三角形中位线专题
三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)三角形中位线专项训练(30道)(解析版)1. 题目解析三角形中位线是指连接一个三角形的两个非邻边中点的线段。
在这个专项训练中,我们将解答30道关于三角形中位线的问题,并提供详细的解析,帮助你更好地理解和掌握相关概念和解题方法。
2. 题目设置2.1 第一类题目:中位线长度计算2.1.1 题目1:已知一个三角形的三边长度分别为a, b, c,求其中位线长度。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以计算出中位线长度为(c²+a²-0.5b²)/(2c)。
2.1.2 题目2:已知一个等边三角形的边长为a,求其中位线长度。
解析:等边三角形中位线长等于边长的一半,即中位线长度为a/2。
2.1.3 题目3:已知一个等腰三角形的底边长度为a,腰长为b,求其中位线长度。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以计算出中位线长度为(a²+b²)/(2a)。
2.2 第二类题目:中位线位置关系2.2.1 题目4:在一个等边三角形中,证明中位线与底边垂直且分割底边的比例为2:1。
解析:根据等边三角形的性质,中位线和底边垂直。
利用中位线定义和几何性质,可以证明中位线分割底边的比例为2:1。
2.2.2 题目5:已知在一个等腰三角形中,中位线长为x,底边长为y,求腰长。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以得到腰长为2x-y。
2.2.3 题目6:已知在一个一般三角形中,中位线等分了三角形的面积,证明这个三角形是等腰三角形。
解析:假设中位线等分了三角形的面积,利用三角形面积公式可以得到一个关于中位线和底边的方程。
通过求解这个方程,可以证明这个三角形是等腰三角形。
3. 题目变体上述题目只是针对三角形中位线的一部分问题进行了训练和解析。
专题11 三角形中位线定理(解析版)

专题11 三角形中位线定理【考点归纳】(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言:【好题必练】一、选择题1.(2020秋•罗湖区期末)如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.4【答案】C.【解析】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠F AC,∴∠F AC=2∠F AE,∵∠F AC=∠B+∠ACB,∴∠F AE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=BC,AG=AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.2.(2020秋•安丘市期末)如图,面积为2的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】B.【解析】解:∵D,E,F分别是AB,BC,CA的中点,∴===,∴△DEF∽△CAB,∴=()2=,∵△ABC的面积=2,∴△DEF的面积=,故选:B.3.(2020秋•长春期末)如图,在边长为4的等边三角形ABC中,DE为△ABC的中位线,则四边形BCED 的面积为()A.2B.3C.4D.6【答案】B.【解析】解:过点D作DF⊥BC于点F.∵△ABC是边长为4的等边三角形,∴AB=BC=AC=4,∠B=60°,又∵DE为中位线,∴DE=BC=2,BD=AB=2,DE∥BC,∴DF=BD•sin∠B=2×,∴四边形BCED的面积为:DF×(DE+BC)=××(2+4)=3.故选:B.4.(2020秋•长春期末)△ABC中,AB=7,BC=6,AC=5,点D、E、F分别是三边的中点,则△DEF 的周长为()A.4.5B.9C.10D.12【答案】B.【解析】解:∵点D、E、F分别是三边的中点,∴DE、EF、DF为△ABC的中位线,∴DE=AB=×7=,DF=AC=×5=,EF=BC=×6=3,∴△DEF的周长=++3=9,故选:B.5.(2020秋•绿园区期末)如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=10m,则A,B之间的距离是()A.5m B.10m C.20m D.40m【答案】C.【解析】解:∵点C,D分别是OA,OB的中点,∴AB=2CD=20(m),故选:C.6.(2020秋•内江期末)如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°【答案】D.【解析】解:∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠EFP=×(180°﹣∠EPF)=×(180°﹣140°)=20°,故选:D.二、填空题7.(2020春•兴化市期中)如图,D、E分别是△ABC的边AB、AC的中点.若BC=6,则DE的长为.【答案】3【解析】解:∵D、E分别是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=×6=3,故答案为:3.8.(2020春•姜堰区期中)已知以三角形各边中点为顶点的三角形的周长为6cm,则原三角形的周长为cm.【答案】12【解析】解:∵△DEF的周长为6cm,∴DE+DF+EF=6,∵D、E、F分别为AB、AC、BC的中点∴DE、DF、EF是△ABC的中位线,∴BC=2DE,AB=2EF,AC=2DF,∴△ABC的周长=AB+AC+BC=2(DE+DF+EF)=12(cm),故答案为:12.9.(2020春•建湖县期中)如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度.【答案】2【解析】解:延长DM交AB于E,∵AB∥CD,∴∠C=∠A,在△AME和△CMD中,,∴△AME≌△CMD(ASA)∴AE=CD=3,DM=ME,∴BE=AB﹣AE=4,∵DM=ME,DN=NB,∴MN是△DEB的中位线,∴MN=BE=2,故答案为:2.10.(2020春•常熟市期中)如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=.【答案】10【解析】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=7,∴EF=DF﹣DE=5,在Rt△AFC中,AE=EC,∴AC=2EF=10,故答案为:10.11.(2020•凤山县一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点.若BC=2,则EF的长度为.【答案】1【解析】解:∵∠ACB=90°,∠A=30°,∴AB=2BC=4,∵∠ACB=90°,D为AB的中点,∴CD=AB=2,∵E,F分别为AC,AD的中点,∴EF为△ACD的中位线,∴EF=CD=1,故答案为:1.三、解答题12.(2020•房山区二模)如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.【答案】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴EB=ED,∵EB=ED,F是BD中点,∴EF平分∠BED.【解析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,证明EB=ED,根据等腰三角形的三线合一证明结论.13.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.【答案】证明:∵E,F分别是BD,CD的中点,∴EF∥BC,∵AB=AD,∴∠ADB=∠ABD,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠DBC,∴AD∥BC,∴AD∥EF.