高一物理曲线运动知识点总结材料

合集下载

高一物理必修一重点知识点总结6篇

高一物理必修一重点知识点总结6篇

最全高一物理必修一重点知识点总结6篇一、曲线运动(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。

曲线运动是变速运动,这是由于曲线运动的速度方向是不断变化的。

做曲线运动的质点,其所受的合外力肯定不为零,肯定具有加速度。

(3)曲线运动物体所受合外力方向和速度方向不在始终线上,且肯定指向曲线的凹侧。

二、运动的合成与分解1、深刻理解运动的合成与分解(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成与分解根本关系:1分运动的独立性;2运动的等效性(合运动和分运动是等效替代关系,不能并存);3运动的等时性;4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。

)(2)互成角度的两个分运动的合运动的推断合运动的状况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同始终线上,在同始终线上作直线运动,不在同始终线上将作曲线运动。

①两个直线运动的合运动仍旧是匀速直线运动。

②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。

③两个初速度为零的匀加速直线运动的合运动仍旧是匀加速直线运动。

④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。

当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同始终线上时,合运动是匀加速直线运动,否则是曲线运动。

2、怎样确定合运动和分运动①合运动肯定是物体的实际运动②假如选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。

③进展运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要根据实际效果进展分解。

3、绳端速度的分解此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个重量,另一个重量垂直于绳。

高一曲线运动相关知识点

高一曲线运动相关知识点

高一曲线运动相关知识点每个人在日常生活中都会接触到曲线运动,例如摆动的钟摆、飞行的小鸟、植物的弯曲枝干等等。

这些都是曲线运动的实例。

曲线运动是物体沿着一条曲线路径运动的情况。

在高一物理学习中,曲线运动是一个重要且常见的知识点,本文将深入探讨曲线运动的概念、常见的曲线路径、以及与曲线运动相关的物理量等内容。

一、曲线运动的概念曲线运动是指物体沿着一条曲线路径运动的情况。

在曲线运动中,物体不仅仅延直线运动,还可能沿着弧线、螺线等曲线路径运动。

曲线运动的最基本特征是物体在运动过程中所受到的力会导致物体的方向和速度发生变化。

曲线运动的轨迹是一条连续的弧线,可以是抛物线、圆周、螺旋等等。

曲线运动的轨迹形状与物体所受的力有关,不同的力导致不同的轨迹形状。

二、常见的曲线路径1. 抛物线运动抛物线运动是最常见的一种曲线运动。

当物体在重力作用下进行抛射运动时,它的运动轨迹就是一个抛物线。

常见的抛物线运动包括抛投体的自由抛体运动、射击体的飞行轨迹等等。

2. 圆周运动圆周运动是物体沿着一个圆形轨迹进行运动的情况。

当物体受到一个向心力时,它将会沿着圆形轨迹运动。

例如,地球围绕太阳的运动、行星绕恒星的运动等都是圆周运动。

3. 螺旋运动螺旋运动是物体在同时受到一个向心力和一个沿着轴线的力的作用下,沿着一条螺旋轨迹运动的情况。

螺旋运动常见于一些旋转机械和飞行器的运动中。

例如,螺旋桨的旋转运动和飞机垂直升降的曲线轨迹等都是螺旋运动。

三、与曲线运动相关的物理量1. 速度和加速度在曲线运动中,物体的速度和加速度是关键的物理量。

速度描述物体运动的快慢和方向,是一个矢量量。

当物体在曲线路径上运动时,速度的方向将会不断改变。

加速度描述物体运动的变化率,是速度的变化率。

在曲线运动中,物体的加速度不仅与速度的大小有关,还与物体在曲线路径上所受的合力大小和方向有关。

2. 向心力和切向力向心力是物体在曲线运动过程中沿着曲线路径向心的力。

向心力的方向指向曲线中心,大小与物体的质量、速度和曲线半径有关。

曲线运动知识点总结

曲线运动知识点总结

曲线运动知识点总结曲线运动是物体在运动过程中所呈现的轨迹为曲线的运动形式。

在物理学中,曲线运动是一个重要的研究领域,涵盖了许多基本概念和原理。

下面,我们将对曲线运动的相关知识进行总结,并详细讨论其相关特点和应用。

一、曲线运动的基本概念1. 曲线运动的定义:物体在运动过程中所呈现的轨迹如果为曲线形状,则称为曲线运动。

