matlab主成分分析案例

合集下载

主成分分析matlab理论+实验

主成分分析matlab理论+实验
x2
x1
若将该坐标系按逆时针方向旋转某个角度θ变成新坐标系,变 换公式为
Y1 X 1 cos X 2 sin Y2 X 1 sin X 2 cos
y2 x2
y1
x1
记x1,x2,…,xP为原变量指标,z1,z2,…,zm(m<p)为新
变量指标
z1 a11 x1 a12 x2 L a1 p x p z2 a21 x1 a22 x2 L a2 p x p ............ z a x a x L a x m1 1 m2 2 mp p m
七. 主成分分析的应用
1. 综合评价 进行综合评价时,如何选择评价指标以及对这些指标进 行综合评价?一般做法是通过对各指标加权的办法。 由于主成分分析能从选定的指标体系中归纳出大部分信 息,根据主成分提供的信息进行综合评价,不失为一个可行 的选择。
利用主成分进行综合评价时,对主成分进行加权综合, 权数根据其方差贡献率确定 。
例5-3 用Matlab自带数据进行主成分分析,数据文件. hald文件包含影响温度的4个因素,保存在ingredients变量 中。代码见5.3.m
第一步:考虑变量之间相关性 load hald %载入Matlab 自带的数据文件 corrcoef(ingredients) % 自变量相关系数矩阵 ans = 1.0000 0.2286 -0.8241 -0.2454 0.2286 1.0000 -0.1392 -0.9730 -0.8241 -0.1392 1.0000 0.0295 -0.2454 -0.9730 0.0295 1.0000 第二步:主成分分析 [pc,score,latent,tsquare]=princomp(ingredients)

基于Matlab的中药主成分分析数学实验教学案例

基于Matlab的中药主成分分析数学实验教学案例

基于Matlab的中药主成分分析数学实验教学案例作者:董鸽闵建中陈立范王宏杰来源:《现代商贸工业》2021年第34期摘要:本文探讨医学院校数学实验课教学内容与专业相结合的教学案例。

以中药专业为例,介绍了中药专业中常用的主成分分析的统计方法,对10批三黄片样品的成分含量进行主成分分析,运用Matlab7.0软件进行计算,给出各主成分与原始成分的线性表达式和因子载荷阵,分析各主成分与原始成分的关联程度以及各主成分在原始成分中所产生的作用,最后运用综合评价函数计算10批样品的F值,根据F值大小进行排序,对10批样品进行综合评价。

关键词:数学实验;案例分析;Matlab;主成分分析中图分类号:G4文献标识码:Adoi:10.19311/ki.1672-3198.2021.34.068高等数学是许多医学专业的必修课程,但理论性强,与专业知识衔接不够紧密。

数学实验课程是联系高等数学理论知识与专业实际应用的桥梁,提高学生对高等数学知识的应用能力和计算机技术应用能力,培养学生的科研精神、创新意识和实际操作能力。

在医学院校中开始数学实验课,课程内容的选择非常重要,不同的专业对数学知识的需求也不尽相同,因此数学实验的内容也要跟着进行相应调整。

以中药专业为例,我们在基础知识的基础上,选择了与中药数理统计的案例,由于篇幅限制,我们仅举例主成分分析模块的数学实验教学案例。

1主成分分析的步骤主成分分析是一种降维数据处理的方法,在人脸数据识别、基因数据列分析、食品成分分析、中药成分分析等方面有着重要应用。

主成分分析的具体步骤如下:(1)设原始数据的样本个数为n,有m个观测指标X1,X2,…,X m,其中X j=(x1j,x2j,…,x nj)T,j=1,…,m,记矩阵X=(X1,X2,…,X m),欲寻找可以概括m个观测指标综合信息的综合指标Z1,Z2,…,Z m,满足线性组合。

Z i=a1i X1+a2i X2+…+a mi X m,i=1,…,m,(1)其中:a1i,a2i,…,a mi为常数,i=1,…,m。

稳健主成分 matlab

稳健主成分 matlab

稳健主成分 matlab稳健主成分分析(Robust Principal Component Analysis, RPCA)是一种用于处理含有异常值或噪声的数据的降维方法。

