九年级数学《圆内接正多边形》
九年级数学下册 第三章 圆 3.8 圆内接正多边形课件 北师大下册数学课件

Image
12/10/2021
第四十五页,共四十五页。
第四十页,共四十五页。
当圆周角的顶点(dǐngdiǎn)在优A B弧 18°.
上时,AB所对的圆周角为
当圆周角的顶点在劣弧 A B上时,AB所对的圆周角为 180°-18°=162°,
∴综上所述答案为:18°或162°.
答案:18°或162°
第四十一页,共四十五页。
【一题多变】
已已知知圆圆内内接接正正三三角角形形(zhè(nzɡhèsnāɡn sjāinǎojixǎíonɡx)í的n3ɡ)面的积面为积为,则,该则圆的该内圆接的正内 边边形形的的边边心心距距是是 (( B ))
径,外接圆半径和高的比是(
)D
A.1∶2∶ B.2∶3∶4 3
C.1∶ ∶2 D.1∶2∶3
3
第四十四页,共四十五页。
内容(nèiróng)总结
8 圆内接正多边形。正多边形:_______________,_______________的多边。这个圆叫做这
No 个正多边形的___________.这个多边形叫。2.尺规作图:(1)因为与半径相等的弦长所对的圆心角。
第三页,共四十五页。
第四页,共四十五页。
这个(zhè ge)圆叫做这个(zhè ge)正多边外形接的圆___________.这个多边形
做圆内接正多边形.
第五页,共四十五页。
【探究二】应用(yìngyòng)等分圆周的方法作正多边形: 1.应用量角器,根据相等的圆心角所对的弧____相__等__(_xi,āngděng) 把360°的圆心角n等分,依次连接各个分点,得到圆内 接正n边形.
数学北师大版九年级下册圆内接正多边形

为了减少累积误差,要尽量避Fra bibliotek从圆上某一点开始,连续截取等弧。
你能利用尺规作一个已知圆的内接正四边形吗?
小结反思
1、了解圆内接正多边形的概念; 2、正多边形的半径、边心距、边长的计算:
正n边形的有关计算均可转化为解直角三角形。 这个直角三角形的构成是:
(1) 斜边为半径, 一直角边为边心距,另一直角边为边长的一半; (2)顶点在中心的锐角为中心角的一半。
3.8
圆内接正多边形
主讲教师:郑 锦
知识回顾,拓通准备
1、什么是正多边形? 各边相等,各角也相等的多边形(n≥3)是正多边形。 2、正多边形的外心和内心在位置上有什么关系?
正多边形的外心和内心:重合
观察图形,概括定义
圆内接正多边形及相关概念
1. 顶点都在同一圆上的正多边形叫做圆内接正多边形。 这个圆叫做该正多边形的外接圆。 2.如图3-33: ( 1 )五边形 ABCDE 是⊙ O 的内接正五 边形,圆心 O 叫做这个正五边形的中 心; (2)OA是这个正五边形的半径;
(3)∠AOB是这个正五边形的中心角;
(4)OM⊥BC,垂足为M,OM是这个正 五边形的的边心距。
例题 例:如图3-34,在圆内接正六边形ABCDEF中,半径OC=4, OG⊥BC ,垂足为点G,求正六边形的中心角、边长和边心距。
例题讲解 例:如图3-34,在圆内接正六边形ABCDEF中,半径OC=4, OG⊥BC ,垂足为点G,求正六边形的中心角、边长和边心距。
解:连接 OD ∵六边形ABCDEF为正六边形
∴ ∠COD=
360 ° 6
=60°
∴ △COD为等边三角形
∴ CD=OC=4 1 1 在Rt△COG中,OC=4,CG= BC= ×4=2, 2 2 由勾股定理得,OG=2 3 ∴正六边形ABCDE的中心角为60°, 边长为4,边心距为2 3 。
北师大版九年级数学下册第三章8圆内接正多边形

n
其中正确的命题有 ( ) A.2个 B.3个 C.4个 D.5个
答案 A ①正多边形都有一个内切圆和一个外接圆,这两个圆是同心圆, 圆心是正多边形的中心,故①正确;②各边相等的圆外切多边形的各内角不 一定相等,故不一定是正多边形,如菱形,故②错误;③圆内接矩形的各内角 相等,但不是正多边形,故③错误;④边数是偶数的正多边形既是轴对称图 形又是中心对称图形,而边数是奇数的正多边形只是轴对称图形,不是中心
2.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20 cm2,则正八边
形的面积为
cm2.
答案 40 解析 如图,连接AD、HE,分别交BG、CF于点O、P、M、N, 则△ABO,△CDP,△EFN,△HGM均为全等的等腰直角三角形,四边形 BCPO、四边形GFNM为全等的矩形. 设正八边形的边长为a cm,
初中数学(北师大版)
九年级 下册
第三章 圆
知识点一 圆内接正多边形 顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正
多边形的外接圆. 把一个圆n(n≥3)等分,依次连接各分点,我们就可以作出一个圆内接正n边 形. (1)相关定义:
名称 中心
半径 中心角 边心距
概念
图形
ห้องสมุดไป่ตู้
一个正多边形的外接圆的圆心 叫做这个正多边形的中心
1.正六边形的边心距与边长之比为 ( ) A. 3 ∶3 B. 3 ∶2 C.1∶2 D. 2 ∶2
答案 B 如图,设正六边形ABCDEF的边长为2a,O为正六边形的中心,连 接OA、OB,作OM⊥AB于M, ∴△OAB是等边三角形, ∴OA=OB=AB=2a,AM=BM=a. 在Rt△OAM中,由勾股定理可得OM= 3 a, 则正六边形的边心距与边长之比为OM∶AB= 3 a∶2a= 3 ∶2,故选B.