2. 曲线运动的要素:曲线运动主要包括两个要素,即位移和时间。

位移是指物体从一个位置到另一个位置的变化量,而时间则是指位移发生的持续时间。

3. 曲线运动的描述方法:曲线运动可以通过图像、数学模型和实验数据等多种方式进行描述。

其中,图像是最直观的描述方法,数学模型可以用公式表示,实验数据则通过实际测量得到。

二、曲线运动的常见特点1. 轨迹形状:曲线运动的最显著特点是轨迹为曲线形状。

曲线的形状可以是直线、抛物线、圆周等多种形式,取决于物体运动的特性。

2. 速度变化:与直线运动不同,曲线运动的速度不是恒定的。

由于物体在曲线运动过程中改变了方向,速度会随着时间的推移而发生变化。

3. 加速度存在:曲线运动中常常存在加速度。

加速度是速度的变化率,它描述了物体在单位时间内速度的变化量。

在曲线运动中,加速度不仅考虑了速度的大小,还涉及了速度的方向变化。

4. 矢量描述:由于曲线运动中涉及到方向的改变,所以常常需要用矢量来描述物体的位移、速度和加速度。

矢量具有大小和方向两个特性,能够很好地描述曲线运动的复杂性。

三、曲线运动的常见模型1. 抛物线运动:抛物线运动是一种特殊的曲线运动,其轨迹呈抛物线形状。

抛物线运动常见于自由落体、抛体运动等情况,其数学模型可以通过解析几何和牛顿力学中的运动方程来描述。

2. 圆周运动:圆周运动是物体绕固定轴进行的曲线运动,轨迹为圆形。

圆周运动常见于行星绕太阳运动、卫星绕地球运动等情况,其数学模型可以通过旋转运动和牛顿运动定律来描述。

3. 螺旋线运动:螺旋线运动是物体同时绕轴线转动和沿轴线前进的运动形式,轨迹呈螺旋形状。

高一必修2物理曲线运动的学习要点讲解

高一必修2物理曲线运动的学习要点讲解

高一必修2物理曲线运动的学习要点讲授1. 曲线运动轨迹是曲线的运动叫曲线运动,对曲线运动的了解,先应知道三个基本点:(1) 曲线运动的速度方向时刻在改变,它是一个变速运动。

(2) 做曲线运动的质点在轨迹上某一点(或某一时刻)的瞬时速度的方向,就在曲线这一点切线方向上。

对此除可通过实验视察外,还可用到在瞬时速度中讲到的“无穷分割逐渐靠近”的思想方法。

以下左图所示,运动质点做曲线运动在时间t内从A到B,这段时间内平均速度的方向就是割线AB的方向,如果t获得越小,平均速度的方向便顺次变为割线AC、AD。

的方向逐渐靠近A处切线方向,当t=0时,这极短时间内的平均速度即为A点的瞬时速度vA,它的方向在过A点的切线方向上。

(3) 做曲线运动有一定条件,这就是运动物体所受合外力 F与它的速度v夹成一定的角度,如上右图所示,只有这样,才可能显现垂直于速度v的合外力的一个分力,这个分力不能改变v的大小,但它改变v的方向,从而使物体做曲线运动。

2. 运动的合成和分解(1) 运动的合成第一是一个实际问题,例如轮船渡河的运动就是由两个运动组合成的,另外,运动的合成和分解是一种研究复杂运动的基本方法――将复杂运动分解为两个方向上的直线运动,而这两个直线运动的规律又是我们所熟悉的,从而我们通过运动合成求得复杂运动的情形。

(2) 运动合成的目的是掌控运动,即了解运动各有关物理量的细节,所以运动的合成在实际问题中体现为位移、速度、加速度等基本物理量的合成。

由于这三个基本量都是矢量,它们的运算服从矢量运算法则,故在一样情形下,运动的合成和分解都服从平行四边形定则,当分运动都在同一直线上时,在选定一个正方向后,矢量运算可简化为代数运算。

(3)运动的合成要注意同一性和同时性。

只有同一个物体的两个分运动才能合成。

此时,以两个分运动要研究的同一种矢量(如都是速度)作邻边画出的平行四边形,夹在其中的对角线表示真实意义上的合运动(即合速度),不同物体的运动由平行四边形定则得到的“合运动”没有物理意义。

高一物理曲线运动1

高一物理曲线运动1

五、向心力
1、向心力 (1)方向 (2)作用
向心加速度
总是指向圆心 只改变速度的方向
(3)由物体所受到的合力提供 (4)大小
v2 F ma m m 2 r r

2、向心加速度 (1)由向心力产生的加速度,方向总 是指向圆心 (2)是描述速度方向变化快慢的物理量 (3)大小
F m 2 r
离心 (3)路线 向心
八、竖直面内的变速圆周运动
1、轻绳连接小球 (1)最低点 (2)最高点
v T mg m
1
1
2ห้องสมุดไป่ตู้
R v22 mg T2 m R
T2 G o· T1
当T2=0时,最高点 的 速度最小,最小值为:
G
v min
Rg
2、轻杆连接小球 (1)最低点 (2)最高点 ①杆受拉时 ②杆受压时
可以是曲线运动
三、平抛物体的运动
1、条件 2、特性 3、规律 2)速度 1)位移
x v0t 1 2 y gt 2
v x v0 v y gt
四、匀速圆周运动 1、概念: 1)质点在圆周上运动 2)相等的时间内通过的圆弧长度相等
2、快慢的描述
1)线速度 2)角速度
v