【解析】根据三角形中位线定理得到EF∥BC,根据等腰三角形的性质、平行线的判定定理得到AD∥BC,根据平行公理的推论证明结论.14.如图,在△ABC中,D为BC的中点,E为AC的中点,AB=6,求DE的长.【答案】解:∵D为BC的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=AB=3.【解析】根据三角形中位线定理解答.15.如图,在△Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD,求证:CD=EF.【答案】证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∵∠ACB=90°,∴平行四边形DECF是矩形,∴CD=EF.【解析】根据三角形中位线定理得到DE∥BC,DF∥AC,证明四边形DECF是矩形,根据矩形的性质证明.16.如图,点D,E,F分别为△ABC三边的中点,若△DEF的周长为10,求△ABC的周长【答案】解:∵点D,E,F分别为△ABC三边的中点,∴AB=2EF,AC=2DE,BC=2DF,∵△DEF的周长为10,即EF+DE+DF=10,∴△ABC的周长=AB+AC+BC=2(EF+DE+DF)=20.【解析】根据三角形中位线定理得到AB=2EF,AC=2DE,BC=2DF,根据三角形周长公式计算,得到答案.。
专题22 三角形中位线定理应用问题(解析版)

专题22 三角形中位线定理应用问题1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。
2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3.对三角形中位线的深刻理解(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.【例题1】(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14 【答案】D【解析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.∵D ,E ,F 分别是AB ,BC ,CA 的中点,1214∴DE =12AC ,DF =12BC ,EF =12AB ,∴DF BC =EF AB =DE AC =12,∴△DEF ∽△ABC ,∴S △DEFS △ABC =(DE AC )2=(12)2=14, ∵等边三角形ABC 的面积为1,∴△DEF 的面积是14.【对点练习】(2019内蒙古赤峰)如图,菱形ABCD 周长为20,对角线AC 、BD 相交于点O ,E 是CD 的中点,则OE 的长是( )A .2.5B .3C .4D .5【答案】A .【解析】∵四边形ABCD 为菱形,∴CD =BC ==5,且O 为BD 的中点, ∵E 为CD 的中点,∴OE 为△BCD 的中位线,∴OE =CB =2.5。
【点拨】掌握菱形特点,根据三角形中位线定理解决问题。
【例题2】(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .【解析】1.【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB ,解得EF =2,则DH =12EF =1. 【解析】∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,【对点练习】(2019广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,F 、G 分别是AD 、AE 的中点,且FG =2cm ,则BC 的长度是 cm .【答案】8.【解析】利用三角形中位线定理求得FG=DE,DE=BC.如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=8cm【点拨】连续两次应用三角形中位线定理处理本题,是关键。
专题05 三角形中位线(知识点串讲)(解析版)

专题05 三角形中位线重难突破三角形中位线1.三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.3.相关结论:顺次连接任意四边形中点所得到的四边形是平行四边形.(连接原四边形一条对角线,由中位线定理可证)4.拓展:①梯形的中位线等于上底加下底和的一半. (连接梯形一条对角线,由中位线定理可证)②过三角形一边的中点作另一边的平行线,与第三边交于一点,则这两点之间的线段为三角形的中位线. 如图,过△ABC的边AB的中点作平行于边BC的直线,交边AC于点E,则DE为△ABC的中位线.典例1.(2018春•定兴县期末)如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长()A.逐渐增大B.逐渐变小C.不变D.先增大,后变小【答案】C【解析】解:∵E、F分别是PA、PR的中点,∴EF AR,∴EF的长不变,故选:C.【点睛】根据三角形中位线定理得到EF AR,判断即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.典例2.(2018春•柳州期末)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN ⊥AE于N,若AC=6,BC=8,则MN=___.【答案】2【解析】解:延长CM交AB于G,延长CN交AB于H,∵∠ACB=90°,AC=6,BC=8,∴AB=10,在△BMC和△BMG中,,∴△BMC≌△BMG,∴BG=BC=8,CM=MG,∴AG=2,同理,AH=AC=6,CN=NH,∴GH=4,∴MN GH=2,故答案为:2.【点睛】延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可.典例3.(2018春•成都期末)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE =2,则AC的长等于______.【答案】见解析【解析】解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=2,则DF=1,AF,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AE=EF=CF,∴AC AF.故答案为:.【点睛】过D点作DF∥BE,则DF BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC AF.典例4.(2018春•吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE的长.【答案】见解析【解析】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE CF4=2.【点睛】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE CF,然后求解即可.典例5.(2018春•濮阳期末)已知等边三角形ABC的边长为a分别以这个三角形的三边中点为顶点作一个三角形,记为△A1B1C1,再以△A1B1C1各边中点为顶点做三角形记为△A2B2C2,…依次做下去,求△A5B5C5的周长.【答案】见解析【解析】解:等边△ABC的边长为a,∴等边△ABC的周长为3a.∵A2、B2分别是边A1B1、B1C1的中点,∴A2B2是△A1B1C1的中位线,∴A2B2A1B1.同理,A2C2A1C1,C2B2C1B1.∴△A2B2C2的周长等边△A1B1C1的周长.同理,△A3B3C3的周长△A2B2C2的周长等边△A1B1C1的周长.…,∴△A n B n∁n的周长△A1B1C1的周长.∴△A5B5C5的周长.【点睛】据三角形中位线定理知,△A2B2C2的各边的边长是△A1B1C1的各边边长的,△A3B3C3是△A2B2C2的各边的边长的,找出规律即可得出结论.