值是 .4.单项式35-x y 的系数是 .5. 为落实“阳光体育”工程,某校计划购买m 个篮球和n 个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为 元. 6.若m +n =2,mn =1,则m 2+n 2 = .7.的结果等于 a 2 .8 .用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共用小三角形的个数是 .三、计算1. 计算:5a +2b +(3a —2b ); (3)(3)(4)a a a a +-+-2n -15 12 34n7 1 1 2 43 3 n3.请你化简 22236911211x x x x x x x +++÷+--++,再取恰当x 的值代入求值。

整式的基本概念与运算

整式的基本概念与运算

括号前面是加 号或乘号时, 去掉括号,括 号内的各项不

括号前面是减 号时,去掉括 号,括号内各
项都变号
括号前面是除 号时,去掉括 号,把括号内 各项乘以除数
的倒数
括号在乘方运 算中,先进行 乘方运算,再
去括号
确定未知数: 明确需要解 决的问题, 并确定未知 数。
列出方程: 根据问题描 述,列出整 式方程。
XX,a click to unlimited possibilities
01 整 式 的 定 义 与 分 类 02 整 式 的 加 减 运 算 03 整 式 的 乘 法 运 算 04 整 式 的 除 法 运 算 05 整 式 的 幂 运 算 06 整 式 的 混 合 运 算
整式是由常数、变量、加、减、乘、乘方等运算符号和括号组成的代数式
除法运算的注意事项:注意结果的符号,以及余数的次数不能高于除数的次数
除法运算的应用:在代数、几何等领域有广泛的应用
幂的定义:一个数的n次方表示该数与自身相乘n次 幂的性质:a的0次方等于1,a的负数次方等于a的倒数的正数次方,幂的乘法满足结合律和分配律
幂的乘法:同底 数幂相乘时,指 数相加
幂的除法:同底 数幂相除时,指 数相减
添加标题
添加标题
添加标题
添加标题
举例:2x^3y与3xy^2相乘得到 6x^4y^3。
运算性质:单项式乘以单项式的 运算是整式运算中的基本运算之 一,掌握其运算法则对于后续学 习多项式乘法、除法等具有重要 意义。
定义:将单项式中 的每一个字母因数 与多项式中的每一 项相乘,得到新的 多项式
举例:如(a+b+c) 乘以x得到 ax+bx+cx
注意事项:注意 符号的运算,负 负得正

初中数学知识归纳整式的概念与运算法则

初中数学知识归纳整式的概念与运算法则

初中数学知识归纳整式的概念与运算法则在初中数学中,整式是一个重要的概念,我们经常会遇到它,并且需要了解整式的运算法则。

本文将对整式的概念及其运算法则进行归纳总结,以帮助初中生更好地理解和应用相关知识。

一、整式的概念整式是由常数和变量相乘并加减得到的表达式,其中常数可以是整数、零或有理数,变量表示未知数,通常用字母表示。

整式的例子包括:5x、3x²+2xy、-4a³+7ab-1等。

整式的含义可以通过具体的例子来说明,比如一个多项式P(x)=3x²+2xy-7表示了一个以x为变量的整式,其中3x²表示x的平方项,2xy表示x与y的乘积项,-7表示常数项。

整式可以用来描述各种数学问题,并且在代数、方程解等领域有广泛的应用。

二、整式的运算法则1. 加减运算法则对于整式的加减运算,我们主要使用以下两个法则:- 同类项相加减法则:将同类项(具有相同的变量和相同的指数)的系数相加减,保持变量和指数不变。

