安徽省2019-2020届高三联考试题数学(文)试卷(含答案)
2019年10月安徽省皖南八校联盟2020届高三毕业班摸底联考数学(文)试题(解析版)

绝密★启用前安徽省皖南八校联盟2020届高三毕业班上学期摸底调研联考测试数学(文)试题(解析版)2019年10月考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本卷命题范围:必修①~⑤。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2|50A x x x =->,则C R A =()A. {|05}x x ≤≤B. {|0}x x <C. {|5}x x >D. {|50}x x -≤≤【答案】A【解析】【分析】求出集合A 后,根据补集定义求得结果. 【详解】{}{2500A x x x x x =-=<或}5x > {}05R C A x x ∴=≤≤ 本题正确选项:A【点睛】本题考查集合运算中的补集运算,属于基础题.2.若α是第二象限角,且sin α=,则tan α=() A. B. C. D. -【答案】D【解析】【分析】 根据角的范围可确定cos 0α<,利用同角三角函数的平方关系和商数关系可求得结果.【详解】αQ 是第二象限角 cos 0α∴< 1cos 3α∴==- sin 3tan 1cos 3ααα∴===--本题正确选项:D【点睛】本题考查同角三角函数值的求解问题,属于基础题.3.《西游记》《三国演义》《水浒传》《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为( ) A. 23 B. 12 C. 13 D. 14【答案】B【解析】【分析】先求出基本事件总数,再求《红楼梦》被选中包括的基本事件个数,由此可计算出任取2种进行阅读,取到《红楼梦》的概率。
2019-2020年高三4月联考数学(文)试卷 含答案

2019-2020年高三4月联考数学(文)试卷 含答案数学试卷(文科) xx.04.考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸上将姓名、学校、班级等信息填写清楚,并将核对后的条形码贴在指定位置上.一.填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.设集合,},034{2R ∈≥+-=x x x x B ,则_________.2.已知为虚数单位,复数满足,则__________.3.设且,若函数的反函数的图像经过定点,则点的坐标是___________.4.计算:__________.5.在平面直角坐标系内,直线,将与两条坐标轴围成的封闭图形绕轴旋转一周,所得几何体的体积为___________.6.已知,,则_____________.7.设定义在上的偶函数,当时,,则不等式的解集是__________________.8.在平面直角坐标系中,有一定点,若线段的垂直平分线过抛物线()的焦点,则抛物线的方程为_____________.9.已知、满足约束条件⎪⎩⎪⎨⎧≥+≤+≤,02,4,y y x x y 则的最小值为____________.10.已知在(为常数)的展开式中,项的系数等于,则_____________.11.从棱长为的正方体的个顶点中任取个点,则以这三点为顶点的三角形的面积等于的概率是______________.12.已知数列满足n n a a a n 3221+=+++ (),则__________.13.甲、乙两人同时参加一次数学测试,共有道选择题,每题均有个选项,答对得分,答错或不答得分.甲和乙都解答了所有的试题,经比较,他们只有道题的选项不同,如果甲最终的得分为分,那么乙的所有可能的得分值组成的集合为____________.14.对于函数,其中,若的定义域与值域相同,则非零实数的值为_____________.二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.15.“”是“”的( ).(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件16.下列命题正确的是( ).(A )若直线∥平面,直线∥平面,则∥;(B )若直线上有两个点到平面的距离相等,则∥;(C )直线与平面所成角的取值范围是;(D )若直线平面,直线平面,则∥.17.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是( ).(A ) (B ) (C ) (D )18.已知直线:与函数的图像交于、两点,设为坐标原点,记△的面积为,则函数是( ).(A )奇函数且在上单调递增 (B )偶函数且在上单调递增(A )奇函数且在上单调递减 (D )偶函数且在上单调递减三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图,在直三棱柱中,底面△是等腰直角三角形,,为侧棱的中点.(1)求证:平面; (2)求异面直线与所成角的大小(结果用反三角函数值表示).20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数12cos 2sin 3)(-+=x x x f ().(1)写出函数的最小正周期和单调递增区间;(2)在△中,角,,所对的边分别为,,,若,,且,求的值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;A B C A 1 B 1 C 1 D(2)若函数xx a x g ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅+=41211)(在上是以为上界的有界函数,求实数的取值范围.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.设椭圆:()的右焦点为,短轴的一个端点到的距离等于焦距.(1)求椭圆的标准方程;(2)设、是四条直线,所围成的矩形在第一、第二象限的两个顶点,是椭圆上任意一点,若,求证:为定值;(3)过点的直线与椭圆交于不同的两点、,且满足△与△的面积的比值为,求直线的方程.