T
3) 周 期

v a 2r r
2
六、匀速圆周运动的实例分析
1、火车转弯 2、汽车过桥 1)凸
2)凹
v mg FN m R v2 FN mg m R
2
l

3、圆锥摆
m
七、离心现象及其应用 1、离心和向心运动 (1)定义: (2)条件
F m 2 r
F m 2 r或F 0

曲线运动知识点总结

曲线运动知识点总结

曲线运动知识点总结曲线运动是高中物理中较为重要的一部分内容,它涉及到物体运动轨迹不是直线的情况。

下面我们来详细总结一下曲线运动的相关知识点。

一、曲线运动的定义与特点曲线运动是指物体运动的轨迹为曲线的运动。

其特点主要有:1、轨迹是曲线:这是曲线运动最直观的表现。

2、速度方向不断变化:因为曲线的走向在不断改变,所以速度方向也必然随之变化。

3、一定存在加速度:速度方向的改变意味着速度发生了变化,而速度变化就一定有加速度。

二、曲线运动的条件当物体所受合外力的方向与它的速度方向不在同一条直线上时,物体将做曲线运动。

合外力的作用是改变速度的方向,使其偏离原来的直线轨迹。

三、运动的合成与分解1、合运动与分运动的关系等时性:合运动与分运动经历的时间相等。

独立性:一个物体同时参与几个分运动,各分运动独立进行,互不影响。

等效性:合运动是各分运动的叠加,具有相同的效果。

2、运动的合成与分解遵循平行四边形定则:已知分运动求合运动叫运动的合成;已知合运动求分运动叫运动的分解。

四、平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下所做的运动。

2、特点水平方向:做匀速直线运动,速度大小不变,方向不变。

竖直方向:做自由落体运动,加速度为重力加速度 g。

3、平抛运动的规律水平方向:x = v₀t竖直方向:y = 1/2gt²合速度:v =√(v₀²+(gt)²)合位移:s =√(x²+ y²)4、平抛运动的飞行时间 t =√(2h/g),只与下落高度 h 有关,与初速度 v₀无关。

五、匀速圆周运动1、定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。

2、特点线速度大小不变,方向时刻改变。

角速度不变。

周期和频率不变。

3、描述匀速圆周运动的物理量线速度 v:v = s/t =2πr/T角速度ω:ω =θ/t =2π/T周期 T:物体运动一周所用的时间。

高一物理曲线运动知识点总结

高一物理(期中复习)核心知识点、公式总结高中部:时海飞第五章曲线运动知识点一曲线运动1.曲线运动:物体的运动轨迹为曲线的运动叫曲线运动.2.曲线运动的条件是:质点受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上.3.曲线运动的特点:(1)速度方向一定改变,所以是变速运动,必有加速度.(2)质点在某一点(或某一时刻)的速度方向是在曲线的这一点的切线方向.(3)质点做曲线运动,曲线的弯曲方向定是合外力的方向.(即:在哪边受力向哪边弯曲)知识点二运动的合成和分解1.运动的合成与分解:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动.合运动与分运动的关系:(1)等效性.(2)等时性.(3)独立性.2.运动的合成与分解的运算法则:位移、速度、加速度的合成与分解.遵循平行四边形定则进行合成或分解.3.合运动与分运动的性质和轨迹的关系两直线运动的合运动的性质和轨迹有各分运动的性质及合初速度的方向和大小关系决定.(1)两个匀速直线运动的和运动一定是匀速直线运动.(2)一个匀速直线运动和一个匀变速直线运动的合运动仍然是匀变速运动.(3)当二者共线时为匀变速直线运动,不共线时为匀变速曲线运动.两个匀变速直线运动的合运动一定是变速运动.若合初速度方向与合加速度方向不在一条直线上时,则是曲线运动.4.两类典型问题(1)小船过河问题:①最短时间过河:过河时间仅由的垂直于岸的分量v⊥决定,即dtv⊥=,与v水无关,所以当v船垂直于河岸时,过河所用时间最短,最短时间为dtv=船.②最短位移过河:过河路程由实际运动轨迹的方向决定,当v船>v水时,最短路程为d;当v船<v水时,最短路程为vd v水船(2)关联速度问题物体的实际运动速度为合速度,一般将该速度沿绳和垂直于绳两个方向正交分解.如图所示,通过不可伸长的绳连在一起.则沿绳方向的分速度大小相等.知识点三平抛运动1.定义:水平抛出的物体只在重力作用下的运动.2.性质:加速度为重力加速度g的匀变速曲线运动,轨迹是抛物线.平抛运动的速率随时间变化不是均匀的,但速度随时间的变化是均匀的,要注意区分.3.规律(1(3①从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向角正切值的两倍.②抛物线上某点的速度反向延长线与初速度延长线的交点到抛点的距离等于该段平抛水平位移的一半.③在任意两个相等的t ∆内,速度矢量的变化量v ∆是相等的,即v ∆的大小与t ∆成正比,方向竖直向下.④平抛运动的时间为t =取决于下落的高度,而与初速度大小无关.水平位移0x v t v ==,取决于下落的高度和初速度.知识点四 斜抛运动1. 斜抛运动的特点:初速度斜向上或者斜向下,仅受重力作用2. 斜抛运动分解为:水平方向——匀速直线运动 竖直方向——竖直上抛运动当y v =0时,小球达到最高点,所用时间t =高点所需时间相等,因此小球飞行时间为T 从抛出点到落地点的水平距离(s)叫做射程知识点五 描述圆周运动的物理量1. 线速度:质点沿圆周运动的快慢,大小lv t ∆=∆2. 角速度:质点绕圆心转动的快慢,tθω∆=∆(rad/s )3. v 、ω、T 、f 具有如下的换算关系:1T f =,22f T πωπ==,22v r r fr Tπωπ===4. 向心加速度:线速度方向改变的快慢.(1)22222244n v a r f r r r Tπωπ====(2)方向在不停地改变,但总是指向圆心,因此n a 是个变量.(3)n a 与r 是成正比还是反比,取决于固定不变的量,如:若ω固定不变,则n a 与r 成正比;若v 固定不变,则n a 与r 成反比.5. 向心力(1)按效果命名,不是性质力,可能是单个力,也可能是几个力的合力共同提供.(2)大小:22224n n v F ma m m r m v m r r Tπωω=====.(3)当沿半径方向的力2vF m r<时,物体做离心运动.知识点六 匀速圆周运动1. 特点:线速度大小恒定,角速度、周期、频率恒定,向心加速度和向心力大小恒定.2. 质点做匀速圆周的条件:合外力大小不变,方向始终与速度方向垂直,且指向圆心.3. 匀速圆周运动的向心力(1) 做匀速圆周运动的物体的向心力就是物体所受的合外力.(2)22224n n v F ma m m r m v m r r Tπωω=====4. 两种传动方式①共轴转动:特点:ωa=ωb Ta=Tb Va:Vb=Ra:Rb ②皮带、齿轮传动:Va=Vb Ta:Tb=Ra:Rb ωa:ωb=Rb:Ra知识点七 生活中的圆周运动 1. 火车拐弯x对内外轨均恰无作用力:2v R θmgtan =m2. 凸、凹形桥3. 竖直圆内圆周运动第六章 万有引力与航天知识点一 天体的运动1.人类对天体运动的认识过程托勒密:地心说。

