分子模拟
分子模拟的a.u.和ev系数

分子模拟的a.u.和ev系数
分子模拟中常常会用到原子单位(a.u.)和电子伏特(eV)这
两种单位。
原子单位是一种原子物理和量子化学中常用的单位制,
它是以电子的质量、电荷和普朗克常数为基本单位,用来描述原子
和分子体系的性质。
电子伏特则是能量单位,通常用来描述原子和
分子的能级、电子激发态等。
在分子模拟中,原子单位通常用于描述原子核质量、电子质量、电子电荷等基本物理量,这样做是因为原子单位下的基本物理定律
和方程形式更为简洁。
例如,原子单位下电子的质量约为1 a.u.,
电子的电荷约为-1 a.u.,普朗克常数约为1 a.u.。
因此,使用原
子单位可以简化分子模拟中的数值计算,并且更符合量子力学的描述。
而电子伏特则通常用于描述分子模拟中的能量变化、能级结构
等问题。
在分子模拟中,我们通常会关注分子的电子能级、电子激
发态能量差等问题,这些能量通常以电子伏特为单位进行描述。
电
子伏特是一个更为直观的能量单位,1电子伏特约等于1.602×10^-19焦耳,因此在描述分子的电子结构和能级时,电子伏特是一个更
为方便的能量单位。
综上所述,在分子模拟中,原子单位和电子伏特常常同时使用,原子单位用于描述基本物理量,电子伏特用于描述能量变化。
这两
种单位各有其优势,在不同的应用场景下都能发挥重要作用。
高分子材料的分子模拟研究及其应用

高分子材料的分子模拟研究及其应用高分子材料是一类特殊的材料,由于它的特殊性质,近年来受到了越来越广泛的关注。
高分子材料的应用领域也变得越来越广,例如塑料、纤维、涂料、胶粘剂以及医用材料等。
分子模拟技术在高分子材料研究领域的应用也越来越受到重视。
高分子材料的分子模拟研究是利用计算机模拟来预测高分子材料的性质和行为,从而为实验室的研究提供理论依据。
分子模拟主要涉及分子动力学模拟和量子化学计算两种方法。
分子动力学模拟可以模拟高分子材料的结构和动力学行为,从而得到高分子的力学性质、热力学性质和功能性质等方面的信息。
由于高分子材料的分子量较大,所以在模拟时需要将高分子体系划分成较小的模块,并考虑模块间相互作用的影响。
这种方法需要在计算机上构建原子模型,并使用数值模拟的方法来检验。
分子动力学模拟的优点是可以模拟高分子材料的宏观特性,例如熔化、流变和聚合等行为,而且可以更加有效的预测高分子材料的性能。
量子化学计算则是通过分子结构、相互作用、电填充状态和振动热等分子属性来计算分子力学和电学性质。
相较于分子动力学模拟方法,量子化学计算方法更加精确。
这种方法需要考虑单个分子的量子化学特性。
由于聚合物的量子化学特性较为复杂,所以通过量子化学计算来得到这些复杂物质的性质较为困难。
由于量子化学计算方法更加精确,它被广泛地应用于原子材料、小分子化学品和有机分子合成等领域中,增强了对这些材料的理解。
高分子材料的分子模拟研究可以预测高分子材料的结构和性质,并为高分子材料的设计和开发提供重要的理论帮助。
例如在材料选择方面,分子模拟可以确定分子之间的相互作用,并预测材料的力学性质和透明性等。
在高分子材料的应用研究方面,分子模拟可以模拟高分子材料在不同环境下的性质,例如在高温、高压和磁场等条件下的行为,从而提高高分子材料的功能性。
此外,分子模拟也可以在制备新材料时发挥重要的作用,例如通过分子动力学模拟来指导聚合物的合成。
在高分子材料研究中,分子模拟技术的应用以及得到的相应结果十分有价值。
分子模拟与分子动力学简介

➢ 为增加精度,一些力场对氢键定义了专门的 势函数,有一些力场还增加了交叉项。