例如:对于整式3x²+2xy-7和4x²-3xy+5,可以将同类项相加得到7x²-y-2。

- 去括号法则:对于整式中的括号,可以通过分配律去括号,将整式化简成一个更简单的形式。

例如:对于整式3(x+2)-2(2x-1),可以应用分配律将其化简为3x+6-4x+2,再进行合并同类项。

2. 乘法运算法则对于整式的乘法运算,我们需要掌握以下两个法则:- 基本乘法法则:将每个项前面的系数相乘,变量相乘的时候,将其指数相加。

例如:对于整式2x²(3x-1),可以将每一项都乘以2x²,得到6x³-2x²。

- 同类项乘法法则:将同类项的系数相乘,将变量相乘时,保持变量和指数不变。

例如:对于整式(3x-1)(2x+5),可以将每个项都乘以3x-1,得到6x²+13x-5。

3. 除法运算法则除法运算是整式最复杂的一种运算,通常需要应用因式分解等技巧来进行求解。

整式的基本性质和运算

整式的基本性质和运算

整式的基本性质和运算整式是数学中的重要概念,它在代数运算中起着至关重要的作用。

本文将介绍整式的基本性质和运算,帮助中学生和他们的父母更好地理解和掌握这一知识点。

一、整式的定义和基本性质整式是由常数和变量的积及其代数和构成的代数表达式。

例如,3x² + 5xy - 2y³就是一个整式。

整式的基本性质包括:1. 整式的次数:整式中所有项次数的最大值称为整式的次数。

例如,3x² + 5xy - 2y³的次数为3。

2. 整式的系数:整式中每个项的系数即为该项前的数值。

例如,3x² + 5xy - 2y³中,3、5和-2分别为各项的系数。

3. 整式的同类项:整式中具有相同字母和次数的项称为同类项。

例如,3x²和5xy是整式3x² + 5xy - 2y³的同类项。

4. 整式的加减法性质:整式的加减法满足交换律和结合律。

即对于任意整式a、b和c,有(a + b) + c = a + (b + c)和a + b = b + a。

二、整式的运算1. 整式的加法:将同类项相加,并保持其他项不变。

例如,将3x² + 5xy - 2y³和2x² + 3xy + 4y³相加,得到5x² + 8xy + 2y³。

2. 整式的减法:将同类项相减,并保持其他项不变。

例如,将3x² + 5xy - 2y³减去2x² + 3xy + 4y³,得到x² + 2xy - 6y³。

3. 整式的乘法:将每个项相乘,并将同类项合并。

例如,将3x² + 5xy - 2y³乘以2x² + 3xy + 4y³,得到6x⁴ + 19x³y + 8x²y² - 6xy⁴ - 8y⁶。

整式及其运算

整式及其运算

整式及其运算【知识解读】整式加减:1. 代数式的概念代数式是用基本的运算符号(运算符号包括加、减、乘、除以及乘方、开方)把数字或字母连接而成的式子,单独一个数或一个字母也可以看成代数式.2. 代数式的值用具体的数值代入代数式中得到的计算结果叫代数式的值.3. 整式的加减(1)单项式:数与字母的积的代数式叫单项式,数字因数叫单项式的系数,所有字母的指数的和叫单项式的次数;单个的字母或单个的数也叫单项式.(2)多项式:几个单项式的和叫多项式,多项式中次数最高的单项式的次数叫多项式的次数,单项式的个数也就是多项式的基数.(3)单项式和多项式统称为整式.(4)同类项,两个单项式中,如果所含有的字母相同且相同字母的指数也相等,那么这两个单项式叫同类项.(5)整式的加减:整式的加减的本质也就是合并同类项,合并同类项的法则是:把系数相加减,字母和字母的指数不变.本章的主要内容是单项式、多项式、整式的概念,合并同类项,去括号以及整式加减运算等. 整式的加减运算是学习“一元一次方程”的直接基础,也是以后学习分式和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具.整式加减涉及的概念准确地掌握这些概念并注意它们的区别与联系是解相关问题的基础,归纳起来就是要注意以下几点:1. 理解四式(单项式、多项式、整式、n 次m 项式)、三数(系数、次数、项数)和二项(常数项、同类项)2. 掌握三个法则(去括号法则、添括号法则、合并同类项法则).3. 熟悉两种排列(升幂排列、降幂排列).整式加减的一般步骤1. 根据去括号法则去括号.2. 合并同类项.【例题精讲】【例1】(1)已知关于x 、y 的单项式234x y 与单项式1218m n x y ---的和为一个单项式,求mn .(2)已知关于x 、y 的单项式4b c x y 与单项式1218m n x y ---的和为4n m ax y ,求abc .【例2】(1)先化简,再求值:224[62(42)]1x y xy xy x y ----+,其中12x =-,y =2.(2)已知4m n -=,1mn =-,求(223)(322)(4)mn m n mn n m mn n m -++-+--++的值.【例3】已知多项式3223(3)(2)5m x x x n x x x -++++-是关于x 的二次多项式,当x =2时的值为-17,求当x =-2时,此多项式的值.【例4】已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 的取值无关,求代数式22223(2)(4)a a b b a a b b ---++的值.【练1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式323222(42)a b a b ---的值.【例5】已知2234A x xy cy =-+,23B ax xy =-,222C x bxy y =-+,且23A B C x xy --=-+2y -,求a 、b 、c .【例6】(1)当x =2时,代数式31ax bx -+的值等于-17,那么当x =-1时,求代数式31235ax bx --的值.(2)已知代数式3ax bx c ++,当x =0时的值为2,当x =3时的值为1,求当x =-3时代数式的值.(3)已知21x x +=,求432222012x x x x +--+的值.【练2】如果210a a +-=,求3222a a ++的值.【例7】倡导“节能减排”,鼓励居民节约用电. 