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列、满足:,,.(1)求,,,;(2)求证:数列是等差数列,并求的通项公式;(3)设13221++++=n n n a a a a a a S ,若不等式对任意恒成立,求实数的取值范围.文科数学参考答案一.填空题1. 2. 3. 4. 5. 6. 7.8. 9. 10. 11. 12.13. 14.二.选择题15.B 16.D 17.C 18.B三.解答题19.(1)因为底面△是等腰直角三角形,且,所以,,(2分)因为平面,所以, ………………………………………(4分)所以,平面. ……………………………………………………(5分)(2)取点,连结、,则∥所以,就是异面直线与所成角(或其补角). …………………(2分)解法一:由已知,,,所以平面,所以△是直角三角形,且, …………………………………………(4分)因为,,所以,, ……………………(6分)所以,异面直线与所成角的大小为. …………………………(7分)解法二:在△中,,,, 由余弦定理得,322325492cos 1212211=⋅⋅-+=⋅⋅-+=∠DE D B E B DE D B DE B . ……………(6分) 所以,异面直线与所成角的大小为. ……………………………(7分)20.(1), …………………………………………(3分)所以,的最小小正周期, …………………………………………(4分)的单调递增区间是,. ……………………………(6分)(2)0162sin 2)(=-⎪⎭⎫ ⎝⎛+=πB B f ,故, 所以,或(),因为是三角形内角,所以. …………………………(3分)而,所以,, …………………………(5分)又,所以,,所以,7cos 2222=-+=B ac c a b ,所以,. …………………………………(8分)21.(1),则在上是增函数,故,即, ……………………………………………(2分)故,所以是有界函数. ……………………………………………(4分)所以,上界满足,所有上界的集合是. ……………………(6分)(2)由题意,对恒成立, 即3412113≤⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⋅+≤-x x a , ……………………………………………(1分) 令,则,原不等式变为,故, 故minmax 24⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛--t t a t t , ……………………(3分) 因为在上是增函数,故, …………………(5分)又在上是减函数,故. ………………………(7分)综上,实数的取值范围是. ………………………(8分)22.(1)由已知,, …………………………………………………(1分) 又,故, ………………………………………………(2分)所以,,所以,椭圆的标准方程为. ……………(4分)(2),, ………………………………………………(1分)设,则,由已知,得 ……………………(4分) 所以,13)(34)(422=++-n m n m ,即为定值. ……………(6分) (3)等价于, ……………………………………………(1分)当直线的斜斜率不存在时,,不合题意. ……………………………(2分) 故直线的斜率存在,设:, 由⎪⎩⎪⎨⎧=+-=,134,)1(22y x x k y 消去,得096)43(222=-++k ky y k , ……………………(3分) 设,,则,,由,得,则,,从而,. …………………………………………(5分)所以,直线的方程为. …………………………………………(6分)23.(1)由已知,nn n n n n n n b b b b a a b b -=-=+-=+21)2()1)(1(1, 因为,所以,,,,. …………(4分)(每个1分)(2),n n n n b b b b --=--=-+2112111, ……………………(2分) 所以,11112111--=--=-+n n n n b b b b , 所以,数列是以为首项,为公差的等差数列. ……………………(4分)所以,,(). ………………………………(6分)(3)因为,从而, ………………………………(1分)所以,13221++++=n n n a a a a a a S )4)(3(1651541++++⨯+⨯=n n , …………………………………(2分)解法一:所以,不等式化为,即当时恒成立, …………………………………………(4分) 令)3(2312131121342)3()4)(2()(+++++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++⋅+=+++=n n n n n n n n n n n n n n n f,则随着的增大而减小,且恒成立. ………………………………(7分)故,所以,实数的取值范围是. …………………………………(8分)解法二:)4)(3(8)2(3)1(32442++--+-=++-+=-n n n a n a n n n an b S a n n n , 若不等式对任意恒成立,则当且仅当08)2(3)1(2<--+-n a n a 对任意恒成立. ………………………………(4分) 设8)2(3)1()(2--+-=n a n a n f ,由题意,,当时,恒成立; …………………………(5分)当时,函数8)2(3)1()(2--+-=x a x a x f 图像的对称轴为,在上单调递减,即在上单调递减,故只需即可,由,得,所以当时,对恒成立.综上,实数的取值范围是. …………………………(8分).。
2019-2020年高三上学期联考数学(文)试题含答案