九年级数学第三章圆内接正多边形

正多边形和圆【学习目标】1. 了解正多边形和圆的有关概念及对称性;2 .理解并掌握正多边形半径和边长、边心距、中央角之间的关系,会应用正多边形和圆的有关知识画正多边形:3 .会进行正多边形的有关计算.【要点梳理】要点一、正多边形的概念各边相等,各角也相等的多边形是正多边形.要点进阶:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等:(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).要点二、正多边形的重要元素1 .正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2 .正多边形的有关概念(1) 一个正多边形的外接圆的圆心叫做这个正多边形的中央.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中央角.(4)正多边形的中央到正多边形的一边的距离叫做正多边形的边心距.3 .正多边形的有关计算f«-2Y1800(1)正n边形每一个内角的度数是i——L------------------- ;360°(2)正n边形每个中央角的度数是—:n360°(3)正n边形每个外角的度数是—.n要点进阶:要熟悉正多边形的根本概念和根本图形,将待解决的问题转化为直角三角形.要点三、正多边形的性质1 .正多边形都只有一个外接圆,圆有无数个内接正多边形.2 .正n边形的半径和边心距把正n边形分成2 n个全等的直角三角形.3 .正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中央:当边数是偶数时,它也是中央对称图形,它的中央就是对称中央.4,边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.5.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆要点进阶:〔1〕各边相等的圆的内接多边形是圆的内接正多边形:〔2〕各角相等的圆的外切多边形是圆的外切正多边形.要点四.正多边形的画法1 .用量角器等分圆由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角〔即等分顶点在圆心的周角〕可以等分圆:根据同圆中相等弧所对的弦相等,依次连接各分点就可画出相应的正n边形.2 .用尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图.①正四、八边形.在.0中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形.再逐次平分各边所对的弧〔即作NAOB 的平分线交出于E〕就可作出正八边形、正十六边形等,边数逐次倍增的正多边形.②正六、三、十二边形的作法.通过简单计算可知,正六边形的边长与其半径相等,所以,在.0中,任画一条直径AB,分别以A、B为圆心,以.0的半径为半径画弧与..相交于C、D和E、F,那么A、C、E、B、F、D是..的6等分点.显然,A、E、F〔或C、B、D〕是..的3等分点.要点进阶:面正n边形的方法:〔1〕将一个圆n等份,〔2〕顺次连结各等分点.【典型例题】类型一、正多边形的概念例1.如下图,正五边形的对角线AC和BE相交于点M.〔1〕求证:AC/7ED:〔2〕求证:ME=AE.例2.如图,正方形ABCD内接于OO, E为DC的中点,直线BE交.0于点F,假设OO的半径为小云那么BF的长为.举一反三:【变式】同一个圆的内接正六边形和外切正六边形的周长的比等于〔〕A. 3: 4B. <3: 2C. 2: <3 D・ 1: 2类型二、正多边形和圆的有关计算例3.如图,AG是正八边形ABCDEFGH的一条对角线.〔1〕在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由:〔2〕两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,假设AB=2,求四边形PQMN的例4. 如图〔1〕所示,圆内接aABC中,AB=BC=CA, OD、0E为..的半径,OD_LBC于点F, OE±AC于点G,求证:阴影局部四边形OFCG的面积是^畋的面积的3图⑴举一反三:【变式】如下列图,假设NDOE保持120°角度不变,求证:当ND0E绕着0点旋转时,由两条半径和AABC 的两条边围成的图形,图中阴影局部的面积始终是AABC的面积的,.3【稳固练习】一、选择题1 .等边三角形的内切圆半径,外接圆半径和高的比是〔〕A. 1 : 2:B. 2: 3: 4C. 1 : 2D. 1: 2: 32 .将边长为3cm的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,那么这个正六边形的面积为〔〕A 30 2 D 3有二「3小:n , 二A. -------- c mB. ----------------- cmC. --------- c mD. 3,3cin2 4 83 .如图,4PQR是.0的内接正三角形,四边形ABCD是.0的内接正方形,BC〃QR,那么NA0Q=〔〕4 .周长是12的正三角形、正方形、正六边形的面积分别是S,、Si、S6,那么它们的大小关系是〔〕.A. S6>S:>S3B. S5>S I>S GC. S6>S3>S ID.5 .如下图,八边形ABCDEFGH是正八边形,其外接..的半径为点,那么正八边形的面积5为〔〕.A. —B. 4及C. 8D.426 .先作半径为杂的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方形,…,那么按以上规律作出的第7个圆的内接正方形的边长为〔〕A.〔劣°13.〔挈C. 〔6〕6 口.〔6〕7二、填空题7 . 一个正方形与圆有相等的周长,那么圆面积与正方形的面积比为.8 .如下图,正六边形内接于圆0,圆0的半径为10,那么图中阴影局部的面积为.9 .半径相等的圆内接正三角形、正方形、正六边形的边长之比为.10 .如图,在边长为2的正六边形ABCDEF中,点P是其对角线BE上一动点,连接PC、PD,那么△ PCD 的周长的最小值是.11 .如下图,有一个圆.和两个正六边形Ti、L. L的6个顶点都在圆周上,工的6条边都和圆0相切〔我们称兀,T:分别为圆0的内接正六边形和外切正六边形〕.〔1〕设L,O的边长分别为a, b,圆.的半径为r,那么r:a二〔2〕正六边形T,, T二的面r:b=积比SjS二的值是.12 .如下图,正方形ABCD中,边长AB=3,.0与.O'外切且与正方形两边相切,两圆半径为R、r,贝lj R+r=.三、解做题13 .如图,正六边形ABCDEF的边长为2必m,点P为六边形内任一点.那么点P到各边距离之和为多少cm?14 .如图①、②、③,正三角形ABC、正方形ABCD、正五边形ABCDE分别是..的内接三角形、内接四边形、内接五边形,点M、N分别从点B、C开始,以相同的速度中O0上逆时针运动.〔1〕求图①中NAPB的度数:〔2〕图②中,NAPB的度数是,图③中NAPB的度数是:〔3〕根据前而探索,你能否将此题推广到一般的正n边形情况?假设能,写出推广问题和结论:假设不能,请说明理由.15 .如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度〞.在研究“接近度〞时,应保证相似图形的“接近度〞相等.〔1〕设正n边形的每个内角的度数为m°,将正n边形的“接近度〞定义为1180-m .于是,18〔Hn 越小,该正n边形就越接近于圆,①假设"20,那么该正n边形的“接近度〞等于:②当“接近度〞等于时,正n边形就成了圆.〔2〕设一个正n边形的半径〔即正n边形外接圆的半径〕为R,边心距〔即正n边形的中央到各边的距离〕为r,将正n边形的“接近度〞定义为|R-r|,于是|R-r越小,正n边形就越接近于圆. 你认为这种说法是否合理?假设不合理,请给出正n边形“接近度〞的一个合理定义.。
北师大数学九年级下册第三章-圆内接正多边形(含解析)