它能够通过将数据拆分为一个低秩矩阵和一个稀疏矩阵的组合来提取出数据的主要特征。

在MATLAB中,可以使用`robrpca`函数来进行稳健主成分分析。

该函数的基本语法如下:```matlab[L, S] = robrpca(X, lambda, maxIter, tol)```其中,`X`是输入的数据矩阵,`lambda`是一个正则化参数,`maxIter`是最大迭代次数,`tol`是收敛阈值。

函数的输出是一个低秩矩阵`L`和一个稀疏矩阵`S`,分别表示数据矩阵的主要成分和异常值。

以下是一个使用`robrpca`函数进行稳健主成分分析的示例:```matlab% 生成含有异常值的数据X = randn(100, 50);X(10, 10) = 10; % 添加一个异常值% 进行稳健主成分分析[L, S] = robrpca(X, 1, 100, 1e-6);% 显示结果subplot(1, 2, 1);imagesc(L);title('Low-rank Matrix');subplot(1, 2, 2);imagesc(S);title('Sparse Matrix');```该示例中,首先生成一个大小为100x50的随机数据矩阵,并在其中添加一个异常值。

然后使用`robrpca`函数对数据进行稳健主成分分析,并将结果分别显示在两个子图中。

需要注意的是,稳健主成分分析方法的运行时间可能较长,特别是在处理大规模数据时。

因此,在实际应用中,可能需要适当调整`maxIter`和`tol`参数的值来平衡运行时间和结果精度。

主成分分析(PCA)算法介绍及matlab实现案例

主成分分析(PCA)算法介绍及matlab实现案例

主成分分析(PCA)算法介绍及matlab实现案例主成分分析经常被⽤做模型分类时特征的降维,本篇⾸先介绍PCA的步骤,并根据步骤撰写对应的MATLAB代码,最后指明使⽤PCA的步骤。

我们在做分类时,希望提取的特征能够最⼤化将数据分开,如果数据很紧密,模型就⽐较难将其分开,如果数据⽐较离散,那么就⽐较容易分开,换句话说,数据越离散,越容易分开。

那怎么让数据离散呢?离散⼜⽤什么指标衡量呢?统计学的知识告诉我们,数据越离散,⽅差越⼤。

因此,PCA的问题就变为:寻找⼀个坐标轴,使得数据在该坐标轴上⾯离散度最⾼。

也就是寻找⼀个基使得所有数据在这个基上⾯的投影值的⽅差最⼤。

那具体怎么做呢?科学家们已经帮我们做好了,如下步骤:设有m个样本,每个样本有n个特征,组成m⾏n列的矩阵1)将每⼀列特征进⾏均值化处理,特征归⼀化,也称为数据中⼼平移到坐标原点2)求取协⽅差矩阵3)求取协⽅差矩阵的特征值和特征向量4)将特征向量按对应特征值⼤⼩从上到下按⾏排列成矩阵,取前K列组成系数矩阵matlab代码function [coffMatrix,lowData,eigValSort,explained,meanValue] = myPCA(data)%data为row⾏col列矩阵,row为样本数量,col为特征列,每⼀列代表⼀个特征[row , col] = size(data);% 求出每⼀列的均值meanValue = mean(data);% 将每⼀列进⾏均值化处理,特征归⼀化,数据中⼼平移到坐标原点normData = data - repmat(meanValue,[row,1]);%求取协⽅差矩阵covMat = cov(normData);%求取特征值和特征向量[eigVect,eigVal] = eig(covMat);% 将特征向量按对应特征值⼤⼩从上到下按⾏排列成矩阵[sortMat, sortIX] = sort(eigVal,'descend');[B,IX] = sort(sortMat(1,:),'descend');coffMatrix = eigVect(:,IX);% 排序后的特征向量就是新的坐标系lowData = normData * coffMatrix;% 分量得分explained = 100*B/sum(B);%特征值eigValSort = B;%%% [U,S,V] = svd(data);end我们在实际应⽤PCA的时候需要注意保留以下⼏个值。

matlab主成分分析案例

matlab主成分分析案例

1.设随机向量X=(X 1,X 2,X 3)T 的协方差与相关系数矩阵分别为⎪⎪⎭⎫ ⎝⎛=∑25441,⎪⎪⎭⎫⎝⎛=18.08.01R 分别从∑,R 出发,求X 的各主成分以及各主成分的贡献率并比较差异况。

