高中物理部分电路欧姆定律(一)解题方法和技巧及练习题
高中物理闭合电路的欧姆定律(一)解题方法和技巧及练习题及解析

高中物理闭合电路的欧姆定律(一)解题方法和技巧及练习题及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,R 1=R 2=2.5Ω,滑动变阻器R 的最大阻值为10Ω,电压表为理想电表。
闭合电键S ,移动滑动变阻器的滑片P ,当滑片P 分别滑到变阻器的两端a 和b 时,电源输出功率均为4.5W 。
求 (1)电源电动势;(2)滑片P 滑动到变阻器b 端时,电压表示数。
【答案】(1) 12V E = (2) 7.5V U = 【解析】 【详解】(1)当P 滑到a 端时,21124.5RR R R R R =+=Ω+外 电源输出功率:22111(E P I R R R r==+外外外) 当P 滑到b 端时,1212.5R R R =+=Ω外电源输出功率:22222(E P I R R R r==+'外外外) 得:7.5r =Ω 12V E =(2)当P 滑到b 端时,20.6A EI R r==+'外电压表示数:7.5V U E I r ='=-2.如图(1)所示 ,线圈匝数n =200匝,直径d 1=40cm ,电阻r =2Ω,线圈与阻值R =6Ω的电阻相连.在线圈的中心有一个直径d 2=20cm 的有界圆形匀强磁场,磁感应强度按图(2)所示规律变化,试求:(保留两位有效数字)(1)通过电阻R 的电流方向和大小; (2)电压表的示数.【答案】(1)电流的方向为B A →;7.9A ; (2)47V 【解析】 【分析】 【详解】(1)由楞次定律得电流的方向为B A → 由法拉第电磁感应定律得B E nn S t t ∆Φ∆==∆∆磁场面积22()2d S π=而0.30.2/1/0.20.1B T s T s t ∆-==∆- 根据闭合电路的欧姆定律7.9EI A R r==+ (2)电阻R 两端的电压为U=IR=47V3.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s .【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V (2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .4.爱护环境,人人有责;改善环境,从我做起;文明乘车,低碳出行。
高中物理部分电路欧姆定律解析版汇编及解析

高中物理部分电路欧姆定律解析版汇编及解析一、高考物理精讲专题部分电路欧姆定律1.如图所示,电源电压恒定不变,小灯泡L上标有“6V 3W”字样,滑动变阻器R最大阻值为36Ω,灯泡电阻不随温度变化。
闭合S、S1、S2,当滑动变阻器滑片位于最右端时,电压表示数为3V;闭合S、S1,断开S2,当滑动变阻器滑片位于最左端时,灯泡正常发光。
求:(1)电源电压;(2)R0的阻值。
【答案】(1)12V(2)【解析】【详解】(1)灯泡的电阻:;当闭合S、S1、S2,当滑动变阻器滑片位于最右端时,电路中的电流电源的电压U=I(R L+R)=0.25A×(12Ω+36Ω)=12V;(2)闭合S、S1,断开S2,当滑动变阻器滑片位于最左端时,∵灯泡正常发光,∴电路中的电流R0两端的电压U0=U-U L=12V-6V=6V,【点睛】本题考查了串联电路的特点和欧姆定律、电功率的应用,关键是开关闭合、断开时电路变化的判断和知道额定电压下灯泡正常发光。
2.以下对直导线内部做一些分析:设导线单位体积内有n个自由电子,电子电荷量为e,自由电子定向移动的平均速率为v.现将导线中电流I与导线横截面积S的比值定义为电流密度,其大小用j表示.(1)请建立微观模型,利用电流的定义qIt=,推导:j=nev;(2)从宏观角度看,导体两端有电压,导体中就形成电流;从微观角度看,若导体内没有电场,自由电子就不会定向移动.设导体的电阻率为ρ,导体内场强为E,试猜想j与E的关系并推导出j、ρ、E三者间满足的关系式.【答案】(1)j=nev(2)E jρ=【解析】【分析】【详解】(1)在直导线内任选一个横截面S,在△t时间内以S为底,v△t为高的柱体内的自由电子都将从此截面通过,由电流及电流密度的定义知:I qjS tSVV==,其中△q=neSv△t,代入上式可得:j=nev(2)(猜想:j与E成正比)设横截面积为S,长为l的导线两端电压为U,则UEl =;电流密度的定义为IjS =,将UIR=代入,得UjSR=;导线的电阻lRSρ=,代入上式,可得j、ρ、E三者间满足的关系式为:Ejρ=【点睛】本题一要掌握电路的基本规律:欧姆定律、电阻定律、电流的定义式,另一方面要读懂题意,明确电流密度的含义.3.有人为汽车设计的一个“再生能源装置”原理简图如图1所示,当汽车减速时,线圈受到磁场的阻尼作用帮助汽车减速,同时产生电能储存备用.图1中,线圈的匝数为n,ab 长度为L1,bc长度为L2.图2是此装置的侧视图,切割处磁场的磁感应强度大小恒为B,有理想边界的两个扇形磁场区夹角都是900.某次测试时,外力使线圈以角速度ω逆时针匀速转动,电刷M 端和N 端接电流传感器,电流传感器记录的图象如图3所示(I 为已知量),取边刚开始进入左侧的扇形磁场时刻.不计线圈转动轴处的摩擦(1)求线圈在图2所示位置时,产生电动势E 的大小,并指明电刷和哪个接电源正极;(2)求闭合电路的总电阻和外力做功的平均功率;【答案】(1)nBL 1L 2ω,电刷M 接电源正极;(2)12nBL L R I ω=, 1212P nBL L I ω= 【解析】(1)有两个边一直在均匀辐向磁场中做切割磁感线运动,故根据切割公式,有 E=2nBL 1v其中v =12ωL 2 解得E=nBL 1L 2ω根据右手定则,M 端是电源正极 (2)根据欧姆定律,电流:E I R= 解得12nBL L R Iω=线圈转动一个周期时间内,产生电流的时间是半周期,故外力平均功率P =12I 2R 解得1212P nBL L I =ω4.有三盘电灯L 1、L 2、L 3,规格分别是“110V ,100W”,“110V ,60W”,“110V ,25W”要求接到电压是220V 的电源上,使每盏灯都能正常发光.