第04讲_圆内接正多边形知识图谱正多边形和圆知识精讲一. 正多边形的概念及性质1. 正多边形的定义:各角相等,各边相等的多边形叫做正多边形.2. 正多边形的相关概念:(1)正多边形的中心:我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心;(2)正多边形的半径:外接圆的半径叫做正多边形的半径;(3)正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角;(4)正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.补充说明:正多边形的性质:(1)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;(2)正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;(3)偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.二. 正多边形与圆的关系1. 把一个圆n等分,依次连结各个等分点所得到的多边形是这个圆的内接正n边形;这个圆叫这个正n边形的外接圆;经过各等分点作圆的切线,以相邻切线交点为顶点的多边形是这个圆的外切正n边形.2. 定理:任何一个正多边形都有一个外接圆和一个内切圆;并且这两个圆是同心圆.三. 正多边形有关的计算1. 正n边形的每个内角都等于()2180nn-⋅︒;2. 正n边形的每一个外角与中心角相等,等于360n︒;3. 设正n 边形的边长为n a ,半径为R ,边心距为n d ,周长为n C ,面积为n S ;则:222111422n n n n n n n n n R d a C na S n d a d C =+==⋅⋅=⋅,,三点剖析考点:正多边形的概念、性质及相关计算重难点:正多边形相关计算.易错点:对正多边形相关的概念混淆不清.正多边形的相关概念例题1、 下面给出六个命题:①各角相等的圆内接多边形是正多边形;②各边相等的圆内接多边形是正多边形;③正多边形是中心对称图形;④各角均为120︒的六边形是正六边形;⑤边数相同的正n 边形的面积之比等于它们边长的平方比;⑥各边相等的圆外切多边形是正多边形.其中,正确的命题是_____________. 【答案】 ②⑤【解析】 ①错误,反例:矩形各角相等但不是正四边形;②正确,边相等则各边所对的圆心角相等,由半径和圆心角可构成 个全等的等腰三角形,则多边形的各内角也相等;③错误,正奇数边形不是中心对称图形;④错误,在正六边形的基础上作任意一组对边的平行线,仍然截出一个六边形,各内角均为,但不是正六边形;⑤正确,相似的性质;⑥错误,只要使切点与圆心的连线不平分多边形的边长即可.例题2、 若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( ) A.30° B.60° C.90° D.120° 【答案】 B【解析】 由于任意多边形的外角和均为360°,所以这个正多边形的边数为360660=,所以正六边形的中心角的度数为360606︒=︒.例题3、 正六边形的边心距与边长之比为( )A.3:3B.3:2C.1:2D.2:2【答案】 B【解析】 此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.首先根据题意画出图形,然后设六边形的边长是a ,由勾股定理即可求得OC 的长,继而求得答案.如图:设六边形的边长是a , 则半径长也是a ;经过正六边形的中心O 作边AB 的垂线OC ,则AC=12AB=12a ,∴OC=22OA AC -=32a ,a n d nR O CBA∴正六边形的边心距与边长之比为:32a:a=3:2.故选B.例题4、已知:线段a(如图)(1)求作:正六边形ABCDEF,使边长为a(用尺规作图,要保留作图痕迹,不写作法及证明)(2)若a=2cm,则半径R=______cm,边心距r=______cm,周长p=______cm,面积S=______cm2.【答案】(1)(2)2,3,12,63【解析】(1)如图,正六边形ABCDEF即为所求;(2)∵a=2cm,∴半径R=2cm.∵OA=OB=AB=a,∴∠OAB=60°,∴r=OG=OA•sin60°=2×332cm.∵a=2cm,∴周长p=6a=12cm,∴S正六边形ABCDEF=6S△OAB=6×12×2×3=63(cm2).相关计算例题1、如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=__________________°.【答案】125【解析】∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=35°,∠OCB=∠ACB=20°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣35°﹣20°=125°.例题2、已知正六边形的边长为2,则它的内切圆的半径为()A.1B.3C.2D.23【答案】B【解析】如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×32=3,∴边长为2的正六边形的内切圆的半径为3.例题3、如图1、2、3、…..、n,M、N分别是O的内接正三角形ABC、正方形ABCD、五边形ABCDE、…..、正n边形ABCDE…..的边AB、BC上的点,且BM CN=,连接OM、ON.(1)求图1中MON∠的度数;(2)图2中MON∠的度数是____________,图3中MON∠的度数是____________;(3)试探究MON∠的度数与正n边形边数n的关系(直接写出答案).【答案】(1)120︒;(2)90︒,72︒;(3)360 n︒【解析】解:分别连接OB、OC,(1)AB AC=ABC ACB∴∠=∠OC OB=,O是外接圆的圆心,CO ACB∴∠平分30OBC OCB∴∠=∠=︒30OBM OCN∴∠=∠=︒BM CN=,OC OB=OMB ONC∴∆∆≌BOM NOC∴∠=∠60BAC∠=︒120BOC∴∠=︒120MON BOC∴∠=∠=︒(2)同(1)可得MON∠的度数是90︒;图3中MON∠的度数是72︒(3)由(1)可知,360==1203MON︒∠︒;在(2)中,360==904MON︒∠︒;在(3)中360==725MON︒∠︒…..,故当n时,360 MONn︒∠=.随练1、如图,正五边形ABCDE内接于⊙O,则∠CAD=___________度.【答案】 36【解析】 ∵五边形ABCDE 是正五边形,∴AB =BC =CD =DE =EA =72°,∴∠CAD=12×72°=36°.随练2、 已知正多边形的半径与边长相等,那么正多边形的边数是( ) A.4 B.5 C.6 D.8 【答案】 C【解析】 ∵正多边形的半径与边长相等,∴正多边形的相邻的两条半径与一条边围成一个正三角形, ∴正多边形的中心角为60°∵正多边形所有中心角的和为360°, ∴360606︒÷︒=,∴正多边形的边数为6,随练3、 若等边三角形的边长是12厘米,则其内切圆的面积为 . 【答案】 12π平方厘米. 【解析】 如图,作OD ⊥AB , ∵等边三角形的边长为12厘米, ∴AD=6厘米.又∵∠DAO=12∠BAC=12×60°=30°,∴tan30°=6DO DOAD ==33, ∴DO=23厘米,∴其内切圆的面积=π(23)2=12π. 故答案为:12π平方厘米.随练4、 如图,ABCD 是O ⊙的内接正方形,PQRS 是半圆的内接正方形,那么正方形PQRS 与正方形ABCD 的面积之比为____________.【答案】 2:5 【解析】随练5、 已知圆内接正方形的面积为2,求该圆的外切正三角形的外接圆的外切正六边形的面积.SOR Q P D CBA【答案】 3【解析】 如图,设AB 是圆内接正方形的边长,CD 是外切正三角形的边长,EF 是外切正六边形的边长,连结OA OB OC OE 、、、.