解答:>> S=[1 4;4 25];>> [PC,vary,explained]=pcacov(S); 总体主成分分析:>> [PC,vary,explained]=pcacov(S) 主成分交换矩阵: PC =-0.1602 -0.9871 -0.9871 0.1602 主成分方差向量: vary = 25.6491 0.3509各主成分贡献率向量 explained = 98.6504 1.3496则由程序输出结果得出,X 的主成分为: Y 1=-0.1602X 1-0.9871X 2 Y 2=-0.9871X 1+0.1602X 2两个主成分的贡献率分别为:98.6504%,1.3496%;则若用第一个主成分代替原来的变量,信息损失率仅为1.3496,是很小的。

2.根据安徽省2007年各地市经济指标数据,见表5.2,求解: (1)利用主成分分析对17个地市的经济发展进行分析,给出排名; (2)此时能否只用第一主成分进行排名?为什么?解答:(1)>> clear>> A=[491.70,380.31,158.39,121.54,22.74,439.65,344.44,17.43;21.12,30.55,6.40,12.40,3.31,21.17,17.71,2.03;1.71,2.35,0.57,0.68,0.13,1.48,1.36,-0.03;9.83,9.05,3.13,3.43,0.64,8.76,7.81,0.54;64.06,77.86,20.63,30.37,5.96,63.57,52.15,4.71;30.38,46.90,9.19,9.83,17.87,28.24,21.90,3.80;31.20,70.07,8.93,18.88,33.05,31.17,26.50,2.84;79.18,62.09,20.78,24.47,3.51,71.29,59.07,6.78;47.81,40.14,17.50,9.52,4.14,45.70,34.73,4.47;104.69,78.95,29.61,25.96,5.39,98.08,84.81,3.81;21.07,17.83,6.21,6.22,1.90,20.24,16.46,1.09;214.19,146.78,65.16,41.62,4.39,194.98,171.98,11.05;31.16,27.56,8.80,9.44,1.47,28.83,25.22,1.05;12.76,14.16,3.66,4.07,1.57,11.95,10.24,0.73;6.45,5.37,2.39,2.20,0.40,5.97,4.79,0.52;39.43,44.60,15.17,15.72,3.27,36.03,27.87,3.48;5.02,3.62,1.63,1.42,0.53,4.45,4.04,0.02];得到的相关系数矩阵为:>> R=corrcoef(A)R =1.0000 0.9877 0.9988 0.9820 0.4281 0.9999 0.9980 0.95100.9877 1.0000 0.9884 0.9947 0.5438 0.98850.9835 0.94850.9988 0.9884 1.0000 0.9824 0.4294 0.99840.9948 0.94620.9820 0.9947 0.9824 1.0000 0.5051 0.98290.9763 0.93910.4281 0.5438 0.4294 0.5051 1.0000 0.43110.4204 0.45570.9999 0.9885 0.9984 0.9829 0.4311 1.00000.9986 0.95300.9980 0.9835 0.9948 0.9763 0.4204 0.99861.0000 0.95690.9510 0.9485 0.9462 0.9391 0.4557 0.95300.9569 1.0000计算特征值与特征向量:>> [v,d]=eig(corrcoef(A))v =-0.3723 0.1179 0.1411 -0.2543 -0.0459 0.5917-0.5641 0.3041-0.3741 -0.0343 0.1606 0.2247 -0.1514 -0.6284-0.1535 0.5841-0.3719 0.1152 0.1957 -0.1954 -0.6909 -0.13510.0383 -0.5244-0.3713 0.0096 0.2368 0.7875 0.2168 0.23850.0303 -0.2845-0.1949 -0.9689 -0.0004 -0.1242 0.0119 0.06280.0151 -0.0593-0.3725 0.1143 0.1222 -0.2302 0.0924 0.22590.7946 0.2988-0.3716 0.1272 0.0353 -0.3800 0.6591 -0.3521-0.1557 -0.3428-0.3613 0.0596 -0.9185 0.1165 -0.0872 0.03020.0022 -0.0096d =7.1135 0 0 0 0 0 0 00 0.7770 0 0 0 0 0 00 0 0.0810 0 0 0 0 00 0 0 0.0237 0 0 0 00 0 0 0 0.0041 00 00 0 0 0 0 0.0006 0 00 0 0 0 0 00.0000 00 0 0 0 0 0 0 0.0001各主成分贡献率:>> w=sum(d)/sum(sum(d))w =0.8892 0.0971 0.0101 0.0030 0.0005 0.00010.0000 0.0000计算各个主成分得分:>> F=[A-ones(17,1)*mean(A)]*v(:,8)F =224.3503-24.0409-40.0941-35.90754.7573-12.6102-2.85731.8038-13.901213.4541-29.384762.3383-23.3175-32.4285-38.1309-14.8637-39.1675>> [F1,I1]=sort(F,'descend')F1按从大到小的顺序给个主成分得分排名:F1 =224.350362.338313.45414.75731.8038-2.8573-12.6102-13.9012-14.8637-23.3175-24.0409-29.3847-32.4285-35.9075-38.1309-39.1675-40.0941I1给出各个名次的序号:I1 =1121058769161321114415173>> [F2,I2]=sort(I1)F2 =1234567891011121314151617I2给出个城市排名,即所求排名:I2 =1111714476583122101315916(2)由于第一主成分的贡献率大于80%,其他各成分贡献率都太小,所以只能用第一主成分进行排名。

