单项式相除练习题

合集下载

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.下列计算中,正确的是A.3ab2·(-2a)=-6a2b2B.(-2x2y)3=-6x6y3C.a3·a4=a12D.(-5xy)2÷5x2y=5y2【答案】A.【解析】A、3ab2•(-2a)=-6a2b2,正确;B、(-2x2y)3=-8x6y3,故此选项错误;C、a3•a4=a7,故此选项错误;D、(-5xy)2÷5x2y=5y,故此选项错误;故选A.【考点】1.单项式乘单项式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.整式的除法.2.若一多项式除以2x2-3,得到的商式为x+4,余式为3x+2,则此多项式为.【答案】2x3+8x2-10.【解析】根据“被除式=除式×商式+余式”进行计算即可求出结果.试题解析:A=(2x2-3)(x+4)+3x+2=2x3+8x2-3x-12+3x+2=2x3+8x2-10故此多项式为2x3+8x2-10.【考点】整式的除法.3.如图,从边长为a+1的正方形纸片中剪去一个边长为a-1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2B.2a C.4a D.a2-1【答案】C.【解析】矩形的面积是(a+1)2-(a-1)2=4a.故选C.【考点】平方差公式的几何背景.4.已知a(a-2)-(a2-2b)=-4.求代数式的值.【答案】2【解析】先把a(a-2)-(a2-2b)=-4进行整理,得出b-a=2,再把要求的式子进行通分,然后合并同类项,最后把b-a的值代入即可.试题解析:∵,∴即b-a=2,∴【考点】整式的混合运算5.若= .【答案】.【解析】:a2x﹣2y=a2x÷a2y=(a x)2÷(a y)2=8)2÷32=.故答案是.【考点】1.同底数幂的除法2.幂的乘方与积的乘方.6.因式分解(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】按照提公因式的基本方法即可.试题解析:(1);(2);(3);(4).【考点】提公因式法与公式法的综合运用.7.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.8.图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。

整式的除法单项式除以单项式

整式的除法单项式除以单项式
负指数幂
负指数幂表示的是该数的倒数的正指数幂。因此,如果被除数或除数中的某个字母的指数 为负数,可以将其转化为倒数的正指数幂形式,再进行相除。
无法整除的情况
如果被除数无法被除数整除(即存在某个字母的指数在被除数中比在除数中小),则结果 将是一个带分数或无理数。此时,可以尝试将被除数和除数同时乘以某个适当的单项式, 使得被除数可以被除数整除。
法结果相乘。
02
理解不深入
对于某些复杂的问题,我的理解还不够深入,无法准确地把握问题的本
质和解题的关键。例如,在处理含有多个字母的单项式除法时,我有时
会感到困惑。
03
缺乏练习
我发现自己在单项式除以单项式的运算方面缺乏足够的练习,导致在考
试时无法迅速准确地完成题目。为了解决这个问题,我需要加强相关练
习,提高运算速度和准确性。
单项式与多项式区分
单项式
只包含一个项的整式,如$3x^2$, $5xy$等。
多项式
包含两个或两个以上项的整式,如 $x^2 + 2x + 1$,$3xy - 2y^2 + 5$ 等。
整式除法运算规则
01 除法运算定义
02 除法运算规则
03 按位相除
04 余数处理
05 结果表示
设$a(x)$和$b(x)$是两个多 项式,且$b(x) neq 0$,如 果存在一个多项式$q(x)$, 使得$a(x) = b(x) times q(x)$,则称$q(x)$为$a(x)$ 除以$b(x)$的商。
解析
本题涉及多个单项式的除法运算,需按照运算法则逐步进行。
解答
原式 = [(3a^2b^3c) / (2ab^2)] * [(4b) / (5abc)] = [(3/2) * (a^2/a) * (b^3/b^2) * c] * [(4/5) * b / (abc)] = [(3/2) * a * b * c] * [(4/5) * 1/(ac)] * 1/(ac) = (6/5) * b