2012年7月1日起,湖北省开始试行城乡居民用户阶梯电价制度,方案如下:如:小明家3月份用电量为500度,则应付费:1800.573(400180)0.623(500400)0.873302.5⨯+-⨯+-⨯=(元).(1)若小华家4月份电量为100度,则应付费 元,5月用电量为210度,则应付费元,6月份电量为450度,则应付费 元;(2)若小华家7月份的用电量为x 度,请用x 表示应付的电费;(3)若小华家9月份已付电费177.9元,请你求出小华家9月份的用电量;(4)若小华家某月的电费为a 元,则小华家该月用电量属于第几档.【例8】观察下面有规律的三行单项式:x , 22x , 34x ,48x , 516x , 632x ,……① 2x -, 24x ,38x -, 416x , 532x -, 664x ,……② 22x , 33x -, 45x , 59x -, 617x , 733x -,……③(1)根据你发现的规律,第一行第8个单项式为 ;(2)第二行第n 个单项式为 ;(3)第三行第8个单项式为 ;第n 个单项式为 ;【例9】已知26121121211210(1)x x a x a x a x a x a ++=+++++ 是关于x 的恒等式,求1197531a a a a a a +++++的值.【练3】已知55432543210(21)x a x a x a x a x a x a -=+++++是关于x 的恒等式,求24a a +的值.【例10】(1)已知x ,y 为整数,且5|(9)x y +,求证:5|(87)x y +.(2)已知x 、y 、z 均为整数,且11|(725)x y z +-,求证:11|(3712)x y z -+.【跟踪练习】1. 单项式3243x y z -的系数是 ,次数是 .2. 已知多项式2123236m x y xy x +-+--是关于x 、y 的六次四项式,单项式253n m x y -与该多项式次数相同,则mn = .3. 4243527x x y xy ---是 次 项式,最高次项是 ,最高次项的系数是 ,常数项是 .4. 多项式(1)1m x n x -+-+为关于x 的二次二项式,则m = ,n = .5. 已知133m x y +与42n mx y +-是同类项,则m = ,n = ,13423m n x y mx y ++-= .6. 如果2(1)|2|0a b +++=,则代数式323223315422ab a b ba a b b a --++的值为 .7. 已知两个多项式的和是2521x x -+,其中一个多项式是2235x x --,则另一个多项式是 . 8. 电影院里第一排有a 个座位,后面每排都比前排多3个座位,则第10排有 .9. 某城市广场中央,有一如图阴影部分所示的花坛,其中四个长方形的长和宽都分别是a 米和b 米,重叠部分都是边长2米的正方形,圆的半径是r 米,则这个花坛的占地面积为 .10.(1)化简:22223{3[3(3)2]2}2x x x x x --+-----;(2)化简:{24[2(2)3]()}1x y x y x x y -++--+---;(3)已知多项式22911A x x =--,2354B x x =++,求(2)A B --.11.(1)2323(38)(2132)2(3)a a a a a a -+-+--,其中a =-2;(2)若2|1||2|1a ab c -+-=-,且a 、b 、c 都为正整数,求65()2ab ab a b c ++--的值.12. 已知m 、n 为正整数,单项式11(2)n m n m x y -+-为五次单项式,①试求m 、n 的值;②当x =-1,y =1时,求此单项式的值.13. 已知m 、x 、y 满足条件:①21(2)2|2|02x m ++-=;②31y a b --与2352b a 是同类项,求代数式2222(236)(39)x x y y m x x y y -+--+的值.14. 已知多项式2324x x --与多项式A 的和为6x -1,且式子(1)A mx ++的计算结果中不含关于x 的一次项,求m的值.15.(1)多项式531ax bx ++,当x =2时,其值为-5,则x =-2时,该多项式的值为多少?(2)若241550x x +-=,求代数式22(15189)(31931)8x x x x x --+-+--的值.(3)若331x x -=,求432912372003x x x x +--+的值.(4)已知x =2时,多项式5432ax bx cx dx ex f +++++的值和42bx dx f ++的值为4和3,则当x =-2时,求5432ax bx cx dx ex f +++++的值.16. 武汉某服装厂生产一种夹克和T 恤,夹克每件售价80元,T 恤每件售价50元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T 恤;②夹克和T 恤按定价的80%付款,现客户要向服装厂购买夹克50件,T 恤x 件(x >50).(1)若该客户按方案①购买,夹克需付款 元,T 恤需付款 元(用含x 的式子表示);若该客户按方案②购买,夹克需付款 元,T 恤需付款 元(用含x 的式子表示);(2)若x =100,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x =100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.17. 观察下面的三个数列:①-1, +2, -3, +4, -5, +6,……②-3, 0, -5, +2, -7, +4,……③-2, +4, -6, +8, -10, +12,……(1)这三个数列的第n 个数分别是 ;(2)在第一行中是否存在连续的三个数,使得和为-40?若存在,求出这三个数;若不存在,请说明理由;(3)是否存在这样的一列,使其中三个数的和为78?若存在,求出这三个数;若不存在,请说明理由.18.(1)已知a 、b 为整数,且10n a b =+,如果17|(5)a b -,请你证明:17|n .(2)已知一个三位数,它的百位数字加上个位数字再减去十位数字所得的数是11的倍数,证明:这个三位数也是11的倍数.。