Matlab主成分分析:详解+实例

Matlab主成分分析:详解+实例
主成分分析(PCA)中我们的目标是找到 一个能使个体差异达到最大的变量线性 组合。
主成分分析
总结:
主 原始变量 目标

X1, , Xm
主成分
Z1, ,Zp

线性组合

Z1, , Zp 互不相关
析 的
信息不重合 按‘重要性’排序
求解主 成分

Z1, , Zp
想 Var(Z1) Var(Z2 ) Var(Zp )
r
i r 2(z j , xi ),
j1
这里r(z j , xi )表示zj 与 xi 的相关系数。
主成分分析
1 2 0
例1 设 x [ x1, x2 , x3 ]T 且 R 2 5 0
0 0 0
则可算得1 5.8284,2 0.1716,如果我们仅取第
一个主成分,由于其累积贡献率已经达到97.14%, 似乎很理想了,但如果进一步计算主成分对原变量的
c1 x1+ c2 x2+… +cp xp
我们希望选择适当的权重能更好地区分学生的 成绩. 每个学生都对应一个这样的综合成绩, 记 为s1, s2,…, sn , n为学生人数. 如果这些值很分散, 表明区分好, 即是说, 需要寻找这样的加权, 能使 s1, s2,…, sn 尽可能的分散, 下面来看的统计定义.
x5:交通和通讯,
x6:娱乐教育文化服务,
x7:居住,
x8:杂项商品和服务.
对居民消费数据做主成分分析.
聚类分析
聚类分析
聚类分析
计算的Matlab程序如下:
clc,clear load czjm1999.txt
%把原始数据保存在纯文本文件czjm1999.txt中

主成分分析及matlab实现

主成分分析及matlab实现

第一步 将原始数据标准化。 第二步 建立指标之间的相关系数阵R如下
第三步 求R的特征值和特征向量。
从上表看,前3个特征值累计贡献率已达89.564%, 说明前3个主成分基本包含了全部指标具有的信息,我们 取前3个特征值,并计算出相应的特征向量:
因而前三个主成分为:
第一主成分:
第二主成分:
包含的信息量次之为29.34%,它的主要代表变量为X3(地理 结构)、X6(资源配置)、X9 (可持续性),其权重系数分别为 0.5299、0.5273、0.4589,第三新因子 Z3包含的信息量为 11.97%,代表总量为 X9(可持续性)、 X5(物质还原),权重 系数分别为0.5933、0.5664。这些代表变量反映了各自对该 新因子作用的大小,它们是生态环境系统中最重要的影响因 素。 根据前三个主成分得分,用其贡献率加权,即得十个城 市各自的总得分