单项式乘单项式、多项式乘多项式、同底数幂相除、单项式相除

单项式乘单项式、多项式乘多项式、同底数幂相除、单项式相除

单项式乘单项式:1、如=⨯=⨯⨯⨯=⨯⨯⨯101010105103725251553)()())((‗‗‗‗‗ 2、==∙∙∙=+abcc c bc acb a 252525)()(.‗‗‗‗‗一般的,单项式与单项式相乘,把它们的‗‗‗‗‗、‗‗‗‗‗‗‗‗‗‗分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

运用单项式乘单项式法则时可按以下三个步骤进行:①先把各因式的系数相乘,作为积的系数;②把各因式的同底数幂相乘,底数不变、指数相加;③只在一个单项式里出现的字母连同它的指数作为积的一个因式.单项式与单项式相乘,结果仍是单项式. 3、(1)计算:(-5a ²b )(-3a )=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗. (2)计算(2x )³(-5xy ²)=‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗.(3)())((10810436⨯⨯=‗‗‗‗‗‗‗‗‗‗‗‗ 4、计算(1));21())3222(4(y y xxy ∙∙-- (2)a abc abc 12()31()21-32∙∙-(³b )单项式乘多项式:1、p (a+b+c )=pa+pb+pc(根据乘法的分配律得到这个等式) 2、一般的,单项式与多项式相乘,就是用单项式去乘多项式的‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗ 3、计算:(1)(-4x ²)(3x+1) (2)ab 32(²-2ab)ab 21∙4、(x ²+ax+1)(-6x ³)的计算结果不含x4的项,则a=‗‗‗‗‗.5、已知单项式-ba y x 832+与单项式b a yx y -∙324的和是单项式,求这两个单项式的积.6、先化简再求值:(1)已知x ²-3=0, (2)已知02)1(2=+--b a ,求x (x ²-x )-x ²(5+x )+9的值. 求3ab ⎥⎦⎤⎢⎣⎡--∙b ab ab a 231(36的值.多项式乘多项式:1、(a+b)(p+q)=a(p+q)+b(p+q)=ap+aq+bp+bq可以先把其中一个多项式如p+q,看成一个整体,运用单项式与多项式相乘的法则计算.总体上看,计算结果可以看作由a+b的每一项乘p+q的每一项,再把所得的积相加而得到的,即(a+b)(p+q) =ap+aq+bp+bq.一般的,多项式与多项式相乘,先用一个多项式的‗‗‗‗‗‗‗‗乘另一个多项式的‗‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗‗.2、计算:(1)(3x+1)(x+2);(2)(x³-2)(x³+3)-(x³)²+x²·x;3、若a+b=m,ab=-4,则(a-2)(b-2)= ‗‗‗‗‗‗‗;4、若多项式(x²+mx+n)(x²-3x+4)展开后不含x³和x²的项,则m=‗‗‗‗‗,n=‗‗‗‗.5、如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白的面积,其面积是‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗.6、先化简,再求值:①(a+b)(a-b)+b(a+2b)-b²②已知x²-5x=3,求(x-1)(2x-1)-(x+1)²+1 其中a=1,b=-2; 的值.7、解方程(3x-2)(2x-3)=(6x+5)(x-1)-1.8、有若干张如图所示的正方形和长方形卡片,如果要拼成一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片‗‗‗‗‗‗张,B类卡片‗‗‗‗‗‗张,C类卡片‗‗‗‗‗‗张,请你在右下角的大矩形中画出一种拼法.同底数幂的除法:∵,)(a aa amnn m n nm ==∙+--(a ≠0,m ,n 都是正整数,并且m >n)∴aa anm nm-=÷.一般地,我们有 ∴aa anm n m-=÷(a ≠0,m ,n 都是正整数,并且m >n).即同底数幂相除,底数‗‗‗‗‗‗,指数‗‗‗‗‗‗.注意:(1)底数可以是单项式,也可以是多项式;(2)底数不能为0;(3)当三个数或三个以上的同底数幂相除时,也具有这一性质. 任何一个不等于0的数的0次幂都等于1,那么a =‗‗‗‗.(a ≠0). 1、 若(x-1)=1,则x取值范围是‗‗‗‗‗‗. 2、 计算(1);28x x ÷(2);)()(25ab ab ÷(3))-()()-25xy xy xy ÷÷-(. (4)(x-2y)³÷(2y-x)² 3、①若,4,3==a ay x则=-ayx ‗‗‗‗‗‗;②若,5,342==y x 则22yx -的值为‗‗‗‗‗‗.③若n m x xnm,(,8,4==是正整数),则xnm -3的值是‗‗‗‗‗‗.④求2416÷÷nm=‗‗‗‗.零指数幂:5、若(x-3)无意义,则(x²)³÷(x²·x)的值是‗‗‗‗‗‗. 5、计算:①)-3(0n (n≠3)=‗‗‗‗‗‗;②若1)2(0=-x ,则x的取值范围是‗‗‗‗‗‗; 6、若(2x+y-3)无意义,且3x+2y=8,则3x²-y=‗‗‗‗.7、计算: ①);3410(y y y÷÷ ②))()(5(32243aa a -÷⎥⎦⎤⎢⎣⎡∙ ③3(3)1()32330-÷++-8、①已知,27,9==a an m求anm 23-的值.②已知,6,433==y x求2792yx yx --+的值.单项式相除:∵4a ²x ³·3ab ²=12a ³b ²x ³, ∴12a ³b ²x ³÷3ab ²=4a ²x ³.一般的,单项式相除,把‗‗‗‗‗与‗‗‗‗‗‗‗‗‗‗分别相除作为商的因式,对于只在被除数里含有的字母,则连同它的指数作为商的‗‗‗‗‗‗‗‗‗‗.1、①计算2x x 46÷的结果是‗‗‗‗‗‗‗‗; ②‗‗‗‗‗‗‗‗‗÷.56)65(32y a ax x y =- 2、已知,72223288b b a b a n m =÷那么m=‗‗‗‗‗‗‗,n=‗‗‗‗‗‗‗.3、计算()3()6(101046⨯÷⨯=‗‗‗‗‗‗‗‗‗‗‗‗‗;4、一个单项式与单项式ba n n 1136---的积为,172c ba n n +则这个单项式是‗‗‗‗‗‗‗‗‗‗‗.5、计算:(1)-8a ²b ³÷6a ²b ÷b ²; (2)(-0.3a ²b ³c ²)÷(-3ab )²·(10a ³b ²c ); (3);)2()2()2-(22123y x x y y x n n --++÷∙ (4));)103(10638⨯⨯÷6、已知,2,3==x xn m求x nm 23-的值.。