本题考查了等边三角形的性质、三角形中位线定理.三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.典例6.(2018春•南山区期末)如图,△ABC中,AB>AC,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则①EF∥AB;②∠BCG(∠ACB﹣∠ABC);③EF (AB﹣AC);④(AB﹣AC)<AE(AB+AC).其中正确的是()A.①②③④B.①②C.②③④D.①③④【答案】A【解析】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中∴△AFG≌△AFC(ASA),∴GF=CF,∵AE为△ABC的中线,∴BE=CE,∴EF∥AB,故①正确;∵△AFG≌△AFC,∴∠AGC=∠ACB,∵∠AGC=∠B+∠BCG,∴∠ACG=∠B+∠BCG,∴∠BCG=∠ACB﹣∠ACG=∠ACB﹣(∠B+∠BCG),∴2∠BCG=∠ACB﹣∠B,∴∠BCG(∠ACB﹣∠B),故②正确;∵△AFG≌△AFC,∴AC=AG,∴BG=AB﹣AG=AB﹣AC,∵F、E分别是CG、BC的中点,∴EF BG,∴EF(AB﹣AC),故③正确;∵∠AFG=90°,∴∠EAF<90°,∵∠AFE=∠AFG+∠EFG>90°,∴∠AFE>∠EAF,∴AE>EF,∵EF(AB﹣AC),∴(AB﹣AC)<AE,延长AE到M,使AE=EM,连接BM,∵在△ACE和△MBE中∴△ACE≌△MBE(SAS),∴AC=BM,在△ABM中,AM<AB+AC,∵AE=EM,∴2AE<AB+AC,∴AE(AB+AC),即(AB﹣AC)<AE(AB+AC),故④正确;故选:A.【点睛】求出F为CG中点,根据三角形的中位线性质即可判断①,求出∠ACG=∠AGC=∠B+∠BCG,即可判断②;根据三角形中位线性质即可判断③,求出2AE<AB+BC和AE>EF,即可判断④.巩固练习1.(2018春•坪山区期末)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.12 B.11 C.10 D.9【答案】D【解析】解:∵点D,E分别AB、BC的中点,∴DE AC=3.5,同理,DF BC=3,EF AB=2.5,∴△DEF的周长=DE+EF+DF=9,故选:D.2.(2018春•抚顺期末)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100°B.120°C.130°D.150°【答案】C【解析】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,∴PE AD,PF BC,∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C.3.(2018春•颍东区期末)如图在△ABC中,M是BC中点,AP是∠A平分线,BP⊥AP于P,AB=12,AC=22,则MP长为()A.3 B.4 C.5 D.6【答案】C【解析】解:延长BP交AC于N.∵AP是∠BAC的角平分线,BP⊥AP于P,∴∠BAP=∠NAP,∠APB=∠APN=90°,∴△ABP≌△ANP(ASA),∴AN=AB=12,BP=PN,∴CN=AC﹣AN=22﹣12=10,∵BP=PN,BM=CM,∴PM是△BNC的中位线,∴PM CN=5.故选:C.4.(2018春•开江县期末)如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形,……如此操作下去,那么第5个三角形直角顶点的坐标为()A.(,)B.()C.()D.()【答案】B【解析】解:由题意:第1个三角形的直角顶点坐标:(﹣2,2);第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(,);第4个三角形的直角顶点坐标:(,);第5个三角形的直角顶点坐标:(,);故选:B.5.(2017秋•洪雅县期末)如图,在△ABC中,AB=5,AC=3,AD是角平分线,AE是中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则线段EF的长为___.【答案】1【解析】解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=5,AC=3,∴BG=2,∵AE是中线,∴BE=CE,∴EF为△CBG的中位线,∴EF BG=1 故答案为:1.。
专题1三角形中位线

专题1:三角形中位线【经典例题】例1:如图3,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F 处,若∠B=55°,则∠BDF= °.例2:如图,点P是四边形ABCD的对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠CBD=45°,∠ADB=105°,探究EF与PF之间的数量关系,并证明。
例3:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接DC,点M,P,F分别为DE,DC,BC的中点,△ADE可以绕点A在平面内自由旋转,若AD =4,AB=10,则△PMF的面积S的变化范围是.练习:1.如图,点分别是三边上的中点.若的面积为12,则的面积为 .2.如图,∠ACB=∠BCD=90°,AC=BC ,点E 在BC 上,CD=CE ,点P ,M ,N 分别为AB ,AD ,BE 的中点,试探究:PM 与PN 之间的数量关系和位置关系.3.如图,四边形ABCD 中,∠A =90°,AB =8,AD =6,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .8B .7C .6D .51题 3题 4题4. 如图,ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米.【经典例题】例4已知:如图,在ABCD 中,E 是CD 的中点,F 是AE 的中点,FC 与BE 交于G .求证:GF =GC .D E F ,,ABC △ABC △DEF △例5如图,在△ABC 中,∠ABC=90°,BA=BC,△BEF 为等腰直角三角形、∠BEF=90°,M 为AF 的中点,求证:12ME CF =。
完整版三角形的中位线经典练习题及其答案

八年级三角形的中位线练习题及其答案1 •连结三角形2 •三角形的中位线于第三边,并且等于3 •一个三角形的中位线有__________ 条.4. 如图△ ABC中,D E分别是ABAC的中点,则线段CD>^ ABC的_______ ,线段。
丘是厶ABC ___________5、如图,D E、F分别是△ ABC各边的中点(1)如果EF= 4cm,那么BC= cm 如果AB= 10cm,那么DF= __________________________ cm(2) ________________________________ 中线AD与中位线EF的关系是____________________________6 .如图1所示,EF是厶ABC的中位线,若BC=8cm贝UEF=_________________________________________________cm7 .三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是 __________________ cm.8.在Rt △ ABC中,/ C=90°, AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 ____________ .9 .若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为()A . 4.5cmB . 18cmC . 9cmD . 36cm10. 