可以使用一直适当规格的电阻,请按最优方案设计一个电路,对电阻的要求如何?【答案】电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A .【解析】将两个电阻较大的电灯“110V 60W”、“110V 25W”与电阻器并联,再与“110V100W”串连接在220V的电源上,电路连接如图所示,当左右两边的总电阻相等时才能各分压110V,使电灯都正常发光.由公式P=UI得L1、L2、L3的额定电流分别为:I1==A=A,I2==A=A,I3=A=A则通过电阻R的电流为 I=I1﹣I2﹣I3=A=AR==Ω=806.7Ω答:电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【点评】本题考查设计电路的能力,关键要理解串联、并联电路的特点,知道用电器在额定电压下才能正常工作,设计好电路后要进行检验,看是否达到题目的要求.5.有一个表头,其满偏电流I g=1mA,内阻R g=500Ω.求:(1)如何将该表头改装成量程U=3V的电压表?(2)如何将该表头改装成量程I=0.6A的电流表?【答案】(1)与表头串联一个2500Ω的分压电阻,并将表头的刻度盘按设计的量程进行刻度。
高考物理部分电路欧姆定律答题技巧及练习题(含答案)

高考物理部分电路欧姆定律答题技巧及练习题(含答案)一、高考物理精讲专题部分电路欧姆定律1.如图中所示B 为电源,电动势E=27V ,内阻不计。
固定电阻R 1=500Ω,R 2为光敏电阻。
C 为平行板电容器,虚线到两极板距离相等,极板长l 1=8.0×10-2m ,两极板的间距d =1.0×10-2m 。
S 为屏,与极板垂直,到极板的距离l 2=0.16m 。
P 为一圆盘,由形状相同、透光率不同的三个扇形a 、b 和c 构成,它可绕AA /轴转动。
当细光束通过扇形a 、b 、c 照射光敏电阻R 2时,R 2的阻值分别为1000Ω、2000Ω、4500Ω。
有一细电子束沿图中虚线以速度v 0=8.0×106m/s 连续不断地射入C 。
已知电子电量e =1.6×10-19C ,电子质量m =9×10-31kg 。
忽略细光束的宽度、电容器的充电放电时间及电子所受的重力。
假设照在R 2上的光强发生变化时R 2阻值立即有相应的改变。
(1)设圆盘不转动,细光束通过b 照射到R 2上,求平行板电容器两端电压U 1(计算结果保留二位有效数字)。
(2)设圆盘不转动,细光束通过b 照射到R 2上,求电子到达屏S 上时,它离O 点的距离y 。
(计算结果保留二位有效数字)。
(3)转盘按图中箭头方向匀速转动,每3秒转一圈。
取光束照在a 、b 分界处时t =0,试在图中给出的坐标纸上,画出电子到达屏S 上时,它离O 点的距离y 随时间t 的变化图线(0~6s 间)。
要求在y 轴上标出图线最高点与最低点的值。
(不要求写出计算过程,只按画出的图线就给分)【答案】(1) 5.4V (2) 22410m .-⨯ (3)【解析】 【分析】由题意可知综合考查闭合电路欧姆定律、牛顿第二定律和类平抛运动,根据欧姆定律、类平抛运动及运动学公式计算可得。
【详解】解:(1) 设电容器C 两极板间的电压为U 1,U 1=112R R R +E =27500V=5.4V 500+2000⨯ (2) 设电场强度大小为E ′E ′=1U d, 电子在极板间穿行时加速度大小为a ,穿过C 的时间为t ,偏转的距离为y o . 根据牛顿第二定律得:a==eE eU m md'电子做类平抛运动,则有:l 1=v 0t , y o =12at 2, 联立得:y o =202eE mv (112R R R +) 21l d, 当光束穿过b 时,R 2=2000Ω,代入数据解得:y o =4.8×10-3m由此可见,y 1<12d , 电子通过电容器C ,做匀速直线运动,打在荧光屏上O 上方y 处.根据三角形相似关系可得1o12y 22l l yl =+ 代入数值可得:y =22410m .-⨯(3) 当光束穿过a 时,R 2=1000Ω,代入数据解得y =8×10-3m由此可见,y >d ,电子不能通过电容器C 。
高考物理部分电路欧姆定律解题技巧讲解及练习题(含答案)及解析

高考物理部分电路欧姆定律解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题部分电路欧姆定律1.如图25甲为科技小组的同学们设计的一种静电除尘装置示意图,其主要结构有一长为L 、宽为b 、高为d 的矩形通道,其前、后板使用绝缘材料,上、下板使用金属材料.图25乙是该主要结构的截面图,上、下两板与输出电压可调的高压直流电源(内电阻可忽略不计)相连.质量为m 、电荷量大小为q 的分布均匀的带负电的尘埃无初速度地进入A 、B 两极板间的加速电场.已知A 、B 两极板间加速电压为U0,尘埃加速后全都获得相同的水平速度,此时单位体积内的尘埃数为n .尘埃被加速后进入矩形通道,当尘埃碰到下极板后其所带电荷被中和,同时尘埃被收集.通过调整高压直流电源的输出电压U 可以改变收集效率η(被收集尘埃的数量与进入矩形通道尘埃的数量的比值).尘埃所受的重力、空气阻力及尘埃之间的相互作用均可忽略不计.在该装置处于稳定工作状态时:(1)求在较短的一段时间Δt 内,A 、B 两极板间加速电场对尘埃所做的功; (2)若所有进入通道的尘埃都被收集,求通过高压直流电源的电流; (3)请推导出收集效率η随电压直流电源输出电压U 变化的函数关系式. 