力场
➢ 力场 = 解析式+参数 ➢ 力场具有可移植性 ➢ 力场可以较准确地预测其用来进行参数化
的性质,其他性质的预测可能不准确 ➢ 力场是经验性的,精度和速度的折中
模型参数的获得
➢ 通过量子化学模拟回归得到 ➢ 点电荷 ➢ 范德华力 ➢ 键伸缩、键弯曲、键扭曲
并行计算的主要矛盾
➢ 并行效率
完美的并行效率
需要1小时
需要1/2小时
➢ 处理器的速度远远超过数据传输的速度,大量的时间花在 处理器之间的信息传递上了
➢ CPU的速度几乎是几何级数增长 ➢ 内存的速度是代数级数增长
➢ 加快数据传输,尽量减少花在数据传输上的时间
➢ 数据传输硬件上的进步 ➢ 算法上做文章
➢ 缺点 ➢ 维护差
/~sjplimp/lammps.html
DL-POLY
➢ 一般性分子模拟软件
➢ 优点 ➢ 界面友好 ➢ 计算效率高(有两个版本供选择,适合于不同大小的体系) ➢ 维护服务很好
➢ 缺点 ➢ 兼容性不好 ➢ 100英镑
/msi/software/DL_POLY/
Oh boy! What a perfect match
分子对接的目的
找到底物分子和受体分 子见的最佳结合位置
关注的问题
如何找到最佳的结合位 置
如何确定对接分子间的结 合强度
优化
结合自由能
分子对接的基本原理
配体与受体的结合强度取决于结合的自由能变化 △G结合 = △H结合 – T △S结合 = -RT ln Ki
大部分的分子对接法忽略了全部的熵效应,而在焓 效应也只考虑配体与受体的相互作用能,即:
分子模拟原理及应用

������ σij = -1/V Σ ( Mαviαvjα+1/2ΣFiαβrjαβ) ……………………… (1)
式中, V 为模拟系统盒子的体积, viα为原子α在i 方向的速度分量, Fi αβ为 α和β原子在i 方向的相互作用力, rjαβ 为α和β原子在j 方向的距离。可以 看出表达式( 1) 计算了模拟系统体积内原子的平均应力。式中第一项为 与原子热运动相关的动能项, 第二项为与变形相关的势能项。
Bi2Te3的分子动力学模拟
姓名:刘晓 学号:2013207248 班级:应用化学1班 专业:电化学 学院:化工学院
主要内容:
1.分子模拟技术的概述; 2.含圆孔Bi2Te3 单晶拉伸变形的分子动力学模拟; 3.不同温度Bi2Te3纳米线力学性能分子动力学模拟。
1. 分子模拟技术的概述
1.1 分子模拟的概念 分子模拟是80年代初兴起的一种计算机辅助实验技术,是
同时发现在线弹性阶段原子排列始终保持规则形状, 圆孔边 缘存在应力集中。破坏发生时, 在应力集中部位突然出现裂缝, 并 逐渐迅速向模型外部边缘扩展直至断裂。
由应力-应变曲线以及拉伸过程中的原子构型变化可以看出 含孔Bi2Te3 单晶材料单轴拉伸的破坏形式表现为脆性断裂的特征。
分子模拟教程

rx L / 2
rx rx L
o
y
rx L / 2 rx rx L
采用数学 函数:
x
r r L ANINT( )
L
-L/2
L/2
r
r/L>0, ANINT(r/L) = AINT(r/L+0.5)
r/L0, ANINT(r/L) = AINT(r/L-0.5)yຫໍສະໝຸດ rx 0 rx rx L
采用数学 函数:
r r L Dble[ FLOOR( )]
L
r
o
L x
FLOOR(r/L): 返回不超过r/L的最大整数
FLOOR (4.8) has the value 4.
FLOOR (-5.6) has the value -6.