分析:本题目可先尝试一般的线性回归模型,但拟合的效果一般,故可尝试主成分回 归分析方法 解:首先对各个变量数据进行标准化处理,其次, 建立指标之间的相关系数阵并求出 相关阵的特征值分别为:
1 1.999, 2 0.998, 3 0.003
前2个主成分的累计贡献率在99%以上,故取2个主成分( xi*表示xi的标准化变量):
定义:记x1,x2,…,xP为原变量指标, z1,z2,…,zm(m≤p)为新变量指标 z1 l11 x1 l12 x2 l1 p x p z2 l21 x1 l22 x2 l2 p x p ............ (1.2) z l x l x l x mp p m m1 1 m 2 2

贡献率
i

k 1
p

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析PCA(含有详细推导过程以及案例分析matlab版)主成分分析法(PCA)在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。

由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。

如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。

I. 主成分分析法(PCA)模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。

这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。

通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。

因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。

如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。

(二)主成分分析的数学模型对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为:=np n n p p x x x x x x x x x X212222111211()p x x x ,,21=其中:p j x x x x nj j j j ,2,1,21== 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即+++=+++=+++=ppp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为:p jp j j j x x x F ααα+++= 2211p j ,,2,1 =要求模型满足以下条件:①j i F F ,互不相关(j i ≠,p j i ,,2,1, =)②1F 的方差大于2F 的方差大于3F 的方差,依次类推③.,2,1122221p k a a a kp k k ==+++于是,称1F 为第一主成分,2F 为第二主成分,依此类推,有第p 个主成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1•设随机向量X= (X i , X 2, X 3)T 的协方差与相关系数矩阵分别为
1 4
,R
4 25
分别从,R 出发,求X 的各主成分以及各主成分的贡献率并比较差异况。

解答: >> S=[1 4;4 25];
>> [P C,vary,ex plain ed]=p cacov(S); 总体主成分分析:
>> [P C,vary,ex plain ed]=p cacov(S) 主成分交换矩阵: PC =
-0.1602 -0.9871 -0.9871 0.1602 主成分方差向量: vary = 25.6491 0.3509
各主成分贡献率向量 explained = 98.6504 1.3496
则由程序输出结果得出,X 的主成分为: Y 1=-0.1602X 1-0.9871X 2 Y 2=-0.9871X 1+0.1602X 2
两个主成分的贡献率分别为:98.6504%, 1.3496%;贝U 若用第一个主成分代替原 来的变量,信息损失率仅为1.3496,是很小的。