【答案】(1)nbd ΔtqU 02qU m (2)02qU m (3)若y <d ,即204L U dU <d ,则收集效率η=y d =2204L U d U (U < 2024d U L) ;若y ≥d 则所有的尘埃都到达下极板,收集效率η=100% (U ≥2024d U L )【解析】试题分析:(1)设电荷经过极板B 的速度大小为0v ,对于一个尘埃通过加速电场过程中,加速电场做功为00W qU =在t ∆时间内从加速电场出来的尘埃总体积是0V bdv t =∆ 其中的尘埃的总个数()0N nV n bdv t ==∆总故A 、B 两极板间的加速电场对尘埃所做的功()000W N qU n bdv t qU ==∆总 对于一个尘埃通过加速电场过程,根据动能定理可得20012qU mv = 故解得02qU W nbd tqU m=∆(2)若所有进入矩形通道的尘埃都被收集,则t ∆时间内碰到下极板的尘埃的总电荷量()0Q N q nq bdv t ∆==∆总通过高压直流电源的电流002qU QI nQbdv nQbdt m∆===∆ (3)对某一尘埃,其在高压直流电源形成的电场中运动时,在垂直电场方向做速度为0v 的匀速直线运动,在沿电场力方向做初速度为0的匀加速直线运动 根据运动学公式有:垂直电场方向位移0x v t =,沿电场方向位移212y at = 根据牛顿第二定律有F qE qU a m m md=== 距下板y 处的尘埃恰好到达下板的右端边缘,则x=L解得204L Uy dU =若y d <,即204L U d dU <,则收集效率2202204()4d U y L UU d d U Lη==< 若y d ≥,则所有的尘埃都到达下极板,效率为100%2024()d U U L≥ 考点:考查了带电粒子在电场中的运动【名师点睛】带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同.先分析受力情况再分析运动状态和运动过程(平衡、加速、减速,直 线或曲线),然后选用恰当的规律解题.解决这类问题的基本方法有两种,第一种利用力和运动的观点,选用牛顿第二定律和运动学公式求解;第二种利用能量转化 的观点,选用动能定理和功能关系求解2.在如图所示的电路中,电源的电动势E=6.0V ,内电阻r=1.0Ω,外电路的电阻R=11.0Ω.闭合开关S .求:(1)通过电阻R 的电流Ⅰ; (2)在内电阻r 上损耗的电功率P ; (3)电源的总功率P 总.【答案】(1)通过电阻R 的电流为0.5A ;(2)在内电阻r 上损耗的电功率P 为0.25W ;(3)电源的总功率P 总为3W . 【解析】试题分析:(1)根据闭合电路欧姆定律,通过电阻R 的电流为:,(2)r 上损耗的电功率为:P=I 2r=0.5×0.5×1=0.25W ,(3)电源的总功率为:P 总=IE =6×0.5=3 W . 考点:闭合电路的欧姆定律;电功、电功率.3.如图所示,灵敏电流计的内阻Rg 为500Ω,满偏电流为Ig 为1mA 。
高考物理部分电路欧姆定律(一)解题方法和技巧及练习题

高考物理部分电路欧姆定律(一)解题方法和技巧及练习题一、高考物理精讲专题部分电路欧姆定律1.如图所示的电路中,两平行金属板A、B水平放置,极板长L=60 cm,两板间的距离d=30 cm,电源电动势E=36 V,内阻r=1 Ω,电阻R0=9 Ω,闭合开关S,待电路稳定后,将一带负电的小球(可视为质点)从B板左端且非常靠近B板的位置以初速度v0=6 m/s 水平向右射入两板间,小球恰好从A板右边缘射出.已知小球带电荷量q=2×10-2 C,质量m=2×10-2 kg,重力加速度g取10 m/s2,求:(1)带电小球在平行金属板间运动的加速度大小;(2)滑动变阻器接入电路的阻值.【答案】(1)60m/s2;(2)14Ω.【解析】【详解】(1)小球进入电场中做类平抛运动,水平方向做匀速直线运动,竖直方向做匀加速运动,则有:水平方向:L=v0t竖直方向:d=at2由上两式得:(2)根据牛顿第二定律,有:qE-mg=ma电压:U=Ed解得:U=21V设滑动变阻器接入电路的电阻值为R,根据串并联电路的特点有:解得:R=14Ω.【点睛】本题是带电粒子在电场中类平抛运动和电路问题的综合,容易出错的是受习惯思维的影响,求加速度时将重力遗忘,要注意分析受力情况,根据合力求加速度.2.以下对直导线内部做一些分析:设导线单位体积内有n个自由电子,电子电荷量为e,自由电子定向移动的平均速率为v.现将导线中电流I与导线横截面积S的比值定义为电流密度,其大小用j表示.(1)请建立微观模型,利用电流的定义qIt,推导:j=nev;(2)从宏观角度看,导体两端有电压,导体中就形成电流;从微观角度看,若导体内没有电场,自由电子就不会定向移动.设导体的电阻率为ρ,导体内场强为E,试猜想j与E的关系并推导出j、ρ、E三者间满足的关系式.【答案】(1)j=nev(2)E jρ=【解析】【分析】【详解】(1)在直导线内任选一个横截面S,在△t时间内以S为底,v△t为高的柱体内的自由电子都将从此截面通过,由电流及电流密度的定义知:I qjS tSVV==,其中△q=neSv△t,代入上式可得:j=nev(2)(猜想:j与E成正比)设横截面积为S,长为l的导线两端电压为U,则UEl =;电流密度的定义为IjS =,将UIR=代入,得UjSR=;导线的电阻lRSρ=,代入上式,可得j、ρ、E三者间满足的关系式为:Ejρ=【点睛】本题一要掌握电路的基本规律:欧姆定律、电阻定律、电流的定义式,另一方面要读懂题意,明确电流密度的含义.3.如图所示,AB和A′B′是长度均为L=2 km的两根输电线(1 km电阻值为1 Ω),若发现在距离A和A′等远的两点C和C′间发生漏电,相当于在两点间连接了一个电阻.接入电压为U=90 V的电源:当电源接在A、A′间时,测得B、B′间电压为U B=72 V;当电源接在B、B′间时,测得A、A′间电压为U A=45 V.由此可知A与C相距多远?【答案】L AC=0.4 km【解析】【分析】【详解】根据题意,将电路变成图甲所示电路,其中R1=R1′,R2=R2′,当AA′接90V,BB′电压为72V,如图乙所示(电压表内阻太大,R2和R′2的作用忽略,丙图同理)此时R1、R1′、R串联,∵在串联电路中电阻和电压成正比,∴R 1:R :R 1′=9V :72V :9V=1:8:1---------------①同理,当BB′接90V ,AA′电压为45V ,如图丙所示,此时R 2、R 2′、R 串联, ∵在串联电路中电阻和电压成正比,∴R 2:R :R 2′=22.5V :45V :22.5V=1:2:1=4:8:4---②联立①②可得:R 1:R 2=1:4由题意,R AB =2km×1 1kmΩ=2Ω=R 1+R 2 ∴R 1=0.4Ω,R 2=1.6Ω AC 相距s=11/R km Ω=0.4km .【点睛】本题考查了串联电路的电阻、电流特点和欧姆定律的应用;解决本题的关键:一是明白电压表测得是漏电电阻两端的电压,二是知道电路相当于三个串联.4.如图所示,U=10V ,电阻R 1=4Ω,R 2=6Ω,电容C=30μF 。