周期性边界条件的算法:
原子水平的模拟 计算机实验 检验理论、筛选实验 科学研究中的第三种方法
分子模拟中涉及的几个基本概念:
模拟计算盒子或模拟胞腔
Simulation box (cell)
装有一定数目流体分子的研 究对象,它是我们要研究的 宏观体系的缩微模型。
立方形胞腔
周期性边界条件(Periodic boundary condition, PBC)
缺点:
分子间力仍然在截断处不连续
。
截断势能函数的形式: ③ 位移-力截断势能函数(Shifted-Force Potential):
dU (r ) U (r ) U (rc ) U sf (r ) dr 0
优点:
r rc
(r rc ) r rc r rc
化学分子动力学模拟的原理和应用

化学分子动力学模拟的原理和应用随着计算机技术的不断发展和进步,分子模拟技术在化学、物理、生物等学科中得到了广泛的应用,其中分子动力学模拟是其中比较重要的一种方法。
分子动力学模拟是一种数值模拟技术,利用分子动力学方程模拟分子之间的相互作用和运动规律,从而揭示分子的结构、性质、运动和相互作用等,能够对活性物质的设计与评价起到重要的作用。
一、分子动力学模拟的原理分子动力学模拟是一种基于牛顿力学的方法,它使用运动方程来描述在各种外部场下,分子的运动轨迹。
既反映了分子中各个原子之间的相互作用,也体现了整个系统的运动规律。
简单来说,分子动力学模拟是在已知原子间作用势和运动方程的条件下,以数值方法计算分子的运动和结构的方法。
分子动力学模拟的基本步骤分为以下几部分:1、布朗运动模拟模拟分子在溶液中的布朗运动,通过计算分子的位置和速度之间的关系,可以得出分子受到的作用力。
2、势函数计算计算分子所受到的各个势函数,如位能、马德隆势等。
3、运动方程求解根据分子所受到的力以及它们相互之间的运动规律,求解运动方程,对数值解得出各点的位置和速度。
4、相互作用计算对于每两个相互作用的粒子,根据其位置和速度计算出与一点位置的距离,再代入相互作用的势函数,最后计算出所有相互作用的和。
5、轨迹预测根据初始条件以及数学模型,预测出分子的轨迹和状态,最后得出分子的结构、动力学和热力学等性质。
二、分子动力学模拟的应用分子动力学模拟的应用十分广泛,不同领域有所不同的应用。
下面列举出几个典型的应用场景。
1、药物发现在新药研发过程中,研究分子相互作用和分子构象改变等问题十分重要。
使用分子动力学模拟,可以得到分子的能量、熵、电荷分布等信息,为药物设计和评价提供依据。
2、材料开发分子动力学模拟可以用于模拟材料的力学性能、热导性能和光学性能等。
例如,可以用此模拟在不同应力下的金属疲劳,探究其疲劳机理。
3、化学反应机理在化学反应中,可以使用分子动力学模拟来研究各个物种之间的反应,从而探讨反应的机理。
分子模拟简介

分子动力学模拟的原理简介授课人:杨俊升博士内容1 2 4分子模拟的应用分子动力学计算的原理分子动力学模拟实例3体系模型构建一、分子模拟的应用1.分子模拟概述定义:计算机辅助试验技术,以原子水平的分子模型来模拟分子的结构与行为、体系的各种物理化学性质。
2.分子模拟的作用模拟材料的结构计算材料的性质预测材料的行为验证试验结果重现试验过程从微观角度认识材料总之,是为了更深层次理解结构,认识各种行为。
介观动力学分子力学、动力学量子力学密度泛函理论Walter Kohn E ρ[]=T o ρ[]+U ρ[]+E xc ρ[][])()()]([,,,2r r r n v k i k i k i eff ϕεϕ=+∇)]([)],...([1r n E r r E N =ψrd r n N r r f r n i i i i ⎰∑Ω=⋅=3*)()()()( ϕϕHohenberg-Kohntheorem Kohn-Shamequations •Exact only for ground state •Needs approximation to E xc荣获1998年的诺贝尔化学奖这三位科学家结合经典和量子物理学,设计出多尺度复杂化学系统模型,将传统的化学实验搬到了网络世界。