∵AB 是内接正方形的边长,内接正方形面积为2,∴290AB OA OB AOB ==∠=︒,,∴1OA OB ==.∵CD 是外切正三角形的边长,∴60OA CD AOC ⊥∠=︒,,∴22OC OA ==. ∵EF 是外切正六边形的边长,∴602OC EF OEF OE EF CE ⊥∠=︒==,,,∴323CE ==, ∴43EF ,∴263436683EOF S S ∆===⎝⎭随练6、 已知直角三角形的外接圆半径为6,内切圆半径为2,那么这个三角形的面积是( ) A.32 B.34 C.27 D.28 【答案】 D【解析】 暂无解析弧长与扇形的面积知识精讲一.弧长公式1.圆的周长:2πR C =2.弧长公式:π180nl R =(其中,l 表示弧长,n 表示这段弧所对圆心角度数值;R 表示该弧所在圆的半径).二.扇形面积公式1.圆的面积公式:2πS R =2.扇形面积公式:21π3602n S R lR ==扇形(n 表示扇形圆心角度数值;R 表示半径).三.圆锥、圆柱的侧面积与全面积1.圆锥(1)圆锥的侧面积:1=22S r l rl ππ=侧(以下公式中的l 均指扇形母线长);(2)圆锥的全面积:221=+=+22S S S r r l r rl ππππ=+全底侧;(3)圆锥的体积:213V r h π=;(4)圆锥的高、底面半径、母线之间的关系:222r h l +=;(5)设圆锥的底面半径为r ,母线长为l ,侧面展开图的圆心角为n ︒;则有:360S r n l S ==底侧O BADC2.圆柱(1)圆柱的侧面积:=2S r h π侧(2)圆柱的全面积:2=2πr 2πS S S rh=++侧全底四.不规则图形面积的巧算一般利用拼凑法,割补法,把不规则图形切割拼接成面积容易计算的图形再进行计算,例如:弓形面积:=S S S -弓形三角形扇形.三点剖析一.考点:弧长、扇形面积公式,圆锥的侧面积、全面积计算 二.重难点:1.计算扇形面积,计算圆锥的侧面积;2.计算扇形面积的时候,除了用圆心角求面积,也可以用弧长求面积; 三.易错点:1.圆锥相关面积计算时,注意每个量对应关系; 2.计算圆锥侧面积时,注意母线和圆锥的高是不相等的.弧长公式例题1、 一个扇形的半径为8cm ,弧长为163cm π,则扇形的圆心角为__________. 【答案】 120︒【解析】 设扇形圆心角为n ︒,根据弧长公式可得:8161803n ππ=,解得:120n =︒.例题2、 如图,在Rt ∴ABC 中,∴C=90°,∴A=20°,BC=3,以点C 为圆心,BC 的长为半径的∴C 交AB 于点D ,交AC 于点E ,则(劣弧)的长为( )A.πB.πC.πD.π【答案】 A【解析】 连接CD ,如图所示, ∴∴C=90°,∴A=20°, ∴∴B=70°.l2πrrOh 2πrh O r∴CB=CD,∴∴BDC=∴B=70°,∴∴BCD=40°,∴的长为=.故选A.例题3、如图,半径为2cm的圆O与地面相切于点B,圆周上一点A距地面高为(2+3)cm,圆O沿地面BC 方向滚动,当点A第一次接触地面时,圆O在地面上滚动的距离为.【答案】53πcm.【解析】作AD⊥BC于D,OE⊥AD于E,则AE=2+3﹣2=3,又OA=2,∴sin∠AOE=32 AEOA=,∴∠AOE=60°,则AB的长为()6090251803ππ+⨯⨯=,则圆O在地面上滚动的距离为53πcm,故答案为:53πcm.例题4、如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【答案】(1)AE平分∠DAC(2)①3;②43π﹣3【解析】(1)证明:连接OE,如图,∵CD与⊙O相切于点E,∴OE⊥CD,∵AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵AO=OE,∴∠AEO=∠OAE,∴∠OAE=∠DAE,∴AE平分∠DAC;(2)解:①∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,BE=12AB=12×4=2,AE=3BE=23,在Rt△ADE中,∠DAE=∠BAE=30°,∴DE=12AE=3,∴AD=3DE=3×3=3;②∵OA=OB,∴∠AEO=∠OAE=30°,∴∠AOE=120°,∴阴影部分的面积=S扇形AOE﹣S△AOE=S扇形AOE﹣12S△ABE=21202360π﹣12•12•23•2=43π﹣3.例题5、【答案】5π【解析】暂无解析随练1、 如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC=2,AE=3,CE=1.则BD 的长是( )A.39π B.239πC.33π D.233π【答案】 B【解析】 连接OC ,∵△ACE 中,AC=2,AE=3,CE=1, ∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,即AE ⊥CD ,∵sinA=CE AC =12,∴∠A=30°, ∴∠COE=60°,∴CE OC =sin ∠COE ,即1OC =32,解得OC=233,∵AE ⊥CD , ∴BC =BD ,∴BD =BC =23603180π⨯=239π.随练2、 如图,等边三角形MNP 的边长为1,线段AB 的长为4,点M 与A 重合,点N 在线段AB 上.MNP △沿线段AB 按A B −−→的方向滚动,直至MNP △中有一个点与点B 重合为止,则点P 经过的路程为__________.【答案】43π 【解析】 该题考查的是弧长的计算.点P 经过的路程是两段弧,半径为1,圆心角为120︒,根据1=180n Rπ进行计算即可.故点P 经过的路程为:1201421803ππ⨯⨯⨯=.故答案为:43π.A (M )PNB扇形面积公式例题1、如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【答案】B【解析】∴AB=25,BD=15,∴AD=25-15=10,∴S贴纸=(﹣)×2=350πcm2,例题2、如图,AB是⊙O的直径,弦CD⊥AB于点E,⊙O的半径为3,弦CD的长为3cm,则图中阴影部分面积是_____.【答案】π﹣33 4【解析】∵弦CD⊥AB于点E,∴CE=32,∵OC=3,∴OE=32,∴∠OCE=30°,∴∠COD=120°,∴图中阴影部分面积=()21203360π⋅⨯﹣12×3×32=π﹣334,例题3、如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为.【答案】(3π﹣)cm2.【解析】作OH∴DK于H,连接OK,∴以AD为直径的半圆,正好与对边BC相切,∴AD=2CD,∴A'D=2CD,∴∴C=90°,∴∴DA'C=30°,∴∴ODH=30°,∴∴DOH=60°,∴∴DOK=120°,∴扇形ODK的面积为=3πcm2,∴∴ODH=∴OKH=30°,OD=3cm,∴OH=cm,DH=cm;∴DK=3cm,∴∴ODK的面积为cm2,∴半圆还露在外面的部分(阴影部分)的面积是:(3π﹣)cm2.随练1、如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB 为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.12π B.12π+1 C.π D.π+1【答案】A【解析】∵AB=2,∴BD=22,S阴影=S扇形BDE﹣12S扇形ACD=()24522360π﹣12×904360π⨯=π﹣12π=12π,故选A.随练2、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).【答案】.【解析】根据图示知,∴1+∴2=180°﹣90°﹣45°=45°,∴∴ABC+∴ADC=180°,∴图中阴影部分的圆心角的和是90°+90°﹣∴1﹣∴2=135°,∴阴影部分的面积应为:S==.故答案是:.