高考物理部分电路欧姆定律答题技巧及练习题(含答案)含解析(1)

高考物理部分电路欧姆定律答题技巧及练习题(含答案)含解析(1)一、高考物理精讲专题部分电路欧姆定律1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.如图所示的闭合电路中,电源电动势E=12V,内阻r=1Ω,灯泡A标有“6V,3W”,灯泡B标有“4V,4W”.当开关S闭合时A、B两灯均正常发光.求:R1与R2的阻值分别为多少?【答案】R1与R2的阻值分别为3Ω和2Ω【解析】试题分析:流过及B灯的电流,所以流过A灯的电流,由闭合电路欧姆定律:解得:.考点:闭合电路的欧姆定律【名师点睛】对于直流电路的计算问题,往往先求出局部的电阻,再求出外电路总电阻,根据欧姆定律求出路端电压和总电流,再计算各部分电路的电压和电流.3.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在4.一台电动机额定电压为220V,线圈电阻R=0.5Ω,电动机正常工作时通过电动机线圈的电流为4A,电动机正常工作10s,求:(1)消耗的电能.(2)产生的热量.(3)输出的机械功率.【答案】(1)消耗的电能为8800J;(2)产生的热量为80J;(3)输出的机械能为8720J.【解析】试题分析:(1)电动机额定电压为220V,电流为4A,电动机正常工作10s,消耗的电能:W=UI t=220×4×10=8800J;(2)产生的热量:Q=I2Rt=42×0.5×10=80J;(3)根据能量守恒定律,输出的机械能为:E机=W﹣Q=8800﹣80=8720J;考点:电功、电功率.5.若加在某导体两端的电压变为原来的35时,导体中的电流减小了0.4A.如果所加电压变为原来的2倍,则导体中的电流为多大? 【答案】2A 【解析】 【详解】设是导体两端原来的电压为U ,电流为I ,则导体电阻U R I=, 又由题,导体两端的电压变为原来的35时,导体中的电流减小了0.4 A ,则有35(0.4)UR I -=,联立得()350.4U U I I -=, 解得=1.0A I ,当电压变为2U 时,22A I I '==6.如图所示,P 是一个表面镶有很薄电热膜的长陶瓷管,其长度为L ,直径为D ,镀膜的厚度为d .管两端有导电金属箍M 、N .现把它接入电路中,测得它两端电压为U ,通过它的电流为I .则金属膜的电阻为多少?镀膜材料的电阻率为多少?【答案】U IU Dd IL π【解析】 【详解】根据欧姆定律得,金属膜的电阻U R I=. 由于金属膜的厚度很小,所以,在计算横截面积时,近似的计算方法是:若将金属膜剥下,金属膜可等效为长为L ,宽为πD (周长),高为厚度为d 的长方体金属膜的长度为L ,横截面积s =πDd ;根据LR sρ=,求得 Rs DdU L IL πρ==. 【点睛】解决本题的关键掌握欧姆定律的公式和电阻定律的公式,并能灵活运用.7.如图所示,A 为电解槽,M 为电动机,N 为电炉子,恒定电压U =12V ,电解槽内阻R A =2Ω,当S 1闭合,S 2、S 3断开时,电流表示数为6A ;当S 2闭合,S 1、S 3断开时,电流表示数为5A ,且电动机输出功率为35W ;当S 3闭合,S 1、S 2断开时,电流表示数为4A .求:(1)电炉子的电阻及发热功率; (2)电动机的内阻;(3)在电解槽工作时,电能转化为化学能的功率为多少. 【答案】(1)2 Ω 72 W (2)1 Ω (3)16 W 【解析】试题分析:(1)电炉子为纯电阻元件,由欧姆定律U I R= 得12UR I ==Ω 其发热功率为:1126?W=72?W R P UI ==⨯ (2)电动机为非纯电阻元件,由能量守恒定律得222M UI I r P =+输出所以2221M UI P r I-==Ω输出(3)电解槽工作时,由能量守恒定律得:23316?W A P UI I r =-=化考点:闭合电路欧姆定律点评:注意纯电阻电路与非纯电阻电路在的区别8.如图所示,在该电路施加U=5V 的电压,R 1=4Ω,R 2=6 Ω,滑动变阻器最大值R 3=10 Ω,则当滑动触头从a 滑到b 的过程中,电流表示数的最小值为多少?【答案】1A【解析】【详解】解:设触头上部分电阻为R,则下部分为3R R-总电阻:2 123123()()()(146(6)10020)20R R R R R R R RRR R R++-+---+===++总当6R=Ω时,R总最大,此时5maxR=Ω电流表示数的最小值为:1minmaxUI AR==9.如图所示的电路中,18R=Ω,24R=Ω,36R=Ω,43R=Ω.(1)求电路中的总电阻;(2)当加在电路两端的电压42U V=时,通过每个电阻的电流是多少?【答案】(1)电路中的总电阻为14Ω(2)当加在电路两端的电压U=42V时,通过四个电阻的电流分别为:3A;3A;1A;2A.【解析】【分析】分析电路图,电阻R3、R4并联,再和R1和R2串联,根据欧姆定律和串并联电路的特点求解.【详解】(1)电路中的总电阻为341234638463R RR R RR R⨯=++=++++Ω=14Ω(2)根据欧姆定律得:I=423A14UR==R1和R2串联且在干路上,所以I1=I2=3A对于R3、R4则有:I3+I4=3A 344312I RI R==所以I3=1A,I4=2A答:(1)电路中的总电阻为14Ω(2)当加在电路两端的电压U=42V时,通过四个电阻的电流分别为:3A;3A;1A;2A.10.如图所示,电源内阻0.4Ωr=,12344ΩR R R R====,当电键K闭合时,电流表与电压表读数分别为2A,2V,试求:(1)电源电动势E;(2)电键K断开时,电压表读数为多少?【答案】(1)7V(2)3.96V【解析】【详解】(1)等效电路图因为22VU=,所以有:120.5AI I==31.5AI=2.5AI=电源的外电压:336VU I R==电源电动势为:6 2.50.4V7VE U Ir=+=+⨯=(2) 电键K断开时,则有:R 外20Ω3=根据闭合电路欧姆定律有:EI R r=+ 则电压表的示数:2 3.96V U IR ==11.