2019-2020年高三上学期联考数学(文)试题含答案朱红霞邱帆、选择题(本大题共 10小题,每小题5分,共50分, 一项是符合题目要求的.)在每小题给出的四个选项中,只有S=s+i * i m*1」是C DDC BD 4DC. D函数的零点个数为府迎ElD CABMCx那么的大致图象是yyyy5小题出发绕着点顺时针方向旋转到,旋转过程中交已知,则C. 2D . 4D . 2A . 1 C . 3则的值为C. A . 0O 于点,记为,弓形的面积设集合,,则等于A .B .已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图 面积为()A .B 如图,半径为1的圆切直线于点,射线从i =0,S ~1填空题(本大题共已知函数,贝y —运行如图所示的程序框图,若输入,则输出的值为输入n B .— 1 A .B 在直角三角形中,5分,共25分,把答案填写在答题卡中的横线上 •)A . 1B . 2 若抛物线的焦点与双曲线的右焦点重合A .B . 设是定义在上的偶函数,且当时,-若对任意的,不等式恒成立,则实数的最大值是:N __________A KB 第io 题图C.点是斜边上的一个三等分点,则设是等差数列的前项和,若,则=B .第二象限C.第三象限 D .第四象限2. 3.4. 5. 6. 7. 8. 9. 10. 否11. 12.—输出S / * [结束在复平面内,复数(是虚数单位)所对应的点位于A.第一象限13. 如图,三棱锥S-ABC 中,SAAB=AC=2,'M C .ASB = /BSC =/CSA = 30 , M、N 分别为SB SC上的点,则厶AMN周长最小值为.14. 已知函数,若,则实数的取值范围.15. 若实数满足则的最小值为三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16. (本小题满分12分)已知数列为等差数列,且.(1)求数列的通项公式;(2 )证明….17. (本小题满分12分)如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于0B的直线交弧AB于点P.(1)若C是半径0A的中点,求线段PC的长;(2)设,求面积的最大值及此时的值.18. (本小题满分12分)城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟)组别候车时间人数-一- 2二6三4四2(1) 估计这60名乘客中候车时间少于 10分钟的人数;(2) 若从上表第三、四组的6人中任选2人作进一步的调查, 求抽到的两人恰好来自不 同组的概率.19. (本题满分12分)(1) 求证:平面平面;(2) 求三棱锥的体积.20. (本小题满分13分)已知椭圆C :的一个焦点是(1 , 0),两个焦点与短轴的一个端点构成等边三角形. (1) 求椭圆C 的方程;(2) 过点Q (4, 0)且不与坐标轴垂直的直线 I 交椭圆C 于A 、B 两点,设点 A 关于x 轴的对称点为A 1 .求证:直线 "B 过x 轴上一定点,并求出此定点坐标.21 .(本小题满分14分)—X’+ x 2 + bx + c x < 1已知函数f(x)的图像过坐标原点,且在点 处的切线斜率、aln x, x 兰1为•(1) 求实数的值;(2) 求函数在区间上的最小值;(3) 若函数的图像上存在两点,使得对于任意给定的正实数都满足是以为直角顶点的 直角三角形,且三角形斜边中点在轴上,求点的横坐标的取值范围江西师大附中、临川一中xx 高三上学期期末联考数学答案(文)一、 1 — 5 B C D D A 6—10 B B C C A二、 11.10 12.11 13. 14.15.三、解答题16.解析:(1)设等差数列的公差为 d ,由得 2(log 2 2 d) =log 2 2 log 2 8即 d=1 ;如图,在四棱锥中,底面是正方形,底面,,点是的中点,,交于点.1/所以log2(a n -1) =1 (n -1) 1 =n 即.(2)证明:a n 1 -a n1所以…….丄=2_2n1二2n1 _2n1 1------ x —2n 2__1 1 -2 =1A…12分17.解析:(1)在中,”由OP—C PCcos3(2)平行于二CPO 二/POB 二一3在中,由正弦定理得,即2.2 二sin -3CPsin rOC 又——n 亠sin( )3 OP 2兀sin -记的面积为,则仝4 sin 4 s2 3 3i (一0) =s i 佗日 + ¥co ?日 _号12分当时,取得最大值18.解:(1)候车时间少于所以候车时间少于10分钟的人数为人. .................... 6分(2)将第二组乘客编号为,第四组乘客编号为.从6人中任选两人有包含以下基本事件:佝,a2),( a1,氏),(a1, a4),( a1,b),( a1,b2),(a2 , a3),( a2, a4 ),( a2, bl ),( a2, b2),,, 10分钟的概率为,其中两人恰好10分• (12)分19.证明:(1 )•••底面,.•又.••面•••........ ①,又,且是的中点,•••由①②得面B又 •••面 •••平面平面・(2).是的中点,•• V S 』CM =V D 』CM =V M JDAC ................................................ 9 分、, 1 C 1 CA 1 1 1 1八V s 公CM = 3S ACD 2SA =3 2 2 =12............... 12分20.( I )因为椭圆匕的一个焦点是(L M 所以半焦距C = l.因为椭鬲两个崖点与短轴的一个端点构成等边三角形・广1T2 2所以一二—,解得4 = 2』二馅,所以椭圆的标准方程为—+ ^ = 1,a2 43(2)设直线:与联立并消去得:2 2(3m 4)y 24my 36 = 0 .记…............................. 8分.由A 关于轴的对称点为,得,根据题设条件设定点为 得,即.(2)当时,f (x)二-x 3 x 2, f (x)二-3x 2 2x 令有,故在单调递减;在单调递增; 在单调递减.又,所以当时, ....................... 6分(3) 设,因为中点在轴上,所以又:OP_OQ, 里直」(_片)=_1①x-i-x 1(i)当时,,当时,.故①不成立……7分21.解: (1 )当时,,2依题意,-3(-1) 2(-1) b 一5, b=0X 2% y 2为y 1 y 2即定点(1 , 0) . .............. 3•分又 故 (3)分(4 my 2)y 1(4 myjy ?y 「y 2所以t =(ii)当时,f(XJ = -才-xj, f (-Xj - xj 代人①得:2 X i X i3232、2X i )(MX i ) = X i ,——i, (—X i设 h(xj =(—X i • i)ln( —x i )(x i ::: —i),令,则由上面知 的值域是的值域为.所以对于任意给定的正实数,③恒有解,故满足条件。