整式的概念与运算

整式的概念与运算

整式的概念与运算整式是代数中的重要概念,广泛应用于数学和科学领域。

本文将介绍整式的概念和运算规则,并且通过实例进行详细说明,以便读者更好地理解整式的特点和运算方法。

一、整式的概念整式是由常数、变量及它们的乘积和积的和构成的代数式。

整式可以包含一个或多个变量,并且可以对变量进行加、减、乘、除等运算。

一般来说,整式是多项式的一种特殊形式。

1.1 单项式当整式中只包含一个变量的乘积时,称为单项式。

例如:2x,-3xy,4a^2b等都是单项式。

其中,x、y、a、b是变量,2、-3、4是系数。

1.2 多项式当整式中包含多个单项式时,称为多项式。

例如:3x^2 - 2xy + 5是一个多项式。

其中,3x^2、-2xy、5都是单项式。

二、整式的运算整式的运算包括加法、减法、乘法和除法。

下面将分别介绍各种运算规则,并通过实例进行说明。

2.1 加法和减法整式的加法和减法运算规则与数的加法和减法类似。

只需将同类项(具有相同的变量和相同的指数)的系数相加或相减即可。

例如:3x^2 + 2xy - 5 和 -2x^2 - 3xy + 4 是两个整式,它们可以进行相加运算:(3x^2 + 2xy - 5) + (-2x^2 - 3xy + 4) = (3x^2 - 2x^2) + (2xy - 3xy) + (-5+ 4) = x^2 - xy - 12.2 乘法整式的乘法运算规则是将每一项的系数相乘,并将变量和指数相乘。

例如:(2x + 3)(4x - 5)是一个整式乘法运算,可以按照分配律展开运算:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 152.3 除法整式的除法运算需要借助长除法的方法进行求解。

例如:将12x^2 + 8x + 4除以4x,可以进行如下的除法运算:3x + 1--------------4x | 12x^2 + 8x + 412x^2 + 4x----------4x + 44x + 1-------3所以,商为3x + 1,余数为3。