如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B的点C,找到AC, BC的中点D, E,并且测出DE 的长为10m,则A, B间的距离为()A . 15mB . 25mC . 30mD . 20m11. 已知△ ABC的周长为1,连结△ ABC的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( )A 1 1 1 1A、 B C D、2008 2009 20082 2009212.如图3所示,已知四边形ABCD R, P分别是DC BC上的点,E,F分别是AP, RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A .线段EF的长逐渐增大B .线段EF的长逐渐减少C .线段EF的长不变D .线段EF的长不能确定13.如图4,在厶ABC中, E, D, F分别是AB, BC CA的中点,AB=6, AC=4,则四边形AEDF?勺周长是()A . 10B . 20C . 30D . 40A__________ D的线段叫做三角形的中位线.14. 如图所示,口ABCD的对角线AC, BD相交于点O, AE=EB求证:OE// BC.15. 已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16 .如图所示,在△ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1BD.217.如图所示,已知在口ABCD中, E, F分别是AD, BC的中点,求证:MN/ BC.18.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、arc CD、DA的中点.求证:四边形EFGH是平行四边形.19.如图,点E, F, G, H分别是CD, BC, AB , DA的中点。
专题 三角形中位线定理的运用(原卷版)

八年级下册数学《第十八章 平行四边形》专题 三角形中位线定理的运用【例题1】(2022秋•长沙期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2cm ,则BC 的长度是( )A .4cmB .6cmC .8cmD .10cm【变式1-1】(2022秋•海淀区期中)如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连接EF .若AD =4,则EF 的长为( )A .32B .2C .52D .4【变式1-2】(2022秋•莲池区校级期末)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C D 【变式1-3】(2022春•巨野县校级月考)如图,在△ABC 中,D 是AB 上一点,AE 平分∠CAD ,AE ⊥CD 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .4B .3C .2D .1【变式1-4】(2022秋•南关区校级期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .2.3C .4D .7【变式1-5】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为 .【变式1-6】(2022春•海淀区校级期中)如图,在Rt△ABC中,∠BAC=90°,点D和点E分别是AB,AC的中点,点F和点G分别在BA和CA的延长线上,若BC=10,GF=6,EF=4,则GD的长为 .【变式1-7】(2022春•本溪期末)如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM 的周长是 .过点C 作CF ∥BE ,交DE 的延长线于点F ,若EF =3,求DE 的长.【变式1-9】如图,在△ABC 中,AB =12cm ,AC =8cm ,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.【例题2】(2022秋•安岳县期末)如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,若∠CFE =55°,则∠ADE 的度数为( )A .65°B .60°C .55°D .50°60°,∠B=75°,则∠ANM= .【变式2-2】(2022•永安市模拟)如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,若∠DFB =32°,∠A=75°,则∠AED= .【变式2-3】(2022春•顺德区校级期中)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,求∠ADC的度数.【变式2-4】(2022•九江二模)如图,在四边形ABCD中,点E,F,G分别是AD,BC,AC的中点,AB =CD,∠EGF=144°,则∠GEF的度数为 .【变式2-5】(2022秋•新泰市期末)如图,四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,DC ,AC 的中点.若∠ACB =64°,∠DAC =22°,则∠EFG 的度数为 .【变式2-6】(2022春•鼓楼区期中)如图所示,在△ABC 中,∠A =40°,D ,E 分别在AB ,AC 上,BD =CE ,BE ,CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于P ,Q .求∠APQ 的度数.【例题3】(2021秋•杜尔伯特县期末)如图,已知△ABC 中,D 是AB 上一点,AD =AC ,AE ⊥CD ,垂足是E ,F 是BC 的中点.求证:BD =2EF.【变式3-1】(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.【变式3-2】(2021秋•互助县期中)如图,已知AB=AC,BD=CD,DB⊥AB,DC⊥AC,且E、F、G、H分别为AB、AC、CD、BD的中点,求证:EH=FG.【变式3-3】已知:如图,E为▱ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.【变式3-4】(2021春•崇川区校级月考)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:(1)DE∥FG;(2)DG和EF互相平分.【变式3-5】(2022春•富平县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H,取BC边的中点M,连接EM、FM.求证:(1)△MEF是等腰三角形;(2)OG=OH.【变式3-6】(2022春•瑶海区期末)已知:如图,在△ABC中,点D、E分别是AB、AC的中点(1)若DE=2,则BC= ;若∠ACB=70°,则∠AED= °;(2)连接CD和BE交于点O,求证:CO=2DO.【变式3-7】(2022春•虎丘区校级期中)如图,线段AM是∠CAB的角平分线,取BC中点N,连接AN,过点C作AM的垂线段CE垂足为E.(1)求证:EN∥AB.(2)若AC=13,AB=37,求EN的长度.【例题4】(2021春•莆田期末)如图,在四边形ABCD 中,AD =BC ,E 、F 分别是边DC 、AB 的中点,FE 的延长线分别AD 、BC 的延长线交于点H 、G ,求证:∠AHF =∠BGF .【变式4-1】(2022春•西峰区校级月考)如图,四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,N 、M 分别是AB 、CD 的中点,求证:∠PMN =∠PNM .【变式4-2】(2021春•歙县期中)如图,CD 是△ABC 的角平分线,AE ⊥CD 于E ,F 是AC 的中点,(1)求证:EF ∥BC ;(2)猜想:∠B 、∠DAE 、∠EAC三个角之间的关系,并加以证明.