2.根据安徽省2007年各地市经济指标数据,见表 5.2,求解: (1) 利用主成分分析对17个地市的经济发展进行分析,给出排名; (2) 此时能否只用第一主成分进行排名?为什么?
1 0.8 0.8 1
1.0000 0.9877 0.9980 0.9510 0.9988 0.9820 0.4281 0.9999
解答:
(1)
>> clear
>> A=[491.70,380.31,158.39,121.54,22.74,439.65,344.44,17.43;
21.12,30.55,6.40,12.40,3.31,21.17,17.71,2.03;
1.71,
2.35,0.57,0.68,0.13,1.48,1.36,-0.03;
9.83,9.05,3.13,3.43,0.64,8.76,7.81,0.54;
64.06,77.86,20.63,30.37,5.96,63.57,52.15,4.71;
30.38,46.90,9.19,9.83,17.87,28.24,21.90,3.80;
31.20,70.07,8.93,18.88,33.05,31.17,26.50,2.84;
79.18,62.09,20.78,24.47,3.51,71.29,59.07,6.78;
47.81,40.14,17.50,9.52,4.14,45.70,34.73,4.47;
104.69,78.95,29.61,25.96,5.39,98.08,84.81,3.81;
21.07,17.83,6.21,6.22,1.90,20.24,16.46,1.09;
214.19,146.78,65.16,41.62,4.39,194.98,171.98,11.05;
31.16,27.56,8.80,9.44,1.47,28.83,25.22,1.05;
12.76,14.16,3.66,4.07,1.57,11.95,10.24,0.73;
6.45,5.37,2.39,2.20,0.40,5.97,4.79,0.52;
39.43,44.60,15.17,15.72,3.27,36.03,27.87,3.48;
5.02,3.62,1.63,1.42,0.53,4.45,4.04,0.02];
得到的相关系数矩阵为:
>> R=corrcoef(A)
R =
0.9877 1.0000 0.9884 0.9947 0.5438 0.9885 0.9835 0.9485
0.9988 0.9884 1.0000 0.9824 0.4294 0.9984 0.9948 0.9462
0.9820 0.9947 0.9824 1.0000 0.5051 0.9829 0.9763 0.9391
0.4281 0.5438 0.4294 0.5051 1.0000 0.4311 0.4204 0.4557
0.9999 0.9885 0.9984 0.9829 0.4311 1.0000 0.9986 0.9530
0.9980 0.9835 0.9948 0.9763 0.4204 0.9986
1.0000 0.9569
0.9510 0.9485 0.9462 0.9391 0.4557 0.9530 0.9569 1.0000
计算特征值与特征向量:
>> [v,d]=eig(corrcoef(A))
V 一
-0.3723 0.1179 0.1411 -0.2543 -0.0459 0.5917 -0.5641 0.3041
-0.3741 -0.0343 0.1606 0.2247 -0.1514 -0.6284 -0.1535 0.5841
-0.3719 0.1152 0.1957 -0.1954 -0.6909 -0.1351 0.0383 -0.5244
-0.3713 0.0096 0.2368 0.7875 0.2168 0.2385 0.0303 -0.2845
-0.1949 -0.9689 -0.0004 -0.1242 0.0119 0.0628 0.0151 -0.0593
-0.3725 0.1143 0.1222 -0.2302 0.0924 0.2259 0.7946 0.2988
-0.3716 0.1272 0.0353 -0.3800 0.6591 -0.3521 -0.1557 -0.3428
-0.3613 0.0596 -0.9185 0.1165 -0.0872 0.0302 0.0022 -0.0096
d =
7.1135
0 0
0 0
0 0 0.7770
0.0810
0 0.0237
0 0.0041
0 0 0 0 0.0000
0 0 0.0001
各主成分贡献率:
>> w=sum(d)/sum(sum(d))
计算各个主成分得分:
>> F=[A-ones(17,1)*mean(A)]*v(:,8)
224.3503 -24.0409 -40.0941 -35.9075 4.7573 -12.6102 -2.8573
1.8038 -13.9012 13.4541 -29.3847 6
2.3383 -2
3.3175 -32.4285 -38.1309 -1
4.8637 -39.1675
>> [F1,I1]=sort(F,'descend')
F1按从大到小的顺序给个主成分得分排名: F1 = 224.3503
0.8892 0.0971 0.0000 0.0000
0.0101 0.0030 0.0005 0.0001
0.0006
62.3383
13.4541
4.7573
1.8038 -
2.8573 12.6102 1
3.9012 1
4.8637 23.3175 24.0409 29.3847 32.4285 3
5.9075 38.1309 39.1675 -40.0941
I1 给出各个名次的序号:
I1 =
1
12
10
5
8
7
6
9
16
13
2
11
14
4
15
17
3 >> [F2,I2]=sort(I1)
F2 =
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
I2 给出个城市排名,即所求排名:I2 =
1
11
17
14
4
7
6
5
8
3
12
2
10
13
15
9
16
(2)由于第一主成分的贡献率大于80%,其他各成分贡献率都太小,所以只能用第一主成分进行排名。

相关文档
最新文档