第一原理研究领域包括:✓晶体材料结构优化及性质研究(半导体、陶瓷、金属、分子筛等)✓表面和表面重构的性质、表面化学✓电子结构(能带、态密度、声子谱、电荷密度、差分电荷密度及轨道波函分析等)✓晶体光学性质(包括EELS, XANS, XES)✓材料热力学参数计算✓点缺陷性质(如空位、间隙或取代掺杂)、扩展缺陷(晶体晶界、位错)✓磁性材料研究✓材料力学性质研究✓材料逸出功及电离能计算✓STM图像模拟✓红外,拉曼光谱模拟✓反应过渡态计算✓动力学方法研究扩散路径A b s o r p t i o n (c m -1)图1 (a )本征LN 晶体; (b )Mn 替代Li 位LN 晶体; (c )Mn 替代Nb 位LN 晶体;System Volume/Å3E total /eV LN1232.98-73221.751Mn@LN-11240.78-73678.119Mn@LN-21225.65-72314.594从上个世纪九十年代初期以来,计算机模拟技术得到了飞速发展,主要基于三个方面的发展: 分子力场的发展(基石)(Amber,OPLS、Compass)原子间的键长、键角、分子间的内聚能等模拟算法(途径)计算机硬件(工具)HPCx二、分子动力学计算的原理力场的概念:分子力场是原子分子尺度上的一种势能场,它描述决定着分子中原子的拓扑结构和运动行为。
化学分子模拟技术

化学分子模拟技术化学分子模拟技术是一项新兴的技术,可以用来模拟分子之间的相互作用,预测化学反应的过程,甚至可以帮助化学家设计新的分子。
这项技术可以用来研究很多领域,如药物设计、材料科学、电子学等等。
在这篇文章里,我们将讨论化学分子模拟技术的原理、应用和未来前景。
原理化学分子模拟技术的原理是使用计算机对分子的结构、动力学和能量进行计算和模拟。
这些计算可以基于经典力场、量子力学、分子动力学等方法进行,包括了分子的构型、能量表面、热力学性质、表面吸附、解离等等方面。
计算机模拟的准确度和有效性取决于所使用的力场和算法。
经典力场是其中一种最广泛使用的技术,它基于变形极化的静电相互作用和范德华力相互作用,使用较少的时间计算准确的分子构型。
但是,这种方法的精度有限,适用于简单的分子。
其他利用量子力学方法的技术,如密度泛函理论,通过对分子波函数的数值计算,可以预测极其精确的分子构型和热力学性质,但计算成本非常高。
应用化学分子模拟技术在从材料设计到生物医学等多个领域的应用十分广泛。
以下是几个重要的应用:1. 药物设计:化学分子模拟技术可以预测化合物的活性,对于药物设计非常重要。
任务是从已知的分子库中,通过计算机搜索的方式找到一个化合物,它能与目标分子特异性的结合。
其中已经成功使用这种技术,比如抗体药物的发现就应用了化学分子模拟技术。
2. 材料科学:利用化学分子模拟技术,可以对材料的结构和物性进行预测和优化,如弛豫稳定性、能带结构、晶体生长、界面结构和稳定性等。
3. 生物医学:化学分子模拟还可以用于理解蛋白质结构和功能,甚至预测蛋白质的阴离子影响和折叠机制,为药物设计和疾病治疗提供理论基础。
4. 能源科学:化学分子模拟技术可以被用来预测和设计新的太阳能电池、电解水技术、电能储存材料等等,所有的这些都有望帮助我们分析和解决未来能源危机。
未来前景尽管目前已经有很多的成功案例,在未来化学分子模拟技术的应用还有很大的发展空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB
)2
+
k3AB
(ΔR
AB
)3
+
k
AB 4
(ΔR
AB
)4
+
...