【变式4-3】如图,△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,求证:∠QPA=∠PQA.【变式4-4】一个对角线相等的四边形ABCD,E、F分别为AB,CD的中点,EF分别交对角线BD,AC 于M,N,求证:∠OMN=∠ONM.【变式4-5】(2022春•船营区校级月考)如图是华师版九年级上册数学教材第80页的第3题.如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM(1)在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F,如图②,请先完成图①的证明,再继续证明∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为 .【例题5】(2022秋•任城区期末)如图,在△ABC 中,AE 平分∠BAC ,BE ⊥AE 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .2B .3C .4D .5【变式5-1】(2022春•綦江区校级月考)如图,在四边形ABCD 中,AC ⊥BD ,BD =16,AC =30,E ,F 分别为AB ,CD 的中点,则EF =( )A .15B ..16C .17D .8【变式5-2】(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12 CF.【变式5-3】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P 为AE的中点,连接PG,则PG的长为 .【变式5-4】(2021•罗湖区校级模拟)如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN = .【变式5-5】(2022春•香坊区校级期中)如图所示,在四边形ABCD中,点E、F分别是AD、BC的中点,连接EF,AB=20,CD=12,∠B+∠C=120°,则EF的长为 .【变式5-6】(2022秋•张店区校级期末)已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G 分别是BC、AD、CD的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.【变式5-7】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=12(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【变式5-8】(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.【变式5-9】如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.。
三角形中位线专项训练(30道)(解析版)

专题9.7 三角形中位线专项训练(30道)【苏科版】1.(2021秋•淅川县期末)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.9【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为6.5,最小值是2.5,可解答.【解答】解:连接DN,∵ED=EM,MF=FN,∴EF=12DN,∴DN最大时,EF最大,DN最小时,EF最小,∵N与B重合时DN最大,此时DN=DB=√AD2+BD2=√52+122=13,∴EF的最大值为6.5.∵∠A=90°,AD=5,∴DN≥5,∴EF≥2.5,∴EF长度的可能为5;故选:B.2.(2021秋•渝中区校级期末)如图,在△ABC中,AB=CB=6,BD⊥AC于点D,F在BC上且BF=2,连接AF,E为AF的中点,连接DE,则DE的长为()A.1B.2C.3D.4【分析】根据等腰三角形的性质得到AD=DC,根据三角形中位线定理解答即可.【解答】解:∵CB=6,BF=2,∴FC=6﹣2=4,∵BA=BC,BD⊥AC,∴AD=DC,∵AE=EF,∴DE是△AFC的中位线,∴DE=12FC=12×4=2,故选:B.3.(2021秋•龙岗区校级期末)如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC和EF的关系是()A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF【分析】取AC的中点G,连接EF,EG,GF,根据三角形中位线定理求出EG=12BC,GF=12AD,再利用三角形三边关系:两边之和大于第三边,即可得出AD,BC和EF的关系.【解答】解:如图,取AC的中点G,连接EF,EG,GF,∵E,F分别是边AB,CD的中点,∴EG,GF分别是△ABC和△ACD的中位线,∴EG=12BC,GF=12AD,在△EGF中,由三角形三边关系得EG+GF>EF,即12BC+12AD>EF,∴AD +BC >2EF ,当AD ∥BC 时,点E 、F 、G 在同一条直线上,∴AD +BC =2EF ,所以四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是AD +BC ≥2EF .故选:B .4.(2021秋•荆门期末)如图,△ABC 的周长为20,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =8,则MN 的长度为( )A .32B .2C .52 D .3【分析】证明△BNA ≌△BNE ,得到BE =BA ,AN =NE ,同理得到CD =CA ,AM =MD ,求出DE ,根据三角形中位线定理计算即可.【解答】解:在△BNA 和△BNE 中,{∠NBA =∠NBE BN =BN ∠BNA =∠BNE,∴△BNA ≌△BNE (ASA )∴BE =BA ,AN =NE ,同理,CD =CA ,AM =MD ,∴DE =BE +CD ﹣BC =BA +CA ﹣BC =20﹣8﹣8=4,∵AN =NE ,AM =MD ,∴MN =12DE =2,故选:B .5.(2021秋•宛城区期中)如图,在△ABC 中,∠A =90°,AC >AB >4,点D 、E 分别在边AB 、AC 上,BD =4,CE =3,取DE 、BC 的中点M 、N ,线段MN 的长为( )A .2.5B .3C .4D .5【分析】如图,作CH ∥AB ,连接DN ,延长DN 交CH 于H ,连接EH ,首先证明CH =BD ,∠ECH =90°,解直角三角形求出EH ,利用三角形中位线定理即可解决问题.【解答】解:作CH ∥AB ,连接DN 并延长交CH 于H ,连接EH ,∵BD ∥CH ,∴∠B =∠NCH ,∠ECH +∠A =180°,∵∠A =90°,∴∠ECH =∠A =90°,在△DNB 和△HNC 中,{∠B =∠NCH BN =CN ∠DNB =∠HNC,∴△DNB ≌△HNC (ASA ),∴CH =BD =4,DN =NH ,在Rt △CEH 中,CH =4,CE =3,∴EH =√CH 2+CE 2=√42+32=5,∵DM =ME ,DN =NH ,∴MN =12EH =2.5,故选:A .6.(2021•丹东模拟)如图,在△ABC 中,CE 是中线,CD 是角平分线,AF ⊥CD 交CD延长线于点F ,AC =7,BC =4,则EF 的长为( )A .1.5B .2C .2.5D .3【分析】延长AF 、BC 交于点G ,证明△ACF ≌△GCF ,根据全等三角形的性质得到CG =AC =7,AF =FG ,求出BG ,根据三角形中位线定理解答即可.