在图示电路中,稳压电源的电压U =9V ,电阻R 1=9Ω,R 2为滑动变阻器,电流表为理想电表.小灯泡L 标有“6V ,6W”字样,电阻随温度的变化不计.电键S 断开时,求:(1)电流表的示数I ; (2)小灯泡L 的实际功率P L ;(3)闭合电键S ,为使小灯泡L 正常发光,滑动变阻器R 2接入电路的阻值是多少? 【答案】(1)0.6A (2)2.16W (3)4.5Ω 【解析】 【详解】 (1)由可得:当开关断开时,由欧姆定律可得:(2)小灯泡的实际功率P =I 2R L =0.36×6=2.16W(3)闭合S 后,滑动变阻器与R 1并联,而灯泡正常发光;则总电流灯泡电压为6V ,则并联部分电压为U ′=9-6=3V ; 则R 1中电流则流过滑动变阻器的电流则由欧姆定律可得:.【点睛】本题考查闭合电路欧姆定律及功率公式的应用,解题时要注意明确题目要求:灯泡电阻不随温度的变化而变化.12.如图所示的电路,电源电压保持不变,R 1=30Ω,R 2=10Ω.当闭合开关S 1、S ,断开S 2时,电流表的示数为0.4A .求:(1)电源电压;(2)当闭合开关S 2、S ,断开S 1时,求电流表的示数:(3)当闭合开关S 1、S 2、S 时,通电100s 。
高中物理闭合电路的欧姆定律常见题型及答题技巧及练习题(含答案)及解析
高中物理闭合电路的欧姆定律常见题型及答题技巧及练习题(含答案)及解析一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,电解槽A 和电炉B 并联后接到电源上,电源内阻r =1Ω,电炉电阻R =19Ω,电解槽电阻r ′=0.5Ω.当S 1闭合、S 2断开时,电炉消耗功率为684W ;S 1、S 2都闭合时,电炉消耗功率为475W(电炉电阻可看作不变).试求:(1)电源的电动势;(2)S 1、S 2闭合时,流过电解槽的电流大小;(3)S 1、S 2闭合时,电解槽中电能转化成化学能的功率. 【答案】(1)120V (2)20A (3)1700W 【解析】(1)S 1闭合,S 2断开时电炉中电流106P I A R== 电源电动势0()120E I R r V =+=; (2)S 1、S 2都闭合时电炉中电流为25B P I A R== 电源路端电压为95R U I R V == 流过电源的电流为25E UI A r-== 流过电槽的电流为20A B I I I A =-=; (3)电解槽消耗的电功率1900A A P I U W ==电解槽内热损耗功率2'200A P I r W ==热电解槽转化成化学能的功率为1700A P P P W 化热=-=.点睛:电解槽电路在正常工作时是非纯电阻电路,不能用欧姆定律求解其电流,只能根据电路中电流关系求电流.2.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。
汽车的电源、电流表、车灯、电动机连接的简化电路如图所示,已知汽车电源电动势为12.5V ,电源与电流表的内阻之和为0.05Ω。
车灯接通电动机未起动时,电流表示数为10A ;电动机启动的瞬间,电流表示数达到70A 。
求: (1)电动机未启动时车灯的功率。
(2)电动机启动瞬间车灯的功率并说明其功率减小的原因。
(忽略电动机启动瞬间灯泡的电阻变化)【答案】(1)120W ;(2)67.5W 【解析】 【分析】 【详解】(1) 电动机未启动时12V U E Ir =-= 120W P UI ==(2)电动机启动瞬间车灯两端电压'9 V U E I r =-'=车灯的电阻' 1.2U RI ==Ω267.5W RU P ''==电源电动势不变,电动机启动瞬间由于外电路等效总电阻减小,回路电流增大,内电路分得电压增大,外电路电压减小,所以车灯电功率减小。
高中物理部分电路欧姆定律专题训练答案及解析
高中物理部分电路欧姆定律专题训练答案及解析一、高考物理精讲专题部分电路欧姆定律1.如图所示电路,A 、B 两点间接上一电动势为4V 、内电阻为1Ω的直流电源,3个电阻的阻值均为4Ω,电容器的电容为20μF,开始开关闭合,电流表内阻不计,求:(1)电流表的读数; (2)电容器所带电荷量; (3)开关断开后,通过R 2的电荷量.【答案】(1)0.8A (2)6.4×10-5C ;(3)3.2×10-5C 【解析】试题分析:(1)当电键S 闭合时,电阻R 1、R 2被短路.根据欧姆定律得,电流表的读数340.841E I A A R r ===++ (2)电容器所带的电量Q=CU 3=CIR 3=20×10-6×0. 8×4C=6.4×10-5C ;(3)断开电键S 后,电容器相当于电源,外电路是R 1、R 2相当并联后与R 3串联.由于各个电阻都相等,则通过R 2的电量为Q′=1/2Q=3.2×10-5C 考点:闭合电路的欧姆定律;电容器【名师点睛】此题是对闭合电路的欧姆定律以及电容器的带电量的计算问题;解题的关键是搞清电路的结构,知道电流表把两个电阻短路;电源断开时要能搞清楚电容器放电电流的流动路线,此题是中等题,考查物理规律的灵活运用.2.如图所示,电源电动势、内电阻、1R 、2R 均未知,当a 、b 间接入电阻/1R =10Ω时,电流表示数为11A I =;当接入电阻/218R =Ω时,电流表示数为20.6A I =.当a 、b 间接入电阻/3R =118Ω时,电流表示数为多少?【答案】0.1A 【解析】 【分析】当a 、b 间分别接入电阻R 1′、R 2′、R 3′时,根据闭合电路欧姆定律列式,代入数据,联立方程即可求解. 【详解】当a 、b 间接入电阻R 1′=10Ω时,根据闭合电路欧姆定律得: E =(I 1+112I R R ')(R 1+r )+I 1R 1′ 代入数据得:E=(1+210 R )(R 1+r )+10①当接入电阻R 2′=18Ω时,根据闭合电路欧姆定律得: E =(I 2+222I R R ')(R 1+r )+I 2R 2′ 代入数据得:E=(0.6+210.8R )(R 1+r )+10.8② 当a 、b 间接入电阻R 3′=118Ω时,根据闭合电路欧姆定律得:E =(I 3+332I R R ')(R 1+r )+I 3R 3′ 代入数据得:E =(I 3+32118 I R )(R 1+r )+118I 3③ 由①②③解得:I 3=0.1A 【点睛】本题主要考查了闭合电路欧姆定律的直接应用,解题的关键是搞清楚电路的结构,解题时不需要解出E 、r 及R 1、R 2的具体值,可以用E 的表达式表示R 2和r+R 1,难度适中.3.