曲线运动相关的知识点总结

曲线运动相关的知识点总结一、曲线运动的概念和特点曲线运动是指物体在空间中不沿直线运动,而是沿着一定的轨迹运动的运动。

曲线运动的特点有以下几个方面:1. 随着时间的推移,物体在空间中的位置不断变化,形成一定的轨迹;2. 曲线运动的速度和加速度可能随着时间和位置的变化而变化;3. 曲线运动通常受到外界力的作用,这些外界力会影响物体的速度和加速度;4. 曲线运动的轨迹可以是圆形、椭圆形、抛物线形等不同形状。

二、曲线运动的基本参数1. 位移(s):物体在曲线运动过程中,由于位置的变化而产生的矢量,表示物体在空间中的移动距离和方向。

位移通常用矢量来表示,其大小等于物体起始位置和终点位置之间的直线距离,方向与曲线轨迹的切线方向一致。

2. 速度(v):物体在曲线运动中的平均速度和瞬时速度分别表示物体在一段时间内的位移与时间的比值和物体在某一瞬时的位置变化率。

曲线运动中的速度通常也是矢量,其大小等于位移与时间的比值,方向与曲线轨迹的切线方向一致。

3. 加速度(a):物体在曲线运动中的平均加速度和瞬时加速度分别表示物体在一段时间内速度的变化率和物体在某一瞬时的速度变化率。

曲线运动中的加速度也是矢量,其大小等于速度与时间的比值,方向与速度变化的方向一致。

三、曲线运动的数学描述1. 位移-时间图:曲线运动的位移-时间图用来描述物体在不同时间段内的位移变化情况,通过位移-时间图可以了解物体的运动方向、速度和运动过程中的各个阶段。

2. 速度-时间图:曲线运动的速度-时间图用来描述物体在不同时间段内的速度变化情况,通过速度-时间图可以了解物体的加速度、减速度和速度达到最大值和最小值的时间点。

3. 加速度-时间图:曲线运动的加速度-时间图用来描述物体在不同时间段内的加速度变化情况,通过加速度-时间图可以了解物体的变速情况和加速度的大小和方向变化情况。

四、曲线运动的相关定理和公式1. 物体的位移与速度关系:曲线运动中,物体的位移与速度之间存在着一定的关系,如在匀变速直线运动中,位移与速度之间的关系可以表示为s=v0t+1/2at^2或v^2=v0^2+2as 等。