安徽省皖南八校2019届高三第三次联考数学(文科)试题 Word版含解析

“皖南八校”2019届高三第三次联考数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|10}A x x =+>,{1,0,1}B =-,则A B =I ( ) A. {1} B. {}1-C. {0,1}D. {1,0}-【答案】C 【分析】求得集合{|10}{|1}A x x x x =+>=>-,根据集合的交集运算,即可求解. 【详解】由题意,集合{|10}{|1}A x x x x =+>=>-,又由{1,0,1}B =-, 所以{0,1}A B =I ,故选C .【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合A ,再利用集合的交集运算求解是解答的关键,着重考查了运算与求解能力. 2.已知复数11iz i+=-,则i z +=( )A. 0B. 1D. 2【答案】D 【分析】根据复数的运算法则,求得221ii z i++=-,再根据复数模的计算公式,即可求解.【详解】由题意复数11i z i +=-,则212211i i i ii z i i ++-++==--,所以2i z +==,故选D .【点睛】本题主要考查了复数的运算,以及复数模的计算,其中解答中熟记复数的运算法则,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.3.从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )A. 抽出的100人中,年龄在40~45岁的人数大约为20B. 抽出的100人中,年龄在35~45岁的人数大约为30C. 抽出的100人中,年龄在40~50岁的人数大约为40D. 抽出的100人中,年龄在35~50岁的人数大约为50 【答案】A 【分析】根据频率分布直方图的性质,求得0.04a =,再逐项求解选项,即可得到答案.【详解】根据频率分布直方图的性质得(0.010.050.060.020.02)51a +++++⨯=,解得0.04a =所以抽出的100人中,年龄在40~45岁的人数大约为0.04510020⨯⨯=人,所以A 正确; 年龄在35~45岁的人数大约为(0.060.04)510050+⨯⨯=人,所以B 不正确; 年龄在40~50岁的人数大约为(0.040.02)510030+⨯⨯=人,所以C 不正确; 年龄在35~50岁的人数大约为(0.060.040.02)510060++⨯⨯=,所以D 不正确; 故选A .【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及利用矩形的面积表示频率,合理计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.若x ,y 满足约束条件24010220x y x y x y -+≥⎧⎪++≥⎨⎪+-≤⎩,则3z x y =+的最大值为( )A. 2B. 3C. 4D. 5【答案】D 【分析】作出约束条件所表示的平面区域,结合图象得到目标函数的最优解,即可求解目标函数的最大值,得到答案.【详解】由题意,作出约束条件所表示的平面区域,如图所示,目标函数3z x y =+,可化为直线3y x z =-+,当3y x z =-+经过点A 时,直线在y 轴上的截距最大,此时目标函数取得最大值,又由10220x y x y ++=⎧⎨+-=⎩,解得3,4x y ==-,即(3,4)A -,所以目标函数的的最大值为3345z =⨯-=,故选D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题. 5.已知tan 74πα⎛⎫+= ⎪⎝⎭,则tan2α=( ) A.724B.247C. 724-D. 247-【答案】B 【分析】根据两角和的正切公式,求得3tan 4α=,再由正切的倍角公式,即可求解,得到答案. 【详解】由题意,根据两角和的正切公式,得tan 1tan()741tan πααα++==-,解得3tan 4α=,又由正切的倍角公式,得22322tan 244tan 231tan 71()4ααα⨯===--,故选B . 【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟练应用两角和的正切和正切的倍角公式,合理化简、运算是解答的关键,着重考查了运算与求解能力,属于基础题.6.函数f (x )=3344x x -的大数图象为( )A. B.C. D.【答案】A 【分析】由函数()f x 是奇函数,图象关于原点对称,排除C 、D 项;再由当()0,1x ∈时,函数()f x 值小于0,排除B ,即可得到答案.【详解】由题知,函数()f x 满足()333()3()4444xx x x f x f x ---==-=---,所以函数()f x是奇函数,图象关于原点对称,排除C 、D 项;又由当()0,1x ∈时,函数()f x 的值小于0,排除B ,故选A.【点睛】本题主要考查了函数图象的识别,其中解答中熟练应用函数的奇偶性和函数的取值范围,利用排除法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 7.七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )A.516B.1132C. 38D.1332【答案】A 【分析】求出阴影部分的面积,根据面积比的几何概型,即可求解其相应的概率,得到答案. 