在如图所示的电路中,电源的电动势E=6.0V ,内电阻r=1.0Ω,外电路的电阻R=11.0Ω.闭合开关S .求:(1)通过电阻R 的电流Ⅰ; (2)在内电阻r 上损耗的电功率P ; (3)电源的总功率P 总.【答案】(1)通过电阻R 的电流为0.5A ;(2)在内电阻r 上损耗的电功率P 为0.25W ;(3)电源的总功率P 总为3W . 【解析】试题分析:(1)根据闭合电路欧姆定律,通过电阻R 的电流为:,(2)r 上损耗的电功率为:P=I 2r=0.5×0.5×1=0.25W ,(3)电源的总功率为:P 总=IE =6×0.5=3 W .考点:闭合电路的欧姆定律;电功、电功率.4. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于x VA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯, 431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.)由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.5.(11分)如图示电路中,电阻R1=R2=6Ω,R3=4Ω,R4=3Ω。
高中物理闭合电路的欧姆定律答题技巧及练习题(含答案)(1)
高中物理闭合电路的欧姆定律答题技巧及练习题(含答案)(1)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示,电解槽A 和电炉B 并联后接到电源上,电源内阻r =1Ω,电炉电阻R =19Ω,电解槽电阻r ′=0.5Ω.当S 1闭合、S 2断开时,电炉消耗功率为684W ;S 1、S 2都闭合时,电炉消耗功率为475W(电炉电阻可看作不变).试求:(1)电源的电动势;(2)S 1、S 2闭合时,流过电解槽的电流大小;(3)S 1、S 2闭合时,电解槽中电能转化成化学能的功率. 【答案】(1)120V (2)20A (3)1700W 【解析】(1)S 1闭合,S 2断开时电炉中电流106P I A R== 电源电动势0()120E I R r V =+=; (2)S 1、S 2都闭合时电炉中电流为25B P I A R== 电源路端电压为95R U I R V == 流过电源的电流为25E UI A r-== 流过电槽的电流为20A B I I I A =-=; (3)电解槽消耗的电功率1900A A P I U W ==电解槽内热损耗功率2'200A P I r W ==热电解槽转化成化学能的功率为1700A P P P W 化热=-=.点睛:电解槽电路在正常工作时是非纯电阻电路,不能用欧姆定律求解其电流,只能根据电路中电流关系求电流.2.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。
汽车的电源、电流表、车灯、电动机连接的简化电路如图所示,已知汽车电源电动势为12.5V ,电源与电流表的内阻之和为0.05Ω。
车灯接通电动机未起动时,电流表示数为10A ;电动机启动的瞬间,电流表示数达到70A 。
求: (1)电动机未启动时车灯的功率。
(2)电动机启动瞬间车灯的功率并说明其功率减小的原因。
(忽略电动机启动瞬间灯泡的电阻变化)【答案】(1)120W ;(2)67.5W 【解析】 【分析】 【详解】(1) 电动机未启动时12V U E Ir =-= 120W P UI ==(2)电动机启动瞬间车灯两端电压'9 V U E I r =-'=车灯的电阻' 1.2U R I ==Ω267.5W RU P ''==电源电动势不变,电动机启动瞬间由于外电路等效总电阻减小,回路电流增大,内电路分得电压增大,外电路电压减小,所以车灯电功率减小。
高考物理高考物理部分电路欧姆定律技巧小结及练习题
高考物理高考物理部分电路欧姆定律技巧小结及练习题一、高考物理精讲专题部分电路欧姆定律1.一根镍铬合金丝的两端加6V的电压时,通过它的电流是2A,求:(1)它的电阻是多少?(2)若通电时间为20s,那么有多少库仑的电荷量通过它?(3)如果在它两端加8V的电压,则这合金丝的电阻是多少?【答案】(1)3Ω(2)40C(3)3Ω【解析】试题分析:(1)根据欧姆定律得,合金丝的电阻R=U/I=3Ω(2)通过合金丝的电荷量Q=It=2×20=40C(3)导体的电阻与其两端的电压及通过它的电流无关,所以电阻仍为R=3Ω。
考点:电流;欧姆定律【名师点睛】题考查欧姆定律以及电流的定义,要注意明确电阻是导体本身的性质,与导体两端的电压和电流无关。
2.有三盘电灯L1、L2、L3,规格分别是“110V,100W”,“110V,60W”,“110V,25W”要求接到电压是220V的电源上,使每盏灯都能正常发光.可以使用一直适当规格的电阻,请按最优方案设计一个电路,对电阻的要求如何?【答案】电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【解析】将两个电阻较大的电灯“110V 60W”、“110V 25W”与电阻器并联,再与“110V100W”串连接在220V的电源上,电路连接如图所示,当左右两边的总电阻相等时才能各分压110V,使电灯都正常发光.由公式P=UI得L1、L2、L3的额定电流分别为:I1==A=A,I2==A=A,I3=A=A则通过电阻R的电流为 I=I1﹣I2﹣I3=A=AR==Ω=806.7Ω答:电路如图所示,电阻的要求是阻值为806.7Ω,额定电流为A.【点评】本题考查设计电路的能力,关键要理解串联、并联电路的特点,知道用电器在额定电压下才能正常工作,设计好电路后要进行检验,看是否达到题目的要求.3.如图所示,灵敏电流计的内阻Rg 为500Ω,满偏电流为Ig 为1mA 。