曲线运动知识归纳

曲线运动要点归纳要点一曲线运动的特点1.轨迹是一条曲线.2.曲线运动的速度方向(1)质点在某一点(或某一时刻)的速度方向沿曲线在该点的切线方向.(2)曲线运动的速度方向时刻改变.速度是描述运动的一个重要的物理量,它既有大小,又有方向.如果物体在运动过程中只有速度大小的改变,而速度方向不变,那么物体只能做直线运动.因此,假设物体做曲线运动,说明物体的速度方向时刻变化.3.运动性质是变速运动(1)无论物体做怎样的曲线运动,由于轨迹上各点的切线方向不同,物体的速度时刻发生变化,因此,曲线运动一定是变速运动.(2)曲线运动是否为匀变速运动决定于物体是否受到恒力作用,如抛体运动中,由于物体只受重力作用,其加速度不变,故物体做匀变速运动,这与物体的运动轨迹无关.要点二物体做曲线运动的条件1.曲线运动是变速运动,凡物体做变速运动必有加速度,而加速度是由于力的作用产生的,因而做曲线运动的物体在任何时刻所受合外力皆不为零,不受力的物体不可能做曲线运动.2.当物体受到的合外力的方向与运动方向在一条直线上时,运动方向(速度方向)只能沿该直线(或正或反),其运动依然是直线运动.3.当物体受到合外力的方向跟物体的速度方向不在一条直线上,而是成一定角度时,合外力产生的加速度方向跟速度方向也成一定角度.一般情况下,这时的加速度不仅反映了速度大小的变化快慢,还包含了速度方向的变化快慢.其运动必然是曲线运动.4.当合外力为恒力(F与v不共线)时,加速度也恒定,物体的速度均匀变化,物体做匀变速曲线运动;当合外力变化时,物体做非匀变速曲线运动(变加速度的曲线运动).应该注意的是,曲线运动不一定要求合外力变化.因此,一个物体是否做曲线运动,与力的大小及力是否变化无关,关键是看合外力的方向与速度方向是否在同一直线上.在比拟中可知:(1)在变速直线运动(加速直线运动或减速直线运动)中,加速度方向(即合外力方向)与速度方向在同一直线上,加速度只改变速度的大小,不改变速度的方向.(2)在曲线运动中,加速度方向(合外力方向)与速度方向不在同一条直线上,加速度可以改变速度的大小,也可以改变速度的方向.1.运动轨迹和外力、速度的关系(1)把加速度和合力F都分解到沿曲线切线和法线(与曲线切线垂直)方向上,沿切线方向的分力F1使质点产生切线方向的加速度a1,当a1和v同向时,速度增大,如图5-1-3甲所示,此时的合力方向一定与速度方向成锐角;当a1和v反向时,速度减小,如图乙所示,此时的合力方向一定与速度方向成钝角;如果物体做曲线运动的速率不变,说明a1=0,即F1=0,此时的合力方向一定与速度方向垂直.沿法线方向的分力F2产生法线方向上的加速度a2,它使质点改变了速度的方向.由于曲线运动的速度方向时刻在改变,合力的这一作用效果对任何曲线运动总是存在的.可见,在曲线运动中合力的作用效果可分成两个方面:产生切线方向的加速度a1,改变速度的大小;产生法线方向的加速度a2,改变速度的方向,这正是物体做曲线运动的原因.假设a1=0,那么物体的运动为匀速率曲线运动;而假设a2=0,那么物体的运动为直线运动.(2)运动轨迹确实定①物体的轨迹与初速度和合外力有关,物体的运动轨迹一定夹在合外力与速度方向之间.②运动轨迹与速度相切,并偏向合外力一侧,因此轨迹是平滑的曲线.(3)合外力方向确实定物体所受合外力的方向指向轨迹的弯曲方向的内侧.即运动轨迹必夹在速度方向与合力方向之间.2.力与运动的关系(1)认识这个问题,应分清物体做曲线运动的条件和做匀变速运动的条件,物体做曲线运动的条件是加速度与初速度不在同一直线上,而做匀变速运动的条件是加速度的大小和方向恒定不变,二者之间没有必然联系.(2)物体运动的形式,按速度分类有匀速和变速;按径迹分类,有直线和曲线,其原因取决于物体的初速度v0和合外力F,具体分类如下:①F=0,静止或匀速运动.②F≠0,变速运动.③F为恒量,匀变速运动.④F为变量,非匀变速运动.⑤F和v0方向在同一直线上,直线运动.⑥F和v0方向不在同一直线上,曲线运动.归纳总结1.物体做曲线运动时,其速度方向是沿曲线上该点的切线方向.2.速度方向时刻改变,即速度一定时刻改变,所以曲线运动一定是变速运动.3.速度变化包括大小和方向的变化,故变速运动包括曲线运动与直线运动.平抛运动的特点及规律1.平抛运动是水平方向的匀速直线运动和竖直方向自由落体运动的合运动〔运动的合成〕2. 运动的规律 ⎪⎩⎪⎨⎧==2021)1(at y t v x⎪⎪⎩⎪⎪⎨⎧+===220)2(y x y x v v v gt v v v平抛特点总结:1.运动时间只由高度决定设想在高度H 处以水平速度v o 将物体抛出,假设不计空气阻力,那么物体在竖直方向的运动是自由落体,由公式可得:,由此式可以看出,物体的运动时间只与平抛运动开始时的高度有关。