【详解】设正方形的边长为4,则正方形的面积为4416S =⨯=,此时阴影部分所对应的直角梯形的上底边长为22322,所以阴影部分的面积为11(2232)252S =⨯=, 根据几何概型,可得概率为1516S P S ==,故选A .【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A P N=求解,着重考查了分析问题和解答问题的能力. 8.某几何体的三视图如图所示,则该几何体的体积为( )A. 4643π-B. 6412π-C. 12πD.443π 【答案】D 【分析】根据三视图得到该几何体是圆柱中挖去了一个圆锥,其中圆柱的底面圆的半径为2R =,母线长为4l =,圆锥的底面圆的半径为1r =,高为4h =,再由体积公式求解,即可得到答案. 【详解】由三视图知,此几何体是圆柱中挖去了一个圆锥,其中圆柱的底面圆的半径为2R =,母线长为4l =,圆锥的底面圆的半径为1r =,高为4h =, 所以几何体的体积为:2213V R l r h ππ=-=22144241433πππ⨯⨯-⨯⨯=,故选D. 【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9.在正方体1111ABCD A B C D -中,若点M 为正方形ABCD 的中心,则异面直线1AB 与1D M 所成角的余弦值为( ) A.66B.33 C.36D.223【答案】C【分析】建立空间直角坐标系,利用空间向量的夹角公式,即可求解. 【详解】建立如图所示的空间直角坐标系,不妨设2AB =,则11(2,0,0),(2,2,2),(0,0,2),(1,1,0)A B D M ,则向量11(0,2,2),(1,1,2)AB D M ==-u u u r u u u u u r,则向量1AB u u u r 与1D M u u u u u r 的夹角为1122222113cos 62211(2)AB D M AB D M θ⋅===⋅+⋅++-u u u r u u u u u ru u u r u u u u u r , 即异面直线1AB 与1D M 所成角的余弦值为3,故选C .【点睛】本题主要考查了利用空间向量求解异面直线所成的角,其中解答中建立适当的空间直角坐标系,合理利用向量的夹角公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.10.已知1F ,2F 是椭圆C :22221(0)x y a b a b +=>>的两个焦点,以12F F 为直径的圆与直线222x a b+=相切,则椭圆C 的离心率为( ) A.22333 D.22【答案】D 【分析】由圆222x y c +=与直线222x y a +=相切,利用圆心到直线的距离等于半径和离心率的定义,即222b a c =-,整理422320e e --=,即可求解.【详解】由题意,以12,F F 为直径的圆的方程为222x y c +=,其中圆心(0,0)O ,半径为r c =,又由圆222x y c +=与直线22x a b+=相切,则圆心(0,0)O 到直线220bx ab +-=的距离为d c ==,又由222b a c =-,整理得42242320c a c a --=,即422()3()20cc a a--=, 即422320e e --=,解的212e =,又由01e <<,所以2e =,故选D . 【点睛】本题考查了椭圆的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围). 11.已知函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,则满足(21)(32)f x f x +<-的实数x 的取值范围是( ) A. (,0]-∞ B. (3,)+∞C. [1,3)D. (0,1)【答案】B 【分析】根据函数的解+析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解.【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1x ≥时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得(21)(32)f x f x +<-,则2132321x x x +<-⎧⎨->⎩,解得3x >, 即不等式(21)(32)f x f x +<-的解集为(3,)+∞,故选B .【点睛】本题主要考查了函数的单调性的应用,其中根据函数的解+析式,得出函数单调性,合理利用函数的单调性,得出不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.已知函数()2sin(2)6f x x π=+,若对任意的(1,2)a ∈,关于x 的方程()0(0)f x a x m -=≤<总有两个不同的实数根,则m 的取值范围为( )A. 2,23ππ⎡⎤⎢⎥⎣⎦B. ,32ππ⎡⎤⎢⎥⎣⎦C. 2,23ππ⎛⎤ ⎥⎝⎦D.,63ππ⎛⎤ ⎥⎝⎦【答案】B 【分析】令()1f x =,且0x ≥,解得20,,,,323x πππ=L ,根据12a <<且()2f x ≤,结合图象,即可求解.【详解】由题意,函数()2sin 26f x x π⎛⎫=+⎪⎝⎭,令()1f x =,且0x ≥, 即2sin 26x π⎛⎫+= ⎪⎝⎭±1,解得20,,,,323x πππ=L , 又因为12a <<,且()2f x ≤,所以要使得()0f x a -=总有两个不同实数根时,即函数()y f x =与12()y a a =<<的图象由两个不同的交点, 结合图象,可得32m ππ≤≤,所以实数m 的取值范围是,32m ππ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟练应用三角函数的性质,结合图象求解是解答的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题 .二、填空题:本题共4小题,每小题5分,共20分.13.