中考复习:单项式、多项式乘法、除法

中考复习:单项式、多项式乘法、除法

单项式、多项式乘法、除法
单项式乘以多项式:
用单项式去乘以多项式的每一项,再把结果相加。
m(a+b+c)=am+bm+cm
注意: ①单项式与多项式相乘实质上是转化为单项式乘以单项式; ②用单项式去乘多项式中的每一项时,不能漏乘; ③注意确定积的符号.
先化简,再求值3a(2a2-4a+3)-2a2(3a+4),其中a=-2。
1、单项式乘以单项式需要注意: ①在计算时,应先进行符号运算,积的系数等于各因式系数的积; ②注意按顺序运算; ③不要丢掉只在一个单项式里含有的字母因式; ④此性质对于多个单项式相乘仍然成立
2、多项式乘以多项式时要注意: ①相乘时,按一定的顺序进行,必须做到不重不漏; ②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数 应等于原多项式的项数之积.
解:(1)根据题意可知, 由于欢欢挑错了第一个多项式中的a的符号, 得到的结果为6x2-13x+6, 那么(2x-a)(3x+b) =6x2+(2b-3a)x-ab=6x2-13x+6, 可得2b-3a=-13 ①乐乐由于漏抄了第二个多项式中的x的系数, 得到的结果为2x2-x-6,
可知(2x+a)(x+b)=2x2-x-6 即2x2+(2b+a)x+ab=2x2-x-6, 可得2b+a=-1 ②,解关于①②的方程组, 可得a=3,b=-2; 2)正确的式子: (2x+3)(3x-2)=6x2+5x-6
将系数、同底数类分别相除作为商的因式,对于只在被除式里含有的字母 则连同它的指数作为商的一个因式。
若(mx-6y)与(x+3y)的积中不含xy项,试求m的值.