【解答】解:延长AF 、BC 交于点G ,∵CD 是△ABC 的角平分线,∴∠ACF =∠BCF ,在△ACF 和△GCF 中,{∠ACF =∠GCF CF =CF ∠AFC =∠GFC =90°,∴△ACF ≌△GCF (ASA ),∴CG =AC =7,AF =FG ,∴BG =CG ﹣CB =3,∵AE =EB ,AF =FG ,∴EF =12BG =1.5,故选:A .7.(2021•碑林区校级模拟)如图,AD 为△ABC 的角平分线,BE ⊥AD 于E ,F 为BC 中点,连接EF ,若∠BAC =80°,∠EBD =20°,则∠EFD =( )A .26°B .28°C .30°D .32°【分析】延长BE 交AC 于G ,证△ABE ≌△AGE (ASA ),得BE =GE ,再由三角形中位线定理得EF ∥GC ,则∠EFD =∠C ,然后求出∠ABC =∠ABE +∠EBD =70°,即可解决问题.【解答】解:延长BE 交AC 于G ,如图所示:∵AD 平分∠BAC ,∠BAC =80°,∴∠BAE =∠GAE =12∠BAC =40°,∵BE ⊥AD ,∴∠BEA =∠GEA =90°,∵AE =AE ,∴△ABE ≌△AGE (ASA ),∴BE =GE ,∵F 为BC 的中点,∴EF 是△BCG 的中位线,∴EF ∥GC ,∴∠EFD =∠C ,∵∠BEA =90°,∴∠ABE =90°﹣∠BAE =90°﹣40°=50°,∴∠ABC =∠ABE +∠EBD =50°+20°=70°,∴∠EFD =∠C =180°﹣∠BAC ﹣∠ABC =180°﹣80°﹣70°=30°,故选:C .8.(2021秋•广饶县期末)如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,若AC =4,则AF =( )A .85 B .43 C .1 D .23 【分析】取EF 的中点H ,连接DH ,根据三角形中位线定理得到DH =12FC ,DH ∥AC ,证明△AEF ≌△DEH ,根据全等三角形的性质得到AF =DH ,计算即可.【解答】解:取EF 的中点H ,连接DH , ∵BD =DC ,BH =HF ,∴DH =12FC ,DH ∥AC ,∴∠HDE =∠F AE ,在△AEF 和△DEH 中,{∠AEF =∠DEH AE =DE ∠EAF =∠EDH,∴△AEF ≌△DEH (ASA ), ∴AF =DH ,∴AF =12FC , ∵AC =4,∴AF =43,故选:B .9.(2021春•平邑县期末)如图,在△ABC 中,AB =8,AC =6,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A .1B .2C .32D .12【分析】证明△AFG ≌△AFC ,得到GF =FC ,根据三角形中位线定理计算即可.【解答】解:∵AD 是∠BAC 的角平分线,∴∠GAF =∠CAF ,∵CG ⊥AD ,∴∠AFG =∠AFC =90°,在△AFG 和△AFC 中,{∠AFG =∠AFC AF =AF ∠FAG =∠FAC,∴△AFG≌△AFC(ASA),∴GF=FC,AG=AC=6,∴GB=AB﹣AG=2,∵GF=FC,BE=EC,∴EF=12GB=1,故选:A.10.(2021春•宽城县期末)如图,E,F是四边形ABCD两边AB,CD的中点,G,H是对角线AC,BD的中点,若EH=6,则以下结论不正确的是()A.BC=12B.GF=6C.AD=12D.EH∥GF【分析】先判定EH为△ABD的中位线,GF为△ADC的中位线,然后根据三角形中位线性质对各选项进行判断.【解答】解:∵点E为AB的中点,点H为BD的中点,∴EH为△ABD的中位线,∴EH=12AD,EH∥AD,∵点F为CD的中点,点G为AC的中点,∴GF为△ADC的中位线,∴GF=12AD,GF∥AD,∴GF=EH=6,AD=2EH=12,EH∥GF,所以A选项符合题意,B选项、C选项和D 选项不符合题意.故选:A.二.填空题(共10小题)11.(2021秋•莱阳市期末)如图,D、E分别为△ABC的边AB、AC的中点.连接DE,过点B作BF平分∠ABC,交DE于点F.若EF=4,AD=7,则BC的长为22.【分析】根据三角形中位线定理得到DE ∥BC ,DE =12BC ,BD =AD =7,根据平行线的性质、角平分线的定义得到∠DBF =∠FBC ,根据等腰三角形的判定定理得到DF =BD =7,计算即可.【解答】解:∵D 、E 分别为△ABC 的边AB 、AC 的中点,∴DE ∥BC ,DE =12BC ,BD =AD =7,∴∠DFB =∠FBC ,∵BF 平分∠ABC ,∴∠DFB =∠DBF ,∴∠DBF =∠FBC ,∴DF =BD =7,∴DE =DF +EF =11,∴BC =2DE =22,故答案为:22.12.(2021秋•让胡路区校级期末)如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为 16 .如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是 27﹣n .【分析】根据E 、F 、G 分别为AB 、AC 、BC 的中点,可以判断EF 、FG 、EG 为三角形中位线,利用中位线定理求出EF 、FG 、EG 与BC 、AB 、CA 的长度关系即可求得△EFG 的周长是△ABC 周长的一半,△A ′B ′C ′的周长是△EFG 的周长的一半,以此类推,可以求得第n 个三角形的周长.【解答】解:∵如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴EF 、FG 、EG 为三角形中位线,∴EF =12BC ,EG =12AC ,FG =12AB ,∴EF +FG +EG =12(BC +AC +AB ),即△EFG 的周长是△ABC 周长的一半.同理,△A ′B ′C ′的周长是△EFG 的周长的一半,即△A ′B ′C ′的周长为14×64=16.以此类推,第n 个小三角形的周长是第一个三角形周长的64×(12)n ﹣1=27﹣n故答案是:27﹣n .13.(2021春•安徽月考)如图,在四边形ABCD 中,AD =BC ,∠DAB =50°,∠CBA =70°,P 、M 、N 分别是AB 、AC 、BD 的中点,若BC =6,则△PMN 的周长是 9 .【分析】根据三角形中位线定理得到PM ∥BC ,PM =12BC =3,PN ∥AD ,PN =12AD =3,根据等边三角形的判定和性质定理解答即可.【解答】解:∵P 、M 分别是AB 、AC 的中点,∴PM ∥BC ,PM =12BC =3,∴∠APM =∠CBA =70°,同理可得:PN ∥AD ,PN =12AD =3,∴∠BPN =∠DAB =50°,∴PM =PN =3,∠MPN =180°﹣50°﹣70°=60°,∴△PMN 为等边三角形,∴△PMN 的周长为9,故答案为:9.14.(2021秋•长春期中)如图所示,在△ABC 中,BC >AC ,点D 在BC 上,DC =AC =10,且AD BD =32,作∠ACB 的平分线CF 交AD 于点F ,CF =8,E 是AB 的中点,连接EF ,则EF 的长为 4 .【分析】根据等腰三角形的性质得到F 为AD 的中点,CF ⊥AD ,根据勾股定理得到DF =√CD 2−CF 2=6,根据三角形的中位线定理即可得到结论.【解答】解:∵DC =AC =10,∠ACB 的平分线CF 交AD 于F ,∴F 为AD 的中点,CF ⊥AD ,∴∠CFD =90°,∵DC =10,CF =8,∴DF =√CD 2−CF 2=6,∴AD =2DF =12,∵AD BD =32,∴BD =8,∵点E 是AB 的中点, ∴EF 为△ABD 的中位线,∴EF =12BD =4,故答案为:4.15.(2021•商丘四模)如图,四边形ABCD 中,点E 、F 分别为AD 、BC 的中点,延长FE交CD 延长线于点G ,交BA 延长线于点H ,若∠BHF 与∠CGF 互余,AB =4,CD =6,则EF 的长为 √13 .【分析】根据三角形的中位线定理和勾股定理解答即可.