当使用a 、b 两个端点时,是量程为I 1的电流表,当使用a 、c 两个端点时,是量程为I 2的电流表;当使用a 、d 两个端点时,是量程为U 的电压表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理部分电路欧姆定律(一)解题方法和技巧及练习题一、高考物理精讲专题部分电路欧姆定律1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻的理解其物理本质。
一段长为l 、电阻率为ρ、横截面积为S 的细金属直导线,单位体积内有n 个自由电子,电子电荷量为e 、质量为m 。
(1)当该导线通有恒定的电流I 时:①请根据电流的定义,推导出导线中自由电子定向移动的速率v ;②经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用可等效为施加在电子上的一个沿导线的平均阻力。
若电子受到的平均阻力大小与电子定向移动的速率成正比,比例系数为k 。
请根据以上的描述构建物理模型,推导出比例系数k 的表达式。
(2)将上述导线弯成一个闭合圆线圈,若该不带电的圆线圈绕通过圆心且垂直于线圈平面的轴匀速率转动,线圈中不会有电流通过,若线圈转动的线速度大小发生变化,线圈中会有电流通过,这个现象首先由斯泰瓦和托尔曼在1917年发现,被称为斯泰瓦—托尔曼效应。
这一现象可解释为:当线圈转动的线速度大小均匀变化时,由于惯性,自由电子与线圈中的金属离子间产生定向的相对运动。
取线圈为参照物,金属离子相对静止,由于惯性影响,可认为线圈中的自由电子受到一个大小不变、方向始终沿线圈切线方向的力,该力的作用相当于非静电力的作用。
已知某次此线圈匀加速转动过程中,该切线方向的力的大小恒为F 。
根据上述模型回答下列问题:① 求一个电子沿线圈运动一圈,该切线方向的力F 做功的大小; ② 推导该圆线圈中的电流 'I 的表达式。
【答案】(1)①Iv neS=;② ne 2ρ;(2)① Fl ;② 'FS I e ρ=。
【解析】 【分析】 【详解】(1)①一小段时间t ∆内,流过导线横截面的电子个数为:N n Sv t ∆=⋅∆对应的电荷量为:Q Ne n Sv t e ∆=∆=⋅∆⋅根据电流的定义有:QI neSv t∆==∆ 解得:I v neS=②从能量角度考虑,假设金属中的自由电子定向移动的速率不变,则电场力对电子做的正功与阻力对电子做的负功大小相等,即:0Ue kvl -=又因为:neSv lU IR nev l Sρρ⋅=== 联立以上两式得:2k ne ρ=(2)①电子运动一圈,非静电力做功为:2W F r Fl π=⋅=非②对于圆线圈这个闭合回路,电动势为:W FlE e e==非 根据闭合电路欧姆定律,圆线圈这个闭合回路的电流为:EI R'=联立以上两式,并根据电阻定律:l R Sρ= 解得:FS I e ρ'=2.在如图甲所示电路中,已知电源的电动势E =6 V 、 内阻r =1 Ω,A 、B 两个定值电阻的阻值分别为R A =2 Ω和R B =1 Ω,小灯泡的U -I 图线如图乙所示,求小灯泡的实际电功率和电源的总功率分别为多少?【答案】0.75 W(0.70 W ~0.80 W 均算正确);10.5 W(10.1 W ~10.9 W 均算正确) 【解析】 【详解】设小灯泡两端电压为U ,电流为I ,由闭合电路欧姆定律有 E =U +(I+) (R A +r )代入数据有U =1.5-0.75I作电压与电流的关系图线,如图所示:交点所对应的电压U =0.75 V(0.73 V ~0.77 V 均算正确) 电流I =1 A(0.96 A ~1.04 A 均算正确)则灯泡的实际功率P =UI =0.75 W(0.70 W ~0.80 W 均算正确) 电源的总功率P 总=E (I+)=10.5 W(10.1 W ~10.9 W 均算正确)3.如图甲所示,发光竹蜻蜓是一种常见的儿童玩具,它在飞起时能够发光.某同学对竹蜻蜓的电路作如下简化:如图乙所示,半径为L 的金属圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω匀速转动,圆环上接有电阻均为r 的三根导电辐条OP 、OQ 、OR ,辐条互成120°角.在圆环内,圆心角为120°的扇形区域内存在垂直圆环平面向下磁感应强度为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(可看成二极管,发光时电阻为r ).圆环及其它电阻不计,从辐条OP 进入磁场开始计时.(1)顺磁感线方向看,圆盘绕O 1O 2轴沿什么方向旋转,才能使LED 灯发光?在不改变玩具结构的情况下,如何使LED 灯发光时更亮?(2)在辐条OP 转过60°的过程中,求通过LED 灯的电流; (3)求圆环每旋转一周,LED 灯消耗的电能.【答案】(1)逆时针;增大角速度(2)28BL r ω(3)2432B L rωπ【解析】试题分析:(1)圆环转动过程,始终有一条导电辐条在切割磁感线,产生感应电动势,并通过M.N 和二极管构成闭合回路.由于二极管的单向导电性,只有转轴为正极,即产生指向圆心的感应电流时二极管才发光,根据右手定则判断,圆盘逆时针旋转. 要使得LED 灯发光时更亮,就要使感应电动势变大,即增大转速增大角速度ω. (2)导电辐条切割磁感线产生感应电动势212E BL ω=此时O 点相当于电源正极,P 点为电源负极,电源内阻为r电源外部为二个导体辐条和二极管并联,即外阻为3r . 通过闭合回路的电流343E E I r r r ==+带入即得22133248BL BL I r rωω⨯==流过二极管电流为238I BL rω=(3)转动过程始终有一个导电辐条在切割磁感线,所以经过二极管的电流不变 转过一周所用时间2T πω=所以二极管消耗的电能2422'()332I B L Q I rT rT rωπ===考点:电磁感应 串并联电路4.如图25甲为科技小组的同学们设计的一种静电除尘装置示意图,其主要结构有一长为L 、宽为b 、高为d 的矩形通道,其前、后板使用绝缘材料,上、下板使用金属材料.图25乙是该主要结构的截面图,上、下两板与输出电压可调的高压直流电源(内电阻可忽略不计)相连.