高一物理《曲线运动》章末复习

《曲线运动》章末复习一、曲线运动1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。

当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动;当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.2.曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。

二、运动的合成与分解1. 合运动与分运动的特征:等时性、独立性2. 连带运动问题:物拉绳(杆)或绳(杆)拉物问题。

由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。

【例1】如图所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2。

解析:甲、乙沿绳的速度分别为v1和v2cosα,两者应该相等,所以有v1∶v2=cosα∶1三、平抛运动1. 定义:当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。

其轨迹为抛物线,性质为匀变速曲线运动。

2. 一个有用的推论:平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。

【例2】小球从空中以某一初速度水平抛出,落地前1s时刻,速度方向与水平方向夹角30°,落地时速度方向与水平方向夹角60°,g=10m/s2,求小球在空中运动时间及抛出的初速度。

(2/3g;1.5s)四、匀速圆周运动1. 向心力①方向:总是指向圆心,时刻在变化(F是个变力)②大小:F=ma=mv2/r=mrω2=m(2π/T)2r=m(2πf) 2r③作用:产生向心加速度度,只改变速度方向,不改变速率④向心力是按力的作用效果命名的,它并非独立于重力、弹力、摩擦力、电场力、磁场力以外的另一种力,而是这些力中的一个或几个的合力.⑤动力学表达式:将牛顿第二定律F=ma用于匀速圆周运动,即得F=mv2/r=mr ω2=mωv=m(2π/T)2r=m(2πf)2r2. 向心加速度①方向:总是指向圆心,时刻在变化②大小:a=v2/r=ω2r=(2π/T)2r=(2πf)2r③物理意义:描述线速度改变的快慢注意:a与r是成正比还是成反比?若ω相同则a与r成正比,若v相同,则a与r成反比;若是r相同,则a与ω2成正比,与v2成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理(期中复习)核心知识点、公式总结高中部:时海飛第五章 曲线运动知识点一曲线运动1. 曲线运动:物体的运动轨迹为曲线的运动叫曲线运动.2. 曲线运动的条件是:质点受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上.3. 曲线运动的特点:(1)速度方向一定改变,所以是变速运动, 必有加速度.(2)质点在某一点(或某一时刻)的速度方向是在曲线的这一点的切线方向.(3)质点做曲线运动,曲线的弯曲方向定是合外力的方向.(即:在哪边受力向哪边弯曲)知识点二 运动的合成和分解 1. 运动的合成与分解:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动. 合运动与分运动的关系:(1) 等效性. (2)等时性. (3)独立性.2. 运动的合成与分解的运算法则:位移、速度、加速度的合成与分解.遵循平行四边形定则进行合成或分解.3. 合运动与分运动的性质和轨迹的关系两直线运动的合运动的性质和轨迹有各分运动的性质及合初速度的方向和大小关系决定. (1)两个匀速直线运动的和运动一定是匀速直线运动.(2)一个匀速直线运动和一个匀变速直线运动的合运动仍然是匀变速运动. (3)当二者共线时为匀变速直线运动,不共线时为匀变速曲线运动.两个匀变速直线运动的合运动一定是变速运动. 若合初速度方向与合加速度方向不在一条直线上时,则是曲线运动. 4. 两类典型问题(1)小船过河问题:①最短时间过河:过河时间仅由的垂直于岸的分量v ⊥决定,即dt v ⊥=,与v 水无关,所以当v 船垂直于河岸时,过河所用时间最短,最短时间为dt v =船. ②最短位移过河:过河路程由实际运动轨迹的方向决定,当v 船>v 水时,最短路程为d ;当v 船<v 水时,最短路程为vd v 水船(2)关联速度问题物体的实际运动速度为合速度,一般将该速度沿绳和垂直于绳两个方向正交分解.如图所示,通过不可伸长的绳连在一起.则沿绳方向的分速度大小相等.cos A vv α=知识点三 平抛运动1.定义:水平抛出的物体只在重力作用下的运动.2.性质:加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线.平抛运动的速率随时间变化不是均匀的,但速度随时间的变化是均匀的,要注意区分.3.规律(1(3①从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向角正切值的两倍.②抛物线上某点的速度反向延长线与初速度延长线的交点到抛点的距离等于该段平抛水平位移的一半.③在任意两个相等的t ∆内,速度矢量的变化量v ∆是相等的,即v ∆的大小与t ∆成正比,方向竖直向下.④平抛运动的时间为2h t g =,取决于下落的高度,而与初速度大小无关.水平位移002h x v t v g==,取决于下落的高度和初速度.知识点四 斜抛运动1. 斜抛运动的特点:初速度斜向上或者斜向下,仅受重力作用2. 斜抛运动分解为:水平方向——匀速直线运动 竖直方向——竖直上抛运动0cos x v v θ=0sin y v v gtθ=-0cos x v tθ=⋅201sin 2y v t gt θ=⋅-当y v =0时,小球达到最高点,所用时间0sin v t gθ=;小球自最高点自由落下所需时间,与上升到最高点所需时间相等,因此小球飞行时间为02sin 2v T t gθ==.小球能达到的最大高度(h )叫做射高;从抛出点到落地点的水平距离(s)叫做射程知识点五 描述圆周运动的物理量1. 线速度:质点沿圆周运动的快慢,大小lv t∆=∆ 2. 角速度:质点绕圆心转动的快慢,tθω∆=∆(rad/s ) 3.v 、ω、T 、f 具有如下的换算关系:1T f =,22f T πωπ==,22v r r fr Tπωπ===4. 向心加速度:线速度方向改变的快慢.(1)22222244n v a r f r r r Tπωπ====(2)方向在不停地改变,但总是指向圆心,因此n a 是个变量.(3)n a 与r 是成正比还是反比,取决于固定不变的量,如:若ω固定不变,则n a 与r 成正比;若v 固定不变,则n a 与r 成反比.5. 向心力yV 0oθv xv yx(1)按效果命名,不是性质力,可能是单个力,也可能是几个力的合力共同提供. (2)大小:22224n n v F ma m m r m v m r r Tπωω=====.(3)当沿半径方向的力2vF mr<时,物体做离心运动.知识点六 匀速圆周运动1. 特点:线速度大小恒定,角速度、周期、频率恒定,向心加速度和向心力大小恒定.2. 质点做匀速圆周的条件:合外力大小不变,方向始终与速度方向垂直,且指向圆心.3. 匀速圆周运动的向心力(1) 做匀速圆周运动的物体的向心力就是物体所受的合外力. (2)22224n n v F ma m m r m v m r r Tπωω=====4. 两种传动方式①共轴转动:特点:ωa=ωb Ta=Tb Va:Vb=Ra:Rb②皮带、齿轮传动:Va=Vb Ta:Tb=Ra:Rb ωa:ωb=Rb:Ra知识点七生活中的圆周运动1.火车拐弯对内外轨均恰无作用力:2vRmgtan=m2.凸、凹形桥3.竖直圆内圆周运动第六章 万有引力与航天知识点一 天体的运动 1.人类对天体运动的认识过程托勒密:地心说。