{ 更多的参数 { 在若干情形下,极限性质是不对的 (如
3rd , 5th 展开情况…) { 优化时考虑要注意(长距离能量的截断 )
键伸缩能
z Morse势
Estr (ΔR AB ) = D[1 − eαΔR ]2
α = k / 2D
微观性质
uij
势能
r
En
=
n2h2 8ml 2
动能
EJ = hcBJ (J +1)
Eν
=
(v +
1 )hcv~ 2
分子特性
统计热力学
宏观性质
T,P U,H,A,G,S
μ,Cp,…
热力学性质
分子模拟
量子化学 实验数据
力场
分子力学 分子动力学 模特卡罗模拟
Force Field
力场
Typical I.R data
θ0
109.47 109.47 109.47 117.2 121.4 122.5
kθ (kcal mol-1 deg-1) 9.9×10-3 7.9×10-3 7.0×10-3 9.9×10-3 1.21×10-2 1.01×10-2
二面角扭转能
z A-B-C-D原子序中B-C键的角旋 转
z 与伸缩能和弯曲能间的差别
Force fields are empirical There is no “correct” form of a force field. Force fields are evaluated based solely on their performance.
Force field are parameterized for specific properties Structural properties. Energy. Spectra.
交错式乙烷分子的Z-矩阵(作业)
分子的原子、基团表述
1. 全原子模型 2. 联合原子模型 3. 粗粒模型
REMARK
蛋白质 PDB 库
ATOM 1 O5* DT5 1 -4.581 12.520 6.813 1.00 0.00
O
ATOM 2 C5* DT5 1 -5.603 11.960 5.981 1.00 0.00
环丙烷,环丁烷
分子力学----简介 这样的一个简单的力场方程如何用来计算分子的构象能?
丙烷
∑ ∑ ∑ V
(r N
)
=
ki 2 bonds
(li
− 2 angles
(θ i
−θi,0 )2
+
Vn 2 torsions
(1 +
cos( nω
−γ
))
∑ ∑ +
N i=1
j
N
(4ε
=i+1
1.208
777
Csp3 – Nsp3
1.438
367
C – N (amide)
1.345
719
角弯曲能
q
z Ebend : 弯曲A-B-C三原子键角的能量 z 谐振子近似
Ebend
(θ
ABC
−
θ
ABC 0
)
=
k
ABC
(θ
ABC
−
θ
ABC 0
)2
z 可加入更多的项加以改进
{ 调整高次项进行修正
z 对于绝大多数应用, 谐振子简化完全足够
键角弯折能
键角弯曲势能 (angle bending potential)
U (θ
)
=
kθ 2
(θ
− θ0 )2
Angle Csp3-Csp3-Csp3 Csp3-Csp3-H H-Csp3-H Csp3-Csp2-Csp3 Csp3-Csp2=Csp2 Csp3-Csp2=O
任何 3 个连续的原子 A-B-C
z 在分子内坐标系中,分子中每个原子的相对位 置是用与它成键的另一原子间键长、该键与另一化 学键间的键角,以及后者与和它有一条公共边的另 一键角所成的二面角来确定。
z 因此,原子的内坐标一般需借助于称之为“参 考原子”的3个其它原子来定义。每个原子的内坐 标占一个输入行。例如,定义原子A 内坐标的输入 行的格式为:
(R AB
−
R0AB )2
+ ...