【解答】解:连接BD ,取BD 的中点M ,连接EM ,FM ,∵E 、F 分别为AD 、BC 的中点,M 为BD 的中点,∴EM ,MF 分别为△ADB 、△BCD 的中位线,∴EM ∥AB ,MF ∥DC ,EM =12AB =2,MF =12DC =3,∵MF ∥DC ,∴∠FGC =∠EFM ,∵EM ∥AB ,∴∠FEM =∠FHB ,∵∠BHF 与∠CGF 互余,∴∠CGF +∠BHF =∠EFM +∠FEM =90°,∴∠EMF =180°﹣∠EFM ﹣∠FEM =90°,∴△EMF 是直角三角形,∴EF=√EM2+FM2=√22+32=√13,故答案为:√13.16.(2021•香坊区校级开学)如图,在△ABC中,E是AB的中点,D是AC上一点,连接DE,BH⊥AC于H,若2∠ADE=90°﹣∠HBC,AD:BC=4:3,CD=2,则BC的长为6.【分析】如图,延长AC至N,使CN=BC,连接BN,由等腰三角形的性质可得∠ADE =∠N,可证DE∥BN,由三角形中位线定理可得AD=DN,即可求解.【解答】解:如图,延长AC至N,使CN=BC,连接BN,∵2∠ADE=90°﹣∠HBC,∠BCA=90°﹣∠HBC,∴∠BCA=2∠ADE,∵CN=BC,∴∠N=∠CBN,∴∠BCA=∠N+∠CBN=2∠N,∴∠ADE=∠N,∴DE∥BN,又∵E是AB的中点,∴DE是△ABN的中位线,∴AD=DN,∵AD:BC=4:3,∴设AD=DN=4x,BC=CN=3x,∴CD=DN﹣CN=x=2,∴BC=6,故答案为6.17.(2021春•牡丹区期末)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=13,AC=8,则DF的长为 2.5.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=2.5,故答案为:2.5.18.(2021春•洛阳期末)如图,D是△ABC的边BC的中点,AE平分∠BAC,BE⊥AE于点E,且AB=10cm,DE=2cm,则AC的长为6cm.【分析】延长AC 、BE 交于点F ,证明△AEB ≌△AEF ,根据全等三角形的性质得到AF =AB =10cm ,BE =EF ,根据三角形中位线定理计算即可.【解答】解:延长AC 、BE 交于点F ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,在△AEB 和△AEF 中,{∠BAE =∠FAE AE =AE ∠AEB =∠AEF =90°,∴△AEB ≌△AEF (ASA ),∴AF =AB =10(cm ),BE =EF ,∵BD =DC ,DE =2cm ,∴CF =2DE =4(cm ),∴AC =AF ﹣CF =6(cm ),故答案为:6.19.(2021春•盐湖区校级期末)如图,在四边形ABCD 中,AB =CD ,M 、N 、P 分别是AD 、BC 、BD 的中点,若∠MPN =130°,则∠NMP 的度数为 25° .【分析】根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.【解答】解:在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM =12AB ,PN =12DC ,PM ∥AB ,PN ∥DC ,∵AB =CD , ∴PM =PN ,∴△PMN 是等腰三角形,∵∠MPN=130°,∴∠PMN=180°−130°2=25°.故答案为:25°.20.(2021春•虹口区校级期末)如图,在△ABC中,BM、CN平分∠ABC和∠ACB的外角,AM⊥BM于M,AN⊥CN于N,AB=10,BC=13,AC=6,则MN= 4.5.【分析】延长AM交BC于点G,根据BM为∠ABC的平分线,AM⊥BM得出∠BAM=∠G,故△ABG为等腰三角形,所以AM=GM.同理AN=DN,根据三角形中位线定理即可求得MN.【解答】解:延长AM交BC于点G,延长AN交BC延长线于点D,∵BM为∠ABC的平分线,∴∠CBM=∠ABM,∵BM⊥AG,∴∠ABM+∠BAM=90°,∠MGB+∠CBM=90°,∴∠BAM=∠MGB,∴△ABG为等腰三角形,∴AM=GM.BG=AB=10,同理AN=DN,CD=AC=6,∴MN为△ADG的中位线,∴MN=12DG=12(BC﹣BG+CD)=12(BC﹣AB+AC)=12(13﹣10+6)=4.5.故答案为:4.5.三.解答题(共10小题)21.(2019春•岐山县期末)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.【分析】连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.【解答】证明:连接DE,FG,∵BD,CE是△ABC的中线,∴D,E是AB,AC的中点,∴DE∥BC,DE=12BC,同理:FG∥BC,FG=12BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.22.(2021秋•桓台县期末)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.【分析】(1)取BD的中点P,利用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理来求EF的长度;(2)如图,取BD的中点P,连接EP、FP.用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理即可得到结论.【解答】(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE ∥AB ,且PE =12AB =3,PF ∥CD 且PF =12CD =4.又∵∠ABD =30°,∠BDC =120°,∴∠EPD =∠ABD =30°,∠DPF =180°﹣∠BDC =60°,∴∠EPF =∠EPD +∠DPF =90°,在直角△EPF 中,由勾股定理得到:EF =√EP 2+PF 2=√32+42=5,即EF =5;(2)证明:如图,取BD 的中点P ,连接EP 、FP .∵E ,F 分别是AD 、BC 的中点,∴PE ∥AB ,且PE =12AB ,PF ∥CD 且PF =12CD .∴∠EPD =∠ABD ,∠BPF =∠BDC ,∴∠DPF =180°﹣∠BPF =180°﹣∠BDC ,∵∠BDC ﹣∠ABD =90°,∴∠BDC =90°+∠ABD ,∴∠EPF =∠EPD +∠DPF =∠ABD +180°﹣∠BDC =∠ABD +180°﹣(90°+∠ABD )=90°,∴PE 2+PF 2=(12AB )2+(12CD )2=EF 2,∴AB 2+CD 2=4EF 2.23.(2021秋•莱州市期末)已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =BD ,E 、F 分别是AB 、CD 的中点,EF 分别交BD 、AC 于点G 、H .求证:OG =OH .【分析】取BC 边的中点M ,连接EM ,FM ,则根据三角形的中位线定理,即可证得△EMF 是等腰三角形,根据等边对等角,即可证得∠MEF =∠MFE ,然后根据平行线的性质证得∠OGH =∠OHG ,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,∵M、F分别是BC、CD的中点,∴MF∥BD,MF=12BD,同理:ME∥AC,ME=12AC,∵AC=BD∴ME=MF∴∠MEF=∠MFE,∵MF∥BD,∴∠MFE=∠OGH,同理,∠MEF=∠OHG,∴∠OGH=∠OHG∴OG=OH.24.(2021春•抚州期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.【分析】(1)根据ASA证明△AEC和△AED全等,进而利用全等三角形的性质解答即可;(2)根据勾股定理得出AB,进而利用三角形中位线定理解答即可.