单项式专项练习题

单项式专项练习题

单项式专项练习题单项式是代数学中的基本概念之一。

它由字母和数字的乘积组成,且字母的指数必须是非负整数。

求解单项式的运算是代数学中一个重要的技巧,也是解决复杂数学问题的基础。

一、单项式的加减法在单项式的加减法中,我们需要注意指数相同的字母之间的运算。

例如,计算2x² + 3x² - 4x²的结果。

首先,我们将指数相同的项合并,得到x²。

然后,将系数相加,得到2 + 3 - 4 = 1。

所以,2x² + 3x² - 4x²= x²。

另一个例子是计算5a³b - 2a³b + 7a³b。

同样地,我们将指数相同的项合并,得到a³b。

然后,将系数相加,得到5 - 2 + 7 = 10。

所以,5a³b - 2a³b + 7a³b = 10a³b。

二、单项式的乘法在单项式的乘法中,我们需要将字母和数字的乘积进行合并。

例如,计算3x² × 4x³的结果。

首先,将系数相乘,得到3 × 4 = 12。

然后,将字母的底数相乘,得到x² × x³ = x⁵。

所以,3x² × 4x³ = 12x⁵。

另一个例子是计算2a²b × 3ab²的结果。

同样地,将系数相乘,得到2 ×3 = 6。

然后,将字母的底数相乘,得到a² × a = a³,以及b × b² = b³。

所以,2a²b × 3ab² = 6a³b³。

三、单项式的除法在单项式的除法中,我们需要注意指数的减法。

例如,计算12x⁴ ÷4x²的结果。

整式的乘除(混合运算)(北师版)(含答案)

整式的乘除(混合运算)(北师版)(含答案)

学生做题前请先回答以下问题问题1:(1)同底数幂相乘,_________,_________.即_____________;(2)同底数幂相除,_________,_________.即_____________;(3)幂的乘方,___________,___________.即_____________;(4)积的乘方等于___________.即_____________;规定:_______(___________);______(_________________________).问题2:根据幂的定义:,推导下列公式:;;;.问题3:(1)单项式×单项式:_____乘以_____,______乘以_____;(2)单项式÷单项式:_____除以_____,_____除以_____;(3)单项式×多项式:根据________________,转化为_________;(4)多项式×多项式:根据________________,转化为_________;(5)多项式÷单项式:借用____________,转化为_________.问题4:(1)平方差公式:_____________________;(2)完全平方公式:①_________________;②__________________;(3)我们记完全平方公式的口诀是什么?整式的乘除(混合运算)(北师版)一、单选题(共12道,每道8分)1.计算的结果是( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:整式的乘除2.计算的结果是( )A.-3B.3C.25D.27答案:D解题思路:故选D.试题难度:三颗星知识点:幂的运算法则3.计算的结果是( )A.2B.-2C. D.答案:C解题思路:观察结构,分为三个部分,每部分依据法则进行计算;先乘方,再乘除,最后算加减,如果有括号先算括号里面的.故选C.试题难度:三颗星知识点:幂的运算法则4.计算的结果是( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的乘除5.计算的结果是( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:整式的乘除6.已知一个多项式与单项式的积为,则这个多项式为( )A. B.C. D.答案:A解题思路:解:设这个多项式为A.由题意知,∴这个多项式为.故选A.试题难度:三颗星知识点:整式的乘除混合运算7.计算的结果是( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的乘除8.计算的结果是( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:整式的乘除混合运算9.计算的结果是( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:整式的乘除混合运算10.计算的结果是( )A. B.C. D.答案:B解题思路:整式的乘除混合运算的处理思路:观察结构划部分;有序操作依法则;每次推进一点点.故选B.试题难度:三颗星知识点:整式的乘除11.化简求值:当,时,代数式的值为( )A.-32B.32C. D.答案:A解题思路:当,时,故选A.试题难度:三颗星知识点:整式的乘除12.化简求值:当时,代数式的值为( )A.51B.-49C.-51D.答案:D解题思路:当时,故选D.试题难度:三颗星知识点:整式的乘除学生做题后建议通过以下问题总结反思问题1:计算:.。