质量为m 、电荷量大小为q 的分布均匀的带负电的尘埃无初速度地进入A 、B 两极板间的加速电场.已知A 、B 两极板间加速电压为U0,尘埃加速后全都获得相同的水平速度,此时单位体积内的尘埃数为n .尘埃被加速后进入矩形通道,当尘埃碰到下极板后其所带电荷被中和,同时尘埃被收集.通过调整高压直流电源的输出电压U 可以改变收集效率η(被收集尘埃的数量与进入矩形通道尘埃的数量的比值).尘埃所受的重力、空气阻力及尘埃之间的相互作用均可忽略不计.在该装置处于稳定工作状态时:(1)求在较短的一段时间Δt 内,A 、B 两极板间加速电场对尘埃所做的功; (2)若所有进入通道的尘埃都被收集,求通过高压直流电源的电流; (3)请推导出收集效率η随电压直流电源输出电压U 变化的函数关系式. 【答案】(1)nbd ΔtqU 02qU m (2)02qU m(3)若y <d ,即204L U dU <d ,则收集效率η=y d =2204L U d U (U < 2024d U L) ;若y ≥d 则所有的尘埃都到达下极板,收集效率η=100% (U ≥2024d U L) 【解析】试题分析:(1)设电荷经过极板B 的速度大小为0v ,对于一个尘埃通过加速电场过程中,加速电场做功为00W qU =在t ∆时间内从加速电场出来的尘埃总体积是0V bdv t =∆ 其中的尘埃的总个数()0N nV n bdv t ==∆总故A 、B 两极板间的加速电场对尘埃所做的功()000W N qU n bdv t qU ==∆总 对于一个尘埃通过加速电场过程,根据动能定理可得20012qU mv =故解得W nbd tqU =∆(2)若所有进入矩形通道的尘埃都被收集,则t ∆时间内碰到下极板的尘埃的总电荷量()0Q N q nq bdv t ∆==∆总通过高压直流电源的电流0QI nQbdv t ∆===∆ (3)对某一尘埃,其在高压直流电源形成的电场中运动时,在垂直电场方向做速度为0v 的匀速直线运动,在沿电场力方向做初速度为0的匀加速直线运动 根据运动学公式有:垂直电场方向位移0x v t =,沿电场方向位移212y at = 根据牛顿第二定律有F qE qU a m m md=== 距下板y 处的尘埃恰好到达下板的右端边缘,则x=L解得204L Uy dU =若y d <,即204L U d dU <,则收集效率2202204()4d U y L UU d d U L η==< 若y d ≥,则所有的尘埃都到达下极板,效率为100%2024()d U U L≥ 考点:考查了带电粒子在电场中的运动【名师点睛】带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同.先分析受力情况再分析运动状态和运动过程(平衡、加速、减速,直 线或曲线),然后选用恰当的规律解题.解决这类问题的基本方法有两种,第一种利用力和运动的观点,选用牛顿第二定律和运动学公式求解;第二种利用能量转化 的观点,选用动能定理和功能关系求解5.如图所示为实验室常用的两个量程的电压表原理图.当使用O 、A 两接线柱时,量程为3V ;当使用O 、B 两接线柱时,量程为15V .已知电流计的内电阻R g =500Ω,满偏电流I g =100 μA .求分压电阻R 1和R 2的阻值.【答案】452.9510,1.210⨯Ω⨯Ω 【解析】 【分析】 【详解】本题的关键是明确电压表是电流表与分压电阻串联而改装成的,当电压表达到量程时通过电流表的电流应为满偏电流,然后根据串并联规律求出分压电阻的大小即可. 解:串联分压电路的特点就是电流相同,在改装的电压表中,各量程达到满偏电压时,经过“表头”的电流均为满偏电流. 根据串并联规律,接O 、A 时:I g =,解得==2.95,接O 、B 时:I g =,解得===1.2,6.如图所示,A 为电解槽,M 为电动机,N 为电炉子,恒定电压U =12V ,电解槽内阻R A =2Ω,当S 1闭合,S 2、S 3断开时,电流表示数为6A ;当S 2闭合,S 1、S 3断开时,电流表示数为5A ,且电动机输出功率为35W ;当S 3闭合,S 1、S 2断开时,电流表示数为4A .求:(1)电炉子的电阻及发热功率; (2)电动机的内阻;(3)在电解槽工作时,电能转化为化学能的功率为多少. 【答案】(1)2 Ω 72 W (2)1 Ω (3)16 W 【解析】试题分析:(1)电炉子为纯电阻元件,由欧姆定律U I R= 得12UR I ==Ω 其发热功率为:1126?W=72?W R P UI ==⨯ (2)电动机为非纯电阻元件,由能量守恒定律得222M UI I r P =+输出所以2221M UI P r I-==Ω输出(3)电解槽工作时,由能量守恒定律得:23316?W A P UI I r =-=化 考点:闭合电路欧姆定律点评:注意纯电阻电路与非纯电阻电路在的区别7.某同学通过实验测定一个阻值约为5Ω电阻R x 的阻值.(1)现有电源(3V,内阻可不计)、滑动变阻器(0~10Ω,标定电流1A)、开关和导线若干,以及下列电表:A .电流表(0-3A,内阻约0.025Ω)B .电流表(0-0.6A,内阻约0.125Ω)C .电压表(0-3V,内阻约3kΩ)D .电压表(0-15V,内阻约15kΩ)为减小测量误差,在实验中,电流表应选用_____,电压表应选用_____(填器材前的字母);实验电路应采用下图中的_____(填“甲”或“乙”).(2)接通开关,改变滑动变阻器的滑片位置,某次电表示数如图所示,对应的电流表示数I=_____A,电压表示数U=_____V.计算可得该电阻的测量值R x=_____Ω.【答案】B C甲0.50 2.60 5.2【解析】【详解】(1)[1][2]电源电动势约为3V,所以电压表选择C,根据欧姆定律:0 003A0.6A5UIR=≈≈可知电流表选择B即可;[3]计算电表内阻和待测电阻的关系:3kΩ5Ω5Ω0.125Ω>可知电压表的内阻远大于待测电阻,分流较小,电流表应采用外界法,即甲图;(2)[4]电流表分度值为0.02A,所以电流表读数为:0.50A;[5]电压表分度值为0.1V,所以电压表读数为:2.60V;[6]根据欧姆定律:2.60Ω 5.2Ω0.50xURI===。