圆锥例题1、如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】∴h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.h=23cm,底面半径r=2cm,则圆锥体的全面积为____cm2.A.43πB.8πC.12πD.(43+4)π【答案】C【解析】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为23cm,∵圆锥的母线长为4cm,∵侧面面积=12×4π×4=8π; 底面积为=4π,全面积为:8π+4π=12πcm 2. 故选:C .例题3、 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为__________.【答案】22.【解析】 过O 点作OC AB ⊥,垂足为D ,交O 于点C ,由折叠的性质可知,1122OD OC OA ==,由此可得,在Rt AOD ∆中,30A ∠=︒,同理可得30B ∠=︒,在AOB ∆中,由内角和定理,得180120AOB A B ∠=︒-∠-∠=︒AB ∴的长为12032180ππ⨯=设围成的圆锥的底面半径为r ,则22r ππ=1r cm ∴=∴圆锥的高为223122-=随练1、 圆锥的底面半径为4cm ,高为3cm ,则它的表面积为( ) A.12πcm 2 B.20πcm 2 C.26πcm 2 D.36πcm 2【答案】 D【解析】 底面周长是2×4π=8πcm ,底面积是:42π=16πcm 2. 母线长是:22345+=,则圆锥的侧面积是:218π520πcm 2⨯⨯=,则圆锥的表面积为16π+20π=36πcm 2.随练2、 已知扇形的圆心角为120°,所对的弧长为83π,则此扇形的面积是______. 【答案】163π【解析】 ∵扇形的圆心角为120°,所对的弧长为83π, ∴l=120R 81803⨯=ππ, 解得:R=4,则扇形面积为12Rl=163π随练3、 如图,在菱形ABCD 中,AB=2,∠C=120°,以点C 为圆心的与AB ,AD 分别相切于点G ,H ,与BC ,CD 分别相交于点E ,F .若用扇形CEF 作一个圆锥的侧面,则这个圆锥的高是__________.【答案】 2【解析】 如图:连接CG , ∵∠C=120°, ∴∠B=60°,∵AB 与相切,∴CG ⊥AB ,在直角△CBG 中,CG=BC•sin60°=2×=3,即圆锥的母线长是3, 设圆锥底面的半径为r ,则:2πr=,∴r=1.则圆锥的高是:=2.不规则图形面积的巧算例题1、 如图,AB 是∴O 的直径,弦CD ∴AB ,∴CDB=30°,CD=2,则S 阴影=( )A.πB.2πC.D.π【答案】 D【解析】 如图,CD ∴AB ,交AB 于点E , ∴AB 是直径,∴CE=DE=CD=, 又∴∴CDB=30° ∴∴COE=60°, ∴OE=1,OC=2, ∴BE=1,∴S ∴BED =S ∴OEC , ∴S 阴影=S 扇形BOC ==.故选:D .例题2、如图,半圆O的直径AB=2,弦CD∴AB,∴COD=90°,则图中阴影部分的面积为.【答案】.【解析】∴弦CD∴AB,∴S∴ACD=S∴OCD,∴S阴影=S扇形COD=•π•=×π×=.例题3、如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【答案】(1)DE为⊙O的切线(2)(24﹣4π)cm2【解析】(1)DE与⊙O相切.理由如下:连结OD,BD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∵点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∵OD是半径,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=12(4+8)×4﹣2904360π••=(24﹣4π)cm2.随练1、 如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是____________.【答案】23π﹣3 【解析】 如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°,∴△DAB 是等边三角形, ∵AB=2,∴△ABD 的高为3,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ⎧∠=∠⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =260213602π⨯-×2×3=23π﹣3.随练2、 如图,在∴BCE 中,点A 时边BE 上一点,以AB 为直径的∴O 与CE 相切于点D ,AD ∴OC ,点F为OC 与∴O 的交点,连接AF . (1)求证:CB 是∴O 的切线;(2)若∴ECB=60°,AB=6,求图中阴影部分的面积.【答案】(1)证明见解析;(2)π.【解析】(1)证明:连接OD,与AF相交于点G,∴CE与∴O相切于点D,∴OD∴CE,∴∴CDO=90°,∴AD∴OC,∴∴ADO=∴1,∴DAO=∴2,∴OA=OD,∴∴ADO=∴DAO,∴∴1=∴2,在∴CDO和∴CBO中,,∴∴CDO∴∴CBO,∴∴CBO=∴CDO=90°,∴CB是∴O的切线.(2)由(1)可知∴3=∴BCO,∴1=∴2,∴∴ECB=60°,∴∴3=∴ECB=30°,∴∴1=∴2=60°,∴∴4=60°,∴OA=OD,∴∴OAD是等边三角形,∴AD=OD=OF,∴∴1=∴ADO,在∴ADG和∴FOG中,,∴∴ADG∴∴FOG,∴S∴ADG=S∴FOG,∴AB=6,∴∴O的半径r=3,∴S阴=S扇形ODF==π.随练3、如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.【答案】 .【解析】 如图,∴AB=AB ′=8,∴BAB ′=60° ∴图中阴影部分的面积是: S=S 扇形B ′AB +S 半圆O ′﹣S 半圆O =+π×52﹣π×52 =π.拓展1、 若正六边形的边长为4,则它的内切圆面积为( ) A.9π B.10π C.12π D.15π【答案】 C【解析】 连接OD 、OE ,作OM ⊥DE 于M , ∵六边形ABCDEF 是边长为4的正六边形, ∴△ODE 是等边三角形, ∴OD =DE =4,∴3sin 604232OM OD =•︒=⨯=,∴它的内切圆面积2(23)12=π⨯=π.2、 边长为4的正六边形的边心距________,中心角等于________度,边长为________. 【答案】 23;60;4【解析】 六边形每个中心角度数为360÷6=60°,根据每个中心角都分六边形为等边三角形,∵正六边形的边长为4, 则每个等边三角形的高即圆心距为:sin 6023CO BO =⋅︒=.3、正六边形的外接圆的半径与内切圆的半径之比为________.【答案】 2:3 【解析】 暂无解析4、 如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________________.【答案】 75°【解析】 设该正十二边形的圆心为O ,如图,连接A 10O 和A 3O ,由题意知,∧3110A A A =512⊙O 的周长,∴∠A3OA10=536012⨯=150°,∴∠A 3A 7A 10=75°,5、 (1)已知:如图1,ABC ∆是O ⊙的内接正三角形,点P 为弧BC 上一动点,求证:PA PB PC =+ (2)如图2,四边形ABCD 是O ⊙的内接正方形,点P 为弧BC 上一动点,求证:2PA PC PB =+(3)如图3,六边形ABCDEF 是O ⊙的内接正六边形,点P 为弧BC 上一动点,请探究PA PB PC 、、三者之间有何数量关系,并给予证明.【答案】 见解析【解析】 (1)证明:延长BP 至E ,使PE PC =,连结CE .OCABPPODAB COPFDCA1260,3460∠=∠=︒∠=∠=︒60,CPE PCE ∴∠=︒∴∆是等边三角形.,,360,CE PC E ∴=∠=∠=︒又EBC PAC ∠=∠, BEC APC ∴∆∆≌ PA BE PB PC ∴==+.