若平面向量(1,2)a =r ,(,3)b x =r ,且a b ⊥r r,则()a a b ⋅-=r r r __________.【答案】5 【分析】由a b ⊥r r,则0a b ⋅=r r ,可得所以22()a a b a a b a ⋅-=-⋅=r r r r r r r ,即可求解. 【详解】由题意,平面向量(1,2)a =r ,(,3)b x =r ,且a b ⊥r r,则0a b ⋅=r r ,所以22222()(12)5a a b a a b a⋅-=-⋅==+=r r r r r r r .【点睛】本题主要考查了向量的数量积的运算,其中解答中熟记平面向量的数量积的运算公式,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知1x =是函数2()()x f x x ax e =+的一个极值点,则曲线()y f x =在点(0,(0))f 处的切线斜率为__________. 【答案】32- 【分析】由1x =是函数2()()xf x x ax e =+的一个极值点,求得32a =-,进而求得3'(0)2f =-,根据导数的几何意义,即可得到答案.【详解】由题意,函数2()()x f x x ax e =+,则2'()(2)xf x x ax x a e =+++, 又由1x =是函数2()()xf x x ax e =+的一个极值点,所以'(1)(32)0f a e =+=,解得32a =-,即213'()()22x f x x x e =+-, 所以3'(0)2f =-,所以函数()f x 在点(0,(0))f 处切线的斜率为32-.【点睛】本题主要考查了利用函数的极值点求参数,以及导数的几何意义的应用,其中解答中熟记函数的极值点的定义,合理利用导数导数的几何意义求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.已知P 是双曲线2221(0)y x b b-=>上一点,1F 、2F 是左、右焦点,12PF F ∆的三边长成等差数列,且1290F PF ∠=︒,则双曲线的渐近线方程为__________.【答案】y =± 【分析】设12,PF m PF n ==,不妨设点P 位于第一象限,则由已知条件和双曲线的定义,列出发方程组,求得5c =,进而求得b =. 【详解】由题意,设12,PF m PF n ==,不妨设点P 位于第一象限,则由已知条件和双曲线的定义,可得2m n -=且()2222m n c +=且22n c m +=, 整理得2650c c -+=,解得5c =,又由22224b c a =-=,即b =所以双曲线的渐近线的方程为by x a=±=±. 【点睛】本题主要考查了双曲线的几何性质的应用,其中解答中熟练应用双曲线的定义和几何性质,列出方程组求得c 的值是解答的关键,着重考查了运算与求解能力,属于基础题. 16.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2cos b C c B a B +=,且2a =,3b =,则ABC ∆的面积是__________.【分析】由正弦定理化简得()sin 2sin cos B C A B +=,进而得到1cos 2B =,再由余弦定理得到关于c 的方程,求得c 的值,进而利用面积公式,即可求解. 【详解】由题意,可知cos cos 2cos bC c B a B +=,由正弦定理得sin cos sin cos 2sin cos B C C B A B +=,即()sin 2sin cos B C A B +=, 又由在ABC ∆中,()A B C π=-+,则sin sin[()]sin()A B C B C π=-+=+, 即sin 2sin cos A A B =,又由(0,)A π∈,则sin 0A >,所以1cos 2B =, 由余弦定理得2222cos b a c ac B =+-,即2942c c =+-,整理得2250c c --=,解得1c =所以ABC ∆的面积为11sin 2(12222S ac B ==⨯⨯⨯=. 【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,其中解答中熟记三角恒等变换的公式,以及合理应用正弦定理、余弦定理求解是解答的关键,着重考查了转化思想与运算、求解能力,属于基础题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.各项均为整数的等差数列{}n a ,其前n 项和为n S ,已知11a =,且2a ,5a ,52S +成等比数列.(1)求{}n a 的通项公式;(2)已知数列{}n b 满足2n an b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2(41)3nn T =-.【分析】(1)设{}n a 的公差为d ,利用等差数列的通项公式,求得2d =,即可得出数列的通项公式; (2)由(1)得2112242nan nn b -===⋅,再利用等比数列的求和公式,即可求解. 【详解】(1)设{}n a 的公差为d ,由题意知()25522a S a =+. ∵11a =,∴()()()2141710d d d +=++,解得2d =或12d =-. 又{}n a 各项为整数,∴2d =. 所以数列的通项公式21n a n =-. (2)由题意,2112242na n nn b -===⋅,故{}n b 为等比数列,首项为2,公比为4, 则其前n 项和()()()112142411143nnnn b q T q--===---.【点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,根据通项公式和求和公式,列出方程组,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质是两种数列基本规律的深刻体现,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18.