第2课 整式及其运算

第2课 整式及其运算

(
)
【答案】
C
4.(2016· 江西)下列运算中,正确的是 ( A.a2+a2=a4 B.(-b2)3=-b6 C.2x· 2x2 = 2x3 D.(m-n)2=m2-n2
)
【答案】
B
5.(2016· 杭州)下列各式变形中,正确的是 ( ) A.x2· x3=x6 B. x2=|x| 1 1 1 C.(x2-x)÷ x= x- 1 D.x2-x+1=(x-x)2+ 4
(4)同底数幂相除: - a m÷ an=am n(m,n 都是整数,a≠0).
6.整式乘法: 单项式与单项式相乘,把它们的系数、同底数幂分别 相乘,其余字母连同它的指数不变,作为积的因式. 单项式乘多项式:m (a+b)=ma+mb. 多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.
1.(2016· 柳州)在下列单项式中,与 2xy 是同类项的是( A.2x2y2 B. 3y C.xy D . 4x
)
【答案】
C
2.(2016· 丽水)计算 32× 3 1 的结果是 A.3 B.-3 C.2 D.-2

(
)
【答案】
A
3.(2016· 泸州)计算 3a2-a2 的结果是 A.4a2 B. 3a2 C.2a2 D.2
【答案】
B
【类题演练 2】 (2016· 岳阳)下列运算结果正确的是( A.a2+a3=a5 B.(a2)3=a6 C.a2· a3=a6 D.3a-2a=1
)
【解析】 A.a2 与 a3 不是同类项,不能合并,故本选项 错误. B.(a2)3=a2×3=a6,故本选项正确. + C.a2· a3=a2 3=a5,故本选项错误. D.3a-2a=a,故本选项错误.

整式的加减乘除

整式的加减乘除

整式的加减乘除整式是代数表达式的一种形式,由数和字母通过加法、减法、乘法、除法等基本运算符号连接而成。

在数学中,整式的加减乘除是重要的基础知识,本文将从加法、减法、乘法和除法四个方面对整式的运算进行详细介绍。

一、整式的加法整式的加法是指将两个或多个整式相加的运算。

在进行整式的加法时,需要注意以下两点:1. 同类项相加:同类项是指具有相同字母的指数项,如4x²和3x²就是同类项,可以直接相加。

例如,将3x²+2x²相加,结果为5x²。

2. 系数相加:对于同类项,可以直接将系数相加。

例如,将3x²+2x²相加,结果为5x²。

二、整式的减法整式的减法是指将一个整式减去另一个整式的运算。

在进行整式的减法时,需要注意以下两点:1. 减去一个整式可以转化为加上这个整式的相反数。

例如,将5x²-3x²相减,可以转化为5x²+(-3x²)的运算。

2. 同类项相减:对于同类项,可以直接将系数相减。

例如,将5x²-3x²相减,结果为2x²。

三、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。

在进行整式的乘法时,需要按照分配律和乘法公式进行展开和合并。

例如,将(3x+2)(2x-1)展开乘法运算,结果为6x²+2x-3。

四、整式的除法整式的除法是指将一个整式除以另一个整式的运算。

在进行整式的除法时,需要使用长除法的方法进行计算。

例如,将6x³+3x²-2x-1除以2x+1,可以通过长除法得到商为3x²+2x-1,余数为0。

综上所述,整式的加减乘除是代数学中基本的运算,熟练掌握整式的加减乘除运算对于理解和解决复杂的代数问题至关重要。

通过不断练习和巩固,相信大家在整式的运算能力上会有所提升,为解决数学问题提供更加有效的方法和工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 知识点详解
整式的有关概念
1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个
数或一个字母也是代数式。

2、单项式:只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 23
13-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

多项式
1、多项式:几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项多项式
中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式
的次数。

①单项式和多项式统称整式。

②用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

③注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则
①括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