(2)证明:过点B 作BE PB ⊥交PA 于E ,122390,13∠+∠=∠+∠=︒∴∠=∠,又45APB ∠=︒,,2,BP BE PE PB ∴=∴=,,AB BC ABE CBP PC AE =∴∆∆∴=≌.2PA AE PE PC PB ∴=+=+(3)答:3PA PC PB =+证明:在AP 上截取AQ PC =,连结BQ ,,BAP BCP AB BC ∠=∠=,,ABQ CBP ∴∆≅∆BQ BP ∴=.又30,APB ∠=︒3PQ PB ∴=,3PA PQ AQ PB PC ∴=+=+6、 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .(1)若∠CBD =39°,求∠BAD 的度数;(2)求证:∠1=∠2.【答案】 (1)78°(2)见解析【解析】 (1)∵BC =DC ,∴∠CBD =∠CDB =39°,∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°;(2)∵EC =BC ,∴∠CEB =∠CBE ,而∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD ,∵∠BAE =∠BDC =∠CBD ,∴∠1=∠2.7、 如图,在等腰Rt △ABC 中,AC=BC=22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )321E C B ADO PO Q AB C D E F PA.2πB.πC.22D.2 【答案】 B 【解析】 取AB 的中点O 、AE 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图, ∵在等腰Rt △ABC 中,AC=BC=22,∴AB=2BC=4,∴OC=12AB=2,OP=12AB=2, ∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO=90°,∴点M 在以OC 为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,EF=OC=2, ∴M 点的路径为以EF 为直径的半圆,∴点M 运动的路径长=12•2π•1=π.8、 在Rt △ABC 中,∠C =90°,AC =BC =1,将其放入平面直角坐标系,使A 点与原点重合,AB 在x 轴上,△ABC沿x 轴顺时针无滑动的滚动,点A 再次落在x 轴时停止滚动,则点A 经过的路线与x 轴围成图形的面积为________.【答案】 12π+【解析】 ∵∠C =90°,AC =BC =1, ∴22112AB =+=;根据题意得:2△ABC 绕点B 顺时针旋转135°,BC 落在x 轴上;△ABC 再绕点C 顺时针旋转90°,AC 落在x 轴上,停止滚动;∴点A 的运动轨迹是:先绕点B 旋转135°,再绕点C 旋转90°;如图所示:∴点A 经过的路线与x 轴围成的图形是:一个圆心角为135°,半径为2的扇形,加上△ABC ,再加上圆心角是90°,半径是1的扇形;∴点A 经过的路线与x 轴围成图形的面积22135(2)190111136023602⨯π⨯⨯π⨯=+⨯⨯+=π+.9、如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,与BC的延长线交于点E,则图中AE的长为________.【答案】32 2π【解析】∵四边形ABCD为正方形,∴222CA AB==,∠ACB=45°,∴∠ACE=135°,∴AE的长度13522321802π==π.10、如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cmB.15cmC.10cmD.20cm【答案】D【解析】过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.11、用一个圆心角为120°,半径为3的扇形做一个圆锥的侧面,这个圆锥的底面圆的半径为________.【答案】1【解析】 暂无解析12、 若扇形的半径为30cm ,圆心角为60°,则此扇形围成圆锥的底面半径为 cm . 【答案】 5 【解析】 设圆锥的底面半径为r ,根据题意得2π•r=6030180π⨯,解得r=5, 即圆锥的底面半径为5cm .故答案为5.13、 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90°,∠BAC =30°,AB =4cm ,则图中阴影部分面积为________cm 2.【答案】 4π【解析】 ∵∠BCA =90°,∠BAC =30°,AB =4cm ,∴BC =2,23AC =,∠A′BA =120°,∠CBC′=120°,∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)-S 扇形BCC′-S △ABC 222120π(42)4πcm 360=⨯-=. 14、 一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是__________.【答案】 5:4【解析】 如图1,连接OD ,∵四边形ABCD 是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD=222+1=5,∴扇形的面积24555=3608ππ⨯(); 如图2,连接MB 、MC ,∵四边形ABCD 是⊙M 的内接四边形,四边形ABCD 是正方形,∴∠BMC=90°,MB=MC ,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=22, ∴⊙M 的面积是π×(22)2=12π, ∴扇形和圆形纸板的面积比是515=824ππ÷().15、 如图,△ABC 中,AC =BC ,AB =4,∠ACB =90°,以AB 的中点D 为圆心DC 长为半径作14圆DEF ,设∠BDF =α(0°<α<90°),当α变化时图中阴影部分的面积为________(14圆:∠EDF =90°,14圆的面积21π4r =⋅)【答案】 π-2【解析】 作DM ⊥AC 于M ,DN ⊥BC 于N ,连接DC ,如图所示:∵CA =CB ,∠ACB =90°,∴∠A =∠B =45°,DM AD =,DN =, ∴DM =DN ,∴四边形DMCN 是正方形,∴∠MDN =90°,∴∠MDG =90°-∠GDN ,∵∠EDF =90°,∴∠NDH =90°-∠GDN ,∴∠MDG =∠NDH ,在△DMG 和△DNH 中,MDG NDH DMG DNH DM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≌△DNH (AAS ),∴四边形DGCH 的面积=正方形DMCN 的面积,∵正方形DMCN 的面积2218DM AB ==21428=⨯=, ∴四边形DGCH 的面积218AB =, ∵扇形FDE 的面积22290πππ4π3601616CD AB ⋅⨯===, ∴阴影部分的面积=扇形面积-四边形DGCH 的面积=π-2.16、 如图,ABCD 是平行四边形,AB 是O 的直径,点D 在O 上1AD OA ==,则图中阴影部分的面积为__________.【答案】 34 【解析】 连接DO EO BE ,,,过点D DF AB F ⊥作于点,1AD OA AD AO DO ==∴==,,AOD ∴∆是等边三角形,ABCD 四边形是平行四边形,//60DC AB CDO DOA ∴∴∠=∠=︒,, ODE ∴∆是等边三角形,同理可得出OBE ∆是等边三角形且3个等边三角形全等, ∴阴影部分面积等于BCE ∆面积,36012DF ADsin DE EC =︒===,, ∴图中阴影部分的面积为:34.。
3.8圆内接正多边形(教案)2023春九年级下册数学(北师大版)安徽

2.案例分析:接下来,我们来看一个具体的案例。以圆形花坛为例,如果要在花坛周围铺设正多边形的石板,如何计算石板的尺寸和数量?这个案例展示了圆内接正多边形在实际中的应用,以及它如何帮助我们解决问题。