【解答】(1)证明:∵AE平分∠CAB,∴∠CAE=∠BAE,∵CE⊥AE,∴∠AEC =∠AED =90°,在△AEC 和△AED 中,{∠CAE =∠DAE AE =AE ∠AEC =∠AED,∴△AEC ≌△AED (ASA ),∴CE =DE ;(2)在Rt △ABC 中,∵AC =6,BC =8,∴AB =√AC 2+BC 2=√62+82=10,∵△AEC ≌△AED ,∴AD =AC =6,∴BD =AB ﹣AD =4,∵点E 为CD 中点,点F 为BC 中点,∴EF =12BD =2.25.(2021春•秦都区期末)如图,在△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 上的点,连接BE 、DE ,∠ADE =∠AED ,点F 、G 、H 分别为BE 、DE 、BC 的中点.求证:FG =FH .【分析】根据等腰三角形的判定定理得到AD =AE ,根据线段的和差得到BD =CE ,根据三角形的中位线定理即可得到结论.【解答】证明:∵∠ADE =∠AED ,∴AD =AE ,∵AB =AC ,∴AB ﹣AD =AC ﹣AE ,即BD =CE ,∵点F 、G 、H 分别为BE 、DE 、BC 的中点,∴FG 是△EDB 的中位线,FH 是△BCE 的中位线,∴FG =12BD ,FH =12CE ,∴FG =FH .26.(2021春•泰兴市月考)如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连接BD,取BD的中点H,连接HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=12AB,EH∥CN,EH=12CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连接BD,取BD的中点H,连接HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=12AB,EH∥CN,EH=12CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.27.(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【分析】过D 作DG ∥AC ,可证明△AEF ≌△DEG ,可得AF =DG ,由三角形中位线定理可得DG =12CF ,可证得结论.【解答】证明:如图,过D 作DG ∥AC ,则∠EAF =∠EDG ,∵AD 是△ABC 的中线,∴D 为BC 中点, ∴G 为BF 中点,∴DG =12CF ,∵E 为AD 中点,∴AE =DE ,在△AEF 和△DEG 中,{∠EAF =∠EDG AE =DE ∠AEF =∠DEG,∴△AEF ≌△DEG (ASA ), ∴DG =AF ,∴AF =12CF .28.(2021春•莆田期末)如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AC=BD ,M 、N 分别是AB 、CD 的中点,MN 分别交BD 、AC 于点E 、F .你能说出OE 与OF 的大小关系并加以证明吗?【分析】此题要构造三角形的中位线,根据三角形的中位线定理进行证明.【解答】解:相等.理由如下:取AD 的中点G ,连接MG ,NG ,∵G 、N 分别为AD 、CD 的中点, ∴GN 是△ACD 的中位线,∴GN =12AC ,同理可得,GM=12BD,∵AC=BD,∴GN=GM=12AC=12BD.∴∠GMN=∠GNM,又∵MG∥OE,NG∥OF,∴∠OEF=∠GMN=∠GNM=∠OFE,∴OE=OF.29.(2021春•城固县期末)如图,在四边形ABCD中,对角线AC=BD,E,F为AB、CD 的中点,连接EF交BD、AC于P、Q,取BC中点G,连EG、FG,求证:OP=OQ.【分析】根据三角形中位线定理得到EG=12AC,EG∥AC,FG=12BD,FG∥BD,根据平行线的性质、等腰三角形的性质和判定定理证明结论.【解答】证明:∵E,G为AB、BC中点,∴EG=12AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=12BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.30.(2021春•三水区期末)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.【分析】(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=12BD,FH∥EC,FH=12EC,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【解答】(1)证明:∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=12 BDFH∥EC,FH=12 EC∴FG=FH;(2)证明:由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)解:延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵ AF=CF,
∴ △ADF≌ △FEC (SAS)
∴ DF=EC ∵ BE=EC, 三角∴形中位D线F专=题BE
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
三角形中位线专题
三角形中位线专题
拓展应用:
在△ABC中,∠BAC=90°,延长BA到点D,使
AD=1/2AB,点E,F分别为BC,AC的中点,试说DF=BE理
由
D
理由: ∵ 点E,F分别为BC,AC的中点 ∴ EF ∥AB,EF=1/2AB ∴ ∠DAC= ∠EFC=90 °
A
F B
E
C
∵ AD=1/2AB, ∴ AD=EF,
三角形中位线专题
• 如图7,△ABC的周长为1,连接△ABC三边 的中点构成第二个三角,再连接第二个三角形 三边中点构成第三个三角形,依此类推,第 2003个三角形的周长为 .
三角形中位线专题
• 已知如图,E、F、G、H分别是AB、BC、CD、 DA的中点。
• 求证:四边形EFGH是平行四边形
三角形中位线专题
三角形中位线专题
复习巩固
定义:把连接三角形两边中点的线段 叫做三角形的中位线 A
中位线定理
D
E
三角形的中位线平行于三角形
的第三边,且等于第三边的一半 B
C
中位线定理 的推理格式
∵AD=BD,AE=CE
∴DE∥BC且DE=
1 2
BC
三角形中位线专题
基础练习:
1、已知三角形的各边长分别为6cm,8cm,12cm, 求连结各边中点所成三角形的周长_1_3c。m 2、直角三角形两条直角边分别是6cm,8cm, 则连接着两条直角边中点的线段长为_5_cm。
三角形中位线专题
已知:在梯形ABCD中,
AD//BC,如果AE=BE,
DF=CF
求证: EF//BC,EF=
1 (AD+BC) 2
A
D
E
F
B 三角形中位线专题
C
• 如图,在梯形ABCD中,AB∥DC,H、G分别 是两条对角线BD、AC的中点,说明: HG∥DC且HG=(DC-AB).
A
D
H
G
B
C
பைடு நூலகம்
• 已知如图,E、F、G、H分别是AB、BC、CD、 DA的中点。
• 求证:四边形EFGH是平行四边形
H
D
A
E G
C
F
B
三角形中位线专题
三角形中位线专题
三角形中位线专题
• AD是△ABC的外角平分线,CD⊥AD于D,E是
BC的中点.
•
求证:(1)DE∥AB; (2).
DE1ABAC
2
三角形中位线专题
• 图 2-54 所示.△ABC中,∠B,∠C的平分线BE, CF相交于O,AG⊥BE于G,AH⊥CF于H.求证: GH∥BC;
• (2)若将条件“∠B,∠C的平分线”改为 “∠B(或∠C)及∠C(或∠B)的外角平分线”(如图255所示),或改为“∠B,∠C的外角平分线”(如 图2-56所示),其余条件不变,那么,结论 GH∥BC仍然成立.同学们也不妨试证.