最新北师大版数学七年级下册第一章-整式的乘除知识点总结及练习题

最新北师大版数学七年级下册第一章-整式的乘除知识点总结及练习题

(B)(5x-1)(1-5x)=25x2-1 (D)(x-3)(x-9)=x2-27 18.如
果 x2-kx-ab=(x-a)(x+b),则 k 应为…………………………………(

(A)a+b (B)a-b (C)b-a
(三)计算(每题 4 分,共 24 分)
19.(1)(-3xy2)3·( 1x3y)2; 6

6.(1 )-2+0=
;4101×0.2599=

3
7.20 2×19 =1 (
)·( )=

33
8.用科学记数法表示-0.0000308=

9.(x-2y+1)(x-2y-1)2=( )2-( )2=

10.若(x+5)(x-7)=x2+mx+n,则 m=
,n=

(二)选择题(每小题 2 分,共计 16 分)
☆☆☆ 北师大版数学七年级【下册】 一、 同底数幂的乘法
第一章 整式的乘除
同底数幂的乘法法则: am an amn (m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要
注意以下几点: ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数 a 可以是一个具体的数字式字母,也可以是
一个单项或多项式; ②指数是 1 时,不要误以为没有指数; ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相 同才能相加;
第4页
20.用简便方法计算:(每小题 3 分,共 9 分)
(1)982;
(2)899×901+1;
(3)(10 )2002·(0.49)1000. 7
(四)解答题(每题 6 分,共 24 分) 21.已知 a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab 的值.

七年级数学知识点单项式

七年级数学知识点单项式

七年级数学知识点单项式七年级数学知识点——单项式一、什么是单项式?单项式是指没有加号或减号连接的一项式,是代数式中比较基本的形式,通常用字母表示,也叫做“单项式表达式”。

例如:a、3b、-5xyz²都是单项式,因为它们是由一个或多个字母及它们的次数相乘而得到的。

二、单项式的系数和次数在单项式中,字母前面的数字叫做系数,字母的次数叫做次数。

系数可以是整数、分数、小数,也可以是正数、负数。

例如:4x²y³中,系数为4,次数为2+3=5;-0.5ab²c中,系数为-0.5,次数为1+2+1=4。

三、单项式的乘除运算1. 乘法运算单项式的乘法运算指的是单项式与单项式之间的乘法。

两个单项式相乘时,只需按照字母和数字相乘的法则,将它们的系数相乘,字母相乘,最后将结果相乘即可。

例如:(2ab)(3ac²) = 6a²b²c²(-5x²)(2xy³) = -10x³y³2. 除法运算单项式的除法运算指的是单项式之间的除法。

两个单项式相除时,只需将除数的系数除以被除数的系数,将除数的字母次数减去被除数的字母次数即可。

例如:6a²b²c² / 3abc = 2ab-10x³y³ / -5x² = 2xy四、单项式的加减运算单项式的加减运算指的是只含有一个字母的单项式之间的加减法。

在计算时,只需将同类项的系数相加减即可,字母相同且次数相同时即为同类项。

例如:5x²y - 2x²y = 3x²y3a³ + 2a³ = 5a³五、单项式的用途单项式在数学应用中有非常广泛的用途,它们可以表示数据,建立数学模型,解决实际问题等。

在代数式的计算、化简、证明及方程的解法中,单项式也有着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档