二、核心素养目标
1.培养学生运用几何图形描述现实世界的能力,通过圆内接正多边形的学习,提高空间想象力和直观感知力。
2.培养学生运用数学知识分析和解决问题的能力,掌握圆内接正多边形的性质,并能运用其解决实际问题。
3.培养学生逻辑推理和数学论证的能力,通过探索圆内接正多边形的边数、半径、边长和中心角之间的关系,提高数学思维和推理能力。
举例:通过直观演示和实际操作,让学生理解圆内接正多边形的特点,如正三角形的三个顶点在圆上,三条边相等,三个圆心角相等。强调圆内接正多边形的边数与圆心角是360度的整数倍关系。
2.教学难点
-理解圆内接正多边形边数与圆心角精确关系的推导过程。
-解决涉及圆内接正多边形面积、周长等实际问题时,能够灵活运用性质和定理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆内接正多边形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆内接正多边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在总结回顾环节,我发现大部分学生能够掌握本节课的核心知识点,但仍有部分学生对某些内容理解不够深入。为了帮助学生更好地消化吸收知识,我计划在课后布置一些针对性强、难度适中的练习题,让学生通过练习巩固所学。
九年级数学下册《圆内接正多边形》专项练习(含答案)

8 圆内接正多边形A 卷1.边长为a 的正六边形的边心距是__________,周长是____________,面积是___________.2.如图1,正方形的边长为a ,以顶点B 、D 为圆心,以边长a 为半径分别画弧,在正方形内两弧所围成图形的面积是___________.(1) (2) (3)3.圆内接正方形ABCD 的边长为2,弦AE 平分BC 边,与BC 交于F ,则弦AE 的长为__________.4.正六边形的面积是18,则它的外接圆与内切圆所围成的圆环面积为_________.5.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________.6.正三角形的内切圆半径、外接圆半径和高的比为___________.7.在半径为R 的圆中,内接正方形与内接正六边形的边长之比为___________.8.同圆的内接正n 边形与外切正n 边形边长之比是______________.9.正三角形与它的内切圆及外接圆的三者面积之比为_____________.10.正三角形的外接圆半径为4cm ,以正三角形的一边为边作正方形,则此正方形的外接圆半径长为___________.3B 卷1.正方形的内切圆半径为r ,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________.2.如果正三角形的边长为a ,那么它的外接圆的周长是内切圆周长的_______倍.3.如图2,正方形边长为a ,那么图中阴影部分的面积是__________.4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________.5.半径为R 的圆的内接正n 边形的面积等于__________.6.如果圆的半径为a ,它的内接正方形边长为b ,该正方形的内切圆的内接正方形的边长为c ,则a,b,c 间满足的关系式为___________.7.如图3,正△ABC 内接于半径为1cm 的圆,则阴影部分的面积为___________.8.如果圆内接正六边形的边长为10cm ,则它的边心距为_______cm ,正六边形的一边在圆上截得的弓形面积是____________.9.已知正方形的边长为a ,以各边为直径在正方形内画半圆,则所围成的阴影部分(如图)的面积为__________.10.周长相等的正方形和正六边形的面积分别为和,则和的大小关系为__________.24S 6S 4S 6S参考答案A 卷1.2.3.点B 到弦AE 的垂线段长为,由勾股定理或射影定理,求得弦AE 的长为. 4.由正六边形的面积为18,得正六边形的边长为2,边心距为3,从而正六边形的外接圆半径为2,内切圆半径为3,故所围成的圆环面积为3π. 5.设所求正方形的边长为x ,则外接圆的半径为,正方形的一边截成的小弓形面积为,即 = 2π- 4,于是,得正方形的边长等于4.6.设正三角形的边长为a ,则内切圆半径为,外接圆半径为,高为,故内切圆半径、外接圆半径和高的比为1:2:3.7.内接正方形的边长为R ,内接正六边形的边长为R ,其比为:1.8.设圆的半径为R ,则同圆的内接正π边形和外切正n 边形的边分别为2Rsin和2Rtg ,其比为cos . 9.设正三角形的边长为a ,则内切圆半径为,外接圆半径为,其面积分别为、和,三者之比为3:π:4π . 10.求得正三角形的边长即所作正方形的边长为4,从而外接圆的半径长为2.2233;6;23a a 222a a -π552558333x 22224181x x ππ-224181x x ππ-a 63a 33a 2322n ︒180n ︒180n︒180a 63a 33243a 2121a π231a π336B 卷1.由已知得正方形的边长为2r , 从而正方形的外接圆半径为r ,所求弓形的面积为. 2.边长为a 的正三角形的外接圆半径和内切圆半径分别为、,其周长分别为的πa 和,故它的外接圆周长是内切圆周长的2倍. 3.阴影部分面积为 4.设所求正多边形的边数为n ,则它的一个内角等于, 相应的外角等于180°- , 则由已知,得=8×(180°-),解之,得n = 18. 5.半径为R 的圆的内接正n 边形的边长为2Rsin ,边长距为Rcos , 则正n 边形的面积为= 6.半径为a 的圆的内接正方形的边长为a ,即 b =a ; 边长为b 的正方形的内切圆的内接正方形的边长为b ,即 C = b , 从而得知 a =c ,故a,b,c 三者之间的关系为:7.设正△ABC 的边长为a ,则=1,a=, 于是阴影部分的面积为π· 8.边心距×10=5(); 正六边的一边在圆上截得的弓形的面积减去三角形的面积,即 22)221(r -πa 33a 63332a π3322241)22(21)2(41a a a πππ=-︒⋅-180)2(n n ︒⋅-180)2(nn ︒⋅-180)2(n n ︒⋅-180)2(nn n ︒180n︒180n n nR n R n R n ︒⋅︒=︒⋅︒⋅⋅180cos 180sin 180cos 180sin 2212222222222c a b +=a 333))(433()3(431222cm -=⋅-π2332cm )(325350104310321222cm -=⋅-⋅⋅ππ9.图中四个半圆都通过正方形的中心,用正方形的面积减去四隙的面积,剩下的就是阴影部分的面积,而正方形的面积减去两个半圆的面积就得两个空隙的面积,故所求阴影部分的面积为 10.设周长为a ,则正方形的正六边形的边长分别为,其面积分别为,故.22])2([22222a a a a a -=⨯⋅--ππa a 6141和222243)61(436161a a a =⋅⋅和64S S <。
3.8 圆内接正多边形课件(共18张PPT) 北师大版九年级下册数学

°
(3)∠MON=
.
合作探究
有一个亭子(如图),它的地基是半径为8 m的正六边形,
求地基的周长和面积.(结果保留根号)
合作探究
解:如图,连接OB、OC,
∵六边形ABCDEF是正六边形,
°
∴∠BOC= =60°,
∴△OBC是等边三角形,
∴BC=OB=8 m,
于另一点,依次下去,在圆周上得到六个点;
合作探究
(3)依次每隔一点相连接,就得到了这个圆的一个内接正三
角形.
合作探究
已知正方形ABCD的边心距OE= cm,求这个正方
形外接圆☉O的面积.
合作探究
解:如图,连接OC、OD,
∵☉O是正方形ABCD的外接圆,∴O是对角线AC、BD的交
点,
∴∠ODE=∠ADC=45°.
∴正六边形ABCDEF的周长=6×8=48 m.