如图,在四棱锥P ABCD -中,PC ⊥平面ABCD ,点M 为PB 中点,底面ABCD 为梯形,//AB CD ,AD CD ⊥,12AD CD PC AB ===.(1)证明://CM 平面PAD ;(2)若四棱锥P ABCD -的体积为4,求点M 到平面PAD 的距离. 【答案】(1)详见解+析;(22. 【分析】(1)取PA 中点E ,连接DE ,ME ,根据平行四边形的性质,证得//DE CM ,再利用线面平行的判定定理,即可证得//CM 平面PAD .(2)设AD x =,利用四棱锥P ABCD -的体积,求得2x =,又由//CM 平面PAD 知,点M 到平面PAD 的距离等于点C 到平面PAD 的距离,过C 作CF PD ⊥,证得CF ⊥平面PAD ,即可求得答案.【详解】(1)如图所示,取PA 中点E ,连接DE ,ME , ∵M 是PB 中点,∴//ME AB ,12ME AB =, 又//AB CD ,12CD AB =,∴//ME CD ,ME CD =, ∴四边形CDEM 为平行四边形,∴//DE CM .∵DE ⊂平面PAD ,CM ⊄平面PAD ,∴//CM 平面PAD . (2)设AD x =,则CD PC x ==,2AB x =, 由ABCD 是直角梯形,PC ⊥平面ABCD 知, 则四棱锥P ABCD -的体积为()2112432x x x ⨯+=,解得2x =, 由//CM 平面PAD 知,点M 到平面PAD 的距离等于点C 到平面PAD 的距离, 过C 作CF PD ⊥,垂足为F , 由PC ⊥平面ABCD ,得PC AD ⊥, 又AD CD ⊥,∴AD ⊥平面PCD ,∵CF ⊂平面PCD ,∴AD CF ⊥,∴CF ⊥平面PAD . 由2PC CD ==,PC CD ⊥知2CF =,∴M 到平面PAD 的距离为2.【点睛】本题主要考查了线面平行的判定与证明,以及点到平面的距离公式的求解,其中解答中熟记线面平行与垂直的判定与证明,以及合理转化点到平面的距离是解答的关键,着重考查了推理与论证能力,以及运算与求解能力,属于基础题.19.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:甲种生产方式:乙种生产方式:(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?【答案】(1)①优等品3件,合格品2件;②35;(2)选择乙生产方式.【分析】(1)①根据频数分布表知:甲的优等品率为0.6,合格品率为0.4,即可得到抽去的件数;②记3件优等品为A,B,C,2件合格品分别为a,b,从中随机抽2件,列举出基本事件的总数,利用古典概型及其概率的计算公式,即可求解;(2)分别计算出甲、乙种生产方式每生产100件所获得的利润为1T 元2T 元,比较即可得到结论.【详解】(1)①由频数分布表知:甲的优等品率为0.6,合格品率为0.4,所以抽出的5件产品中,优等品3件,合格品2件.②记3件优等品为A ,B ,C ,2件合格品分别为a ,b ,从中随机抽2件,抽取方式有AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10种,设“这2件中恰有1件是优等品的事件”为M ,则事件M 发生的情况有6种, 所以()63105P M ==. (2)根据样本知甲种生产方式生产100件农产品有60件优等品,40件合格品;乙种生产方式生产100件农产品有80件优等品,20件合格品. 设甲种生产方式每生产100件所获得的利润为1T 元, 乙种生产方式每生产100件所获得的利润为2T 元, 可得()()16055154025152800T =-+-=(元),()()28055202025202900T =-+-=(元),由于12T T <,所以用样本估计总体知乙种生产方式生产的农产品所获得的利润较高,该扶贫单位要选择乙生产方式来帮助该扶贫村来脱贫较好.【点睛】本题主要考查了频率分布直方表与频率分布直方图的应用,其中解答中熟记在频率分布直方图中,各小长方形的面积表示相应各组的频率,且所有小长方形的面积的和等于1,合理利用古典概型及其概率的计算公式求解概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20.在平面直角坐标系xOy 中,已知抛物线C :22(0)x py p =>,过抛物线焦点F 且与y 轴垂直的直线与抛物线相交于A 、B 两点,且OAB ∆的周长为2. (1)求抛物线C 的方程;(2)若过焦点F 且斜率为1的直线l 与抛物线C 相交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,切线1l 与2l 相交于点P ,求:2PF MF NF -⋅的值.【答案】(1)22x y =;(2)0.【分析】 (1)将2p y =代入抛物线C 的方程可得点A 、B 的坐标分别为,2p p ⎛⎫- ⎪⎝⎭、,2p p ⎛⎫ ⎪⎝⎭,进而利用三角形的周长为2,列出方程,求得1p =,即可得到抛物线的方程; (2)将直线l 方程为12y x =+与抛物线的方程联立,利用根与系数的关系,得到直线12,l l 的方程,进而得到点P 的坐标为11,2⎛⎫-⎪⎝⎭,再利用抛物线的几何性质,即可作出证明. 【详解】(1)由题意知,焦点F 的坐标为0,2p ⎛⎫ ⎪⎝⎭, 将2p y =代入抛物线C 的方程可求得22x p =,解得x p =±, 即点A 、B 的坐标分别为,2p p ⎛⎫- ⎪⎝⎭、,2p p ⎛⎫ ⎪⎝⎭, 又由2AB p =,OA OB p ===,可得OAB ∆的周长为2p +,即22p +=1p =, 故抛物线C 的方程为22x y =.(2)由(1)得10,2F ⎛⎫⎪⎝⎭,直线l 方程为12y x =+,联立方程21212y x y x ⎧=+⎪⎪⎨⎪=⎪⎩消去y 整理为:2210x x --=,则12122,1x x x x +==-,所以121213y y x x +=++=,2212121144y y x x ==. 又因为212y x =,则21112y x =, ∴可得直线1l 的方程为()211112y x x x x -=-,整理为21112y x x x =-.同理直线2l 的方程为22212y x x x =-.