简化: 谐振子
Estr (R AB − R0AB ) = k AB (R AB − R0AB )2 = k AB (ΔR AB )2
键伸缩能
z 谐振形式是最简化的可能形式
z 当键长伸展较大时 , 预测的结果不 可靠
z 多项式展开
Estr
(ΔR
AB
)
=
k
AB 2
(ΔR
力场简述
z 分子的总能量为动能与势能的和,分子的势能通常可表示为简 单的几何坐标的函数。
z 复杂的分子的总势能一般可分为各类型势能的和,这些类型包 括: 总势能=键伸缩势能+键角弯曲势能+二面角扭曲势能+非键结势 能+库仑静电势能+交叉项 势能项习惯用以下符号表示:
EFF =Estr+Ebend+Etor+Evdw+Eel +Ecross
ij
σ [(
ij
rij
)12
−
σ (
ij
)6
]
+
qiq j
)
rij
4πε 0rij
Bonds
C-C x 2 C-H x 8
Angles
C-C-C x 1 C-C-H x 10 H-C-H x 7
Torsions
H-C-C-H x 12 H-C-C-C x 6
Non-bonded
H-H x 21 H-C x 6
ki 2
(θ i
−θi,0 )2
+
Vn 2 torsions
(1 +
cos( nω
−γ
))
∑ ∑ +
N i=1
j
N
(4ε
=i+1
ij
σ
[(
ij
rij
)12
−
σ
(
ij
)
6
]
+
rij
qiq j )
4πε 0rij
键伸缩能
键弯曲能
二面角扭转能
范德华作用能
静电作用能
分子力学----简介
General Features
键伸缩势能
Allinger MM2 (1977)
Eb
=
1 2
Kb (r
− r0 ) 2
任何 2 个连续的原子 A-B
Bond Csp3 - Csp3
r0 (A) 1.523
Kb (kcal mol-1 A-2) 317
Csp3 - Csp2
1.497
317
Csp2 = Csp2
1.337
690
Csp2 = O
z 这样以简单表示的数学形式势能函数称为力场,力场的完备与 否决定计算的正确程度。
键伸缩能
z Estr : AB键伸缩能 z 平衡键长 Æ 能量最低 z 平衡键长的泰勒级数展开
A
B
设为 0 最小能量为0
Estr (R AB
−
R0AB )
=
E(0) +
dE dR
(R AB
−
R0AB )
+
1 2
d 2E dR 2
右旋法则
用“右旋法则”确定二面角的正负时,取包含 参考3个原子的平面为基准面、参考原子2指向参考 原子1的位矢方向为基转轴的正方向。若被定义的原 子A与参考原子1、2构成的平面位于基准面的逆时针 方位,则其二面角参量为正号,否则为负号。
根据这一规则,原子H(4)的二面角参量在构型 a中为+120º;在构型b中则为-120º。
+ 边界条件(系统的大小)
分子的微观的表述
模型分子的几何坐标
1. 直角坐标 2. 内坐标
几何坐标的获得 1. 实验方法 2. 理论计算 (量子化学)
笛卡尔直角坐标系
例如: XYZ
O -0.464 0.177 0.0 H -0.464 1.137 0.0 H 0.441 -0.143 0.0
内坐标
O H 1 1.0 H 1 1.0 2 104.0
为方便说明,以H2O2 的两种旋光异构体为例:
图中构型a 与构型b 互为镜像,它们所有对应的键长、 键角均相等。按原子定义和输入的顺序,H(1)无参考原子, O(2)和O(3)分别有1 个和2 个参考原子。从第4个原子开始, 必须在已输入的原子中取3 个来定义。故H(4)的参考原子1、 2、3 分别为O(3)、O(2)和H(1)。
{ MM3 力场 : 6th 项
分子力学----分子力场的势函数形式
z 键角弯曲能 Angle Bending——谐振子模型
EB
=
1 2
kb (θ
−θ0 )2
平衡键角
键角
键角弯折力常数
z谐振子模型在偏离平衡位置不大的情况 下(10°以内)可以取得很好的结果。
z 采用谐振子的力场包括:TRIPOS, CHEM-X, CHARMm, AMBER以及CVFF 等
力场和分子力学方法
模型与模拟
模型:在概念上、数学上是模拟系统的代表,其行 为应与系统行为相似,由于常常忽略许多不重要的 相互作用项,因此,它涉及了较少的系统的态。