哥白尼:日心说. 第谷:大量观测数据 开普勒:行星运动三大定律 2.开普勒三定律①开普勒第一定律:又称轨道定律,所有行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.②开普勒第二定律:又称面积定律,对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.③开普勒第三定律:又称周期定律,所有行星轨道半长轴的三次方跟公转周期的二次方的比值相等.用公式表示:32R k T=,其中比例常数k 与行星无关只与太阳有关.知识点二 万有引力定律 1. 万有引力定律定律内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们距离的二次方成反比.2. 公式:2mmF G r =公式中的G 叫做引力常量,11226.6710N m /kg G -=⨯⋅. 物理意义:对于任何物体来说,G 值都是相同的,它在数值上等于质量为1kg 的两个物体,相距1m 时的相互作用力. 3.对万有引力定律的理解 (1)适用条件:①当两个物体间的距离远远大于每个物体的尺寸时,物体可以看成质点,直接使用万有引力定律计算. ②当两物体是质量分布均匀的球体时,它们之间的引力也可直接用公式计算,但式中r 是指两球心间距离.③当研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力. (2)万有引力的性质:①普遍性:②相互性:③一般物体之间虽然存在万有引力,但是很小,天体与物体之间或天体之间的万有引力才比较显著.因此在涉及天体运动时,才考虑万有引力.知识点三 重力、重力加速度与万有引力的关系 1.地球上的重力和万有引力的关系在地球表面上的物体所受的万有引力F 引可以分解成物体所受的重力mg 和随地球自转而做圆周运动的向心力F ,如图所示,其中2MmF G R =引,而2F mr ω=,(1)当物体在赤道上时,F 引、mg 、F 三力同向,此时F 达到最大值2max F mr ω=,重力加速度达到最小值2min 2F F Mg G R m Rω-==-引;(2)当物体在两极的极点时,0F =,F mg =引,此时重力等于万有引力,重力加速度达到最大值,此最大值为max 2M g GR =; 因为地球自转角速度很小,22Mm G mR R ω,所以在一般情况下计算时认为2Mm mg GR =。

2.天体表面的重力和重力加速度在质量为M 、半径为R 的天体表面上,若忽略天体自转影响,质量为m 的物体的重力加速度g 可以认为是由万有引力产生的,则2Mm mg G R=,得:2Mg G R =(R 为天体半径,M 为天体质量)。

由此可得不同星球表面重力加速度的关系为:21212212g R M g R M =• 3.求某高度处的重力加速度设离星球表面高度为h 处的重力加速度为h g ,则2()h Mm mg GR h =+,则2()hMg G R h =+,重力加速度随高度的增加而减小。