②括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则
整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=•
),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =
22))((b a b a b a -=-+
2222)(b ab a b a ++=+
2222)(b ab a b a +-=-
整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数
二、 例题详解
考点1: 单项式 多项式 整式
例1. 找出下列代数式中的单项式,并写出各单项式的系数和次数.
x -7,13x ,23a ,8a 3x ,-1,x +13.
练习1. 在代数式-2x 2,ax ,12x ,2x 3,1+a ,-b ,3+2a ,x +y 2中单项式共有( )
A. 2个
B. 4个
C. 6个
D. 8个
2. 已知单项式-x m y 2z 7的次数是8,求m 的值.
考点2:同类项
例1.如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a 、b 的值分别是 ( )
A. ⎩⎨⎧a =1b =2
B. ⎩⎨⎧a =0b =2
C. ⎩⎨⎧a =2b =1
D. ⎩⎨⎧a =1b =1
练习、1.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )
A .m=-2,n=3
B .m=2,n=3
C .m=-3,n=2
D .m=3,n=2
2、合并同类项:226x y x y -+= ,3356
x x -= 考点3:整式运算及运用
例1. 222(26)4(353)a a a a --+- ()()()232
3337235x x x x x ⋅-+⋅
2222()()3()x x xy y y x xy y xy y x ++-+++- 233222211(2)22
x y x y x y xy -+÷
22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦ [5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2
例2.已知a +b =5,ab =7,求2
2
2b a +,a 2-ab +b 2的值.
例3
例4
例5.已知x 2-5x +1=0,求221x
x +的值.
例6.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.
例7、若x 2-2x +10+y 2+6y =0,求(2x +y )2的值.
三、 课堂练习
1、已知关于x 的多项式(m ﹣2)x 2﹣mx+3中的x 的一次项系数为﹣2,则这个多项式是 次 项式.
2、当k= 时,多项式2x 2﹣4xy+3y 2与﹣3kxy+5的和中不含xy 项.
3、有这样一道题:有两个代数式A ,B ,已知B 为4x 2﹣5x ﹣6.试求A+B .马虎同学误将A+B 看成A ﹣B ,结果算得的答案是﹣7x 2+10x+12,则该题正确的答案: .
4. 若5m+n =565n-m ,则m= .
若a m =2,a n =5,则a m+n 等于 .
5、计算:(x ﹣y )2(x ﹣y )3﹣(x ﹣y )4(y ﹣x )= .
6、若(x ﹣2)(x ﹣n )=x 2﹣mx+6,则m= ,n= .
7、要使(x 2+ax+1)(﹣6x 3)的展开式中不含x 4项,则a= .
8、若(x+y+z )(x ﹣y+z )=(A+B )(A ﹣B ),且B=y ,则A= .
9、已知(a+b+1)(a+b ﹣1)=63,则a+b= .
10、计算:(2+1)(22+1)(24+1)(28+1)= (结果可用幂的形式表示)..
11、计算:(1+a+b )2= .
12、若|x+y ﹣5|+(xy ﹣6)2=0,则x 2+y 2的值为 .
13、已知31=+x x ,则代数式221x
x +的值为 . 14、已知a 2b 2+a 2+b 2+16=10ab ,那么a 2+b 2= .
15、计算(1) (3b + 2) (3b —2) (2) (a+2b -3)(a -2b+3)
(3) (y+2)(y -2)-(y -1)(y+5) (4) (-2m+5)2
(5)a a a a 3361223÷+-⎪⎪⎭⎫ ⎝⎛ (6)
mn mn mn n m 6)61512(22÷-+
16、化简求值: 22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦ 其中, 3,2a b 4==-3
17、先化简,再求值:[5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2,其中a =-5.
四、 课堂小结
1、代数式
2、单项式
3、多项式
4、同类项
5、去括号法则
6、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=•
),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =
22))((b a b a b a -=-+
2222)(b ab a b a ++=+
2222)(b ab a b a +-=-
整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数
五、 家庭作业
1.如果23321133
a b x y x y +--与是同类项则,则a,b 的值分别是:a= , b= , 3.已知x-y=2,则x 2-2xy+y 2=
4.若2x-4的值5,那么4x 2-16x+16的值为
5.在多项式4x 2+1中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是
6.若3a 2-a-2=0,则5+6a 2-2a= ;已知x-3y=-3,则5-x+3y= ,
7.已知a+b=32
,ab=1,则(a-2)(b-2)= 8. 已知x+y=3,xy=1,则x 2+y 2=
9..若2x =3,4y =5,则2x-2y = . 13. 已知a-b=1,则a 2-b 2-2b= 。

10.先化简,再求值。

(1)221(3)(2)(2)23
x x x x x +++--=其中
22(2)514,(1)(21)(1)1x x x x x -=---++已知求 的值?
(3)2(3)(8),4x x x ---其中
(4)2231(2)()(),12
a b ab b b a b a b a b --÷-+-==其中。

相关文档
最新文档