合作探究
过O作OG⊥BC于G,
∵△OBC是等边三角形,OB=8 m,
∴∠OBC=60°,
∴OG=OB·sin∠OBC=8×
=4
∴S△OBC=BC·OG=×8×4
m,
=16 (m2),
∴S正六边形ABCDEF=6S△OBC=6×16 =96 m2.
.
2.如图,四边形ABCD是☉O的内接正方形,P是上不同
于点C的任意一点,则∠BPC的大小是(B
A.22.5°
B.45°
C.30°
D.50°
)
合作探究
用尺规作一个已知圆的内接正三角形.
解:作法为(1)以圆周上任意一点为圆心,以圆的半径为半
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
∵ A⌒B=B⌒C=C⌒D=D⌒E=E⌒A ∴ AB=BC=CD=DE=EA. ∴ B⌒CE=C⌒DA=3A⌒B
∴ ∠A=∠B.
同理 ∠B=∠C=∠D=∠E.
∴ 五边形ABCDE是正五边形.
A
B O·
E
C
D
问题2 将圆n(n≥3)等分,依次连接各等分点, 所得到的多边形是正多边形吗?
弧相等— 弦相等(多边形的边相等)
C.圆内接正四边形的边长等于半径
D.圆内接正n边形的中心角度数为 360o
n
5.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,
则一个内角为
_1_2_8度74.(不取近似值)
6. 要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直 径最小要_4___2cm.
也就是要找这个正方形外 接圆的直径
问题3
正三角形、正四边形、正五边形、正六边形都是轴对称图形 什么叫做正多边形?
吗?都是中心对称图形吗?
问题1
归纳 正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的 正多边形才是中心对称图形.
正多边形与圆的关系
探究归纳 问题1 如图,把⊙O分成相等的5段弧,即A⌒B=B⌒C=C⌒D=⌒DE=E⌒A, 依次连接各等分点,所得五边形ABCDE是正五边形吗?
问题6 边长a,边心距r的正n边形的面积如何计算?
S
1 nar 2
1 lr. 2
其中l为正n边形的周长.
E D
C
典例精析
例1:如图所示,正五边形ABCDE内接于⊙O,
则∠ADE的度数是
(C)
A.60° B.45° C. 36° D. 30°
A
B
E
O·
C
D
典例精析 例2 有一个亭子,它的地基是半径为4 m的正六边形,
2
边长
23
2 2
边心距
1 1
3
周长
63
8 12
2. 若正多边形的边心距与半径的比为1:2, 则这个多边形的边数是 3 .
3.已知一个正多边形的每个内角均为108°, 则它的中心角为___7_2____度.
面积
33
4
63
4.下列说法正确的是( D ) A.各边都相等的多边形是正多边形
B.一个圆有且只有一个内接正多边形
讲授新课
正多边形的回顾
问题1 什么叫做正多边形? 各边相等,各角也相等的多边形叫做正多边形.
问题2 矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
不是,因为矩形不符合各边相等;
不是,因为菱形不符合各角相等;
注意
各边相等 正多边形
各角相等
缺一不可
问题3 正三角形、正四边形、正五边形、正六边形都是轴对称图 形吗?都是中心对称图形吗?
求地基的周长和面积 (精确到0.1 m2).
抽象成
F A
E
O
D
B
PC
解:过点O作OM⊥BC于M.
在Rt△OMB中,OB=4,MB= 利用勾股定理,可得边心距
BC 4 2, 22
r 42 22 2 3.
亭子地基的周长l=6×4=24(m)
亭子地基的面积
S 1 l r 1 24 2 3 41.6(m2 ).
课堂小结
正多边形和圆的
关
系
圆内接正多 边形
正多边形的 有关概念
正多边形的 有关计算
正n边形各顶点等分其外接圆.
中心 半径 边心距 中心角
添加辅助线的方法: 连半径,作边心距
—多边形是正多边形
圆周角相等(多边形的角相等)
归纳 将一个圆n(n≥3)等分,依次连接各等分点所得到的多边形叫作这个 圆的内接正多边形,这个圆是这个正多边形的外接圆,正n边形的各顶点 n等分其外接圆.
做一做 已知⊙O的半径为r,求作⊙O的内接正六边形. 分析:因为正六边形每条边所对的圆心角为 6_0_º, 所以正六边形的边长与圆的半径 相_ 等. 因此,在半径为r的圆上依次截取等于 r 的弦, 即可将圆六等分.
.O
作法: (1)作⊙O的任意一条直径FC; (2)分别以F,C为圆心,以r为半径作弧,与⊙O 交于点E,A和D,B; (3)依次连接AB、BC、CD、DE、EF、FA, 便得到正六边形ABCDEF即为所求.
E
D
F
.O
C
A
B
正多边形的有关概念及性质
A
圆心角
B
半径R
O圆心
弦心距r
弦a
C MD
类比学习 圆内接正多边问形题1
2
2
F
E
A
O
D
4m
r
B MC
方法归纳 圆内接正多边形的辅助线
F
E
A B
·O
D
rR
MC
1.连半径,得中心角; 2.作边心距,构造直角三角形.
半径R
C
边长一半
O
中心角一半 边心距r
M
针对训练
1.如图,正八边形ABCDEFGH的半径为2,它的面积为__8__2__.
解:连接AO,BO,CO,AC,
∵正八边形ABCDEFGH的半径为2,
360 n
正多边形的外角= 中心角
外角
120 ° 90 ° 60 °
360 n
A B 中心角
C
F
中心
O 半径R形的有关计算
想一想
问题4 正n边形的中心角怎么计算?
360
n
A
问题5 正n边形的边长a,半径R,边心距r之间有
什么关系?
F
a
O
R r
BP
R2 r2 (a )2. 2
∴AO=BO=CO=2,∠AOB=∠BOC= 360 =45 ,
∴∠AOC=90°,
8
∴AC= 2 2 ,此时AC与BO垂直,
∴S四边形AOCB=
1 BO AC= 1 2 2 ,2 =2 2
2
2
∴正八边形面积为:2 2 360 =8.2
90
当堂练习
1. 填表
正多边形边 数
3 4 6
半径
2
2
九年级数学《圆内接正多边形》
学习目标
1.了解正多边形和圆的有关概念. 2.理解并掌握正多边形半径、中心角、边心距、边长之间的关系. (重点) 3.会应用正多边形和圆的有关知识解决实际问题.(难点)
导入新课
观察与思考
问题:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到 的.你能从这些图案中找出类似的图形吗?
A B 中心角
C
F
中心
O 半径R E
边心距r
MD
外接圆的圆心 外接圆的半径 每一条边所 对的圆心角
弦心距
正多边形的中心 正多边形的半径 正多边形的中心角
正多边形的边心距
练一练
完成下面的表格:
正多边 形边数
3 4 6
n
内角
60 ° 90 ° 120 °
(n 2) 180 n
中心角
120 ° 90 ° 60 °