星球表面的重力加速度和某高度处的重力加速度之间的关系为:22()h g R g R h =+知识点四 天体质量和密度的计算 1.天体质量的计算(1)已知行星的公转半径r ,公转周期T ,设行星的质量为m ,中心天体质量为M .那么由万有引力定律得:222()F m r m r T πω==向根据圆周运动规律,F F =万向,即222()Mm G m rr T π=,所以2324r M GT π=. (2)已知天体:半径R 和天体表面的重力加速度g ,根据2Mmmg G R =得2gR M G =. (3)已知行星绕中心天体做匀速圆周运动的线速度v 和轨道半径r ,根据22GMm v m r r =,得:2rv M G =. (5)已知行星绕中心天体运行的线速度v 和周期T ,根据22GMm mv r T π=⋅和22GMm mv r r =得:32v T M G π=.2.天体密度的测定(1)天体质量测出后,如果能求出天体的体积,那么天体的密度可以测定,即3332324343Mr r R VGT R GT πρπ===⨯式中r 为行星的公转轨道半径,R 为中心天体的半径,T 为行星的公转周期.若行星为中心天体的近地卫星,则r R ≈,中心天体的密度23GT πρ=.(2)天体半径与天体表面的重力加速度已知时,根据2gR M G =,求出天体质量2gR M G =,则天体密度233443M gR g V GRG R ρππ===⨯.3.“星体自转不解体”模型指星球表面上的物体随星球自转而绕自转轴(某点)做匀速圆周运动,其特点为: ①具有与星球自转相同的角速度和周期;②万有引力除提供物体做匀速圆周运动所需的向心力外,还要产生重力.知识点五 圆周运动各物理量与轨道半径的关系1.基本方法:将天体运动或卫星运动看成匀速圆周运动,向心力由万有引力提供,因此可以根据万有引力定律、牛顿第二定律及向心力公式来求解各类问题.1. 222224πMm v r F G m mr m r r Tω==== 式中M 为中心天体的质量,m 为环绕天体的质量,n a v ω、、和T 分别表示环绕天体做圆周运动的向心加速度、线速度、角速度和周期.根据问题的特点条件,灵活选用的相应的公式进行分析求解.2.当天体做稳定的匀速圆周运动时,天体a 、v 、ω、T 、、r 间的关系如下:2.22222221(')4πGM ma a a g r r vm v v r Mm F G F r m r m r T T Tωωω⎧→=→⎪⎪⎪→=⎪⎪===⎨⎪=→⎪⎪⎪→=→⎪⎩万向∝轨道所在处重力加速度 口诀:高轨低速大周期知识点六 人造卫星和宇宙速度1.如图所示三种轨道中,b 、c 轨道经过地心,可以存在,而a 轨道不存在.2.人造卫星的运动学特征(1m 为地球质量,r 为卫星轨道半径)人造卫星绕地球做圆周运动时,由万有引力提供环绕地球做圆周运动的向心力,根据牛顿第二定律:(1)由21222m m v G m r r =得v =r 越大,v 越小. (2)由21222m mG m r r ω=得ω=,∴r 越大,ω越小.(3)由122224m m G m r r Tπ=得T =r 越大,T 越大.取6400km r R ==代入有min 84min T =.这是地球卫星的最小周期,任何实际卫星的周期均大于该值. 3.三种宇宙速度(1)第一宇宙速度(环绕速度)卫星绕地球做匀速圆周运动的最大环绕速度17.9km/s v =,此值为人造卫星在地面附近做匀速圆周运动所必须具有的速度,叫第一宇宙速度.同时它也是发射卫星的最小速度,小于这个速度,不可能发射卫星. 求第一宇宙速度有两种方法: ①由22Mm v G mRR =,得v = ②由2v mg mR =,得v = 其他星球的第一宇宙速度计算方法同上,M 为该星球的质量,R 为该星球的半径,g 为该星球表面的重力加速度.依据已知条件,灵活选用计算公式. (2)第二宇宙速度(脱离速度)卫星或飞船要想脱离地球的引力束缚,成为绕太阳运动的人造行星或飞到其他行星上去所必需的最小发射速度,称为第二宇宙速度,其大小为11.2km/s .(3)第三宇宙速度(逃逸速度)地面上的物体发射出去,使之最后能脱离太阳的引力范围,飞到太阳系以外的宇宙空间所必需的最小发射速度,称为第三宇宙速度,其大小为16.7km/s .(4)地球同步卫星是指,位于赤道上方,相对于地面静止的、运行周期与地球的自转周期(24h)T =相等的卫星,这种卫星主要用于全球通信和转播电视信号.又叫做同步通信卫星.同步卫星:概括为“六个一定”.位置一定(必须位于地球赤道的上空)周期一定(24h)T = 高度一定4( 3.610km)h ≈⨯ 速率一定 3.1km/s v ≈()向心加速度一定2(0.228m/s )n a ≈ 运行方向一定(自西向东运行)知识点七 变轨问题及卫星追及问题1.稳定运行:卫星稳定运行时万有引力提供了卫星做圆周运动的向心力。

相关文档
最新文档