联立方程2112221212y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121222x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,则点P 的坐标为11,2⎛⎫- ⎪⎝⎭.由抛物线的几何性质知112MF y =+,112NF y =+,PF ==有()12121211112224MF NF y y y y y y ⎛⎫⎛⎫=++=+++ ⎪⎪⎝⎭⎝⎭ 1312424=++=. ∴20PF MF NF -⋅=.【点睛】本题主要考查抛物线的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与抛物线(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等. 21.已知函数221()ln (1)()2f x a x a x ax a R =-++∈. (1)讨论()f x 的单调性;(2)若()0f x x +>对1x >恒成立,求a 的取值范围.【答案】(1)详见解+析;(2)1(0,]2. 【分析】(1)求得函数的导函数()()()1'(0)ax x a f x x x--=>,分类讨论即可求解函数的单调性,得到答案;(2)由题意()0f x x +>,即221ln 02a x a x ax -+>,当0a >时,转化为ln 1 2x a x x <+,令()ln 12x g x x x =+,1x ≥,利用导数求得函数()g x 的单调性与最值,即可得到结论. 【详解】(1)由题意,函数()()221ln 12f x a x a x ax =-++,可得()()()21'1(0)ax x a a f x a ax x x x--=--+=>,当0a ≤时,()'0f x <,()f x 单调减区间为()0,+∞,没有增区间. 当01a <<时,当1a x a <<,()'0f x <;当0x a <<或1x a>,()'0f x >. ∴()f x 单调增区间为()0,a 与1,a ⎛⎫+∞⎪⎝⎭,单调减区间1,a a ⎛⎫⎪⎝⎭. 当1a =时,()'0f x ≥对0x >成立,()f x 单调增区间()0,+∞,没有减区间.当1a >时,当1x a a <<,()'0f x <;当10x a<<或x a >时,()'0f x >. ∴()f x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭与(),a +∞,单调减区间为1,a a ⎛⎫⎪⎝⎭.(2)由()0f x x +>,即221ln 02a x a x ax -+>, 当0a >时,21ln 02x ax x -+>,ln 12x a x x <+, 令()ln 12x g x x x =+,1x ≥,则()2221ln 122ln '22x x x g x x x--+=+=, 令()222ln h x x x =-+,则()2'2h x x x=-, 当1x ≥时,()'0h x ≥,()h x 是增函数,()()130h x h ≥=>,∴()'0g x >. ∴1x ≥时,()g x 是增函数,()g x 最小值为()112g =,∴102a <≤. 当0a =时,显然()0f x x +>不成立, 当0a <时,由()g x 最小值为12知,()a g x >不成立, 综上a 的取值范围是10,2⎛⎤ ⎥⎝⎦.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数).以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为(cos 2sin )2ρθθ+=.(1)求曲线C 的普通方程;(2)若l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程.【答案】(1)2214x y +=;(2)2cos sin ρθθ=+. 【分析】(1)利用同角三角函数的基本关系,消去参数,即可得到曲线C 的普通方程;(2)将直线的极坐标方程化为22x y +=,联立方程组,求得()2,0A ,()0,1B ,得到AB 为直径的圆的直角坐标方程,进而可得圆的极坐标方程.【详解】(1)由2x cos y sin αα=⎧⎨=⎩(α为参数),得2xcos y sin αα⎧=⎪⎨⎪=⎩(α为参数), 故曲线C的普通方程为2214x y +=.(2)由()cos 2sin 2ρθθ+=,得22x y +=,联立221422x y x y ⎧+=⎪⎨⎪+=⎩,得()2,0A ,()0,1B ,可得AB 中点坐标为11,2⎛⎫ ⎪⎝⎭,且AB =,故以AB 为直径的圆的直角坐标方程为()2215124x y ⎛⎫-+-= ⎪⎝⎭. 即2220x y x y +--=,将cos x ρθ=,sin y ρθ=代入得2cos sin ρθθ=+.【点睛】本题主要考查了参数方程与普通方程,以及极坐标方程与直角坐标方程的互化,其中熟记参数方程与普通方程,以及极坐标方程与直角坐标方程的互化公式,以及确定以AB 为直径的圆的方程是解答的关键,着重考查了运算与求解能力,属于基础题.23.已知函数()3223f x x x =---.(1)求不等式()f x x >的解集;(2)若关于x 的不等式2()2f x a a <+恰有3个整数解,求实数a 的取值范围. 【答案】(1)15(,)(,)24-∞-+∞U ;(2)11[1,)(0,]22--U .【分析】(1)由题意,分类讨论,即求解不等式()f x x >的解集.(2)由(1)结合函数的单调性,以及()2f -,()1f -,()0f ,()1f ,()2f 的值,得到不等式,即可求解. 【详解】(1)由题意,函数()3223f x x x =---,可得()21,32355,3231,2x x f x x x x x ⎧--≤⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩, 因为()f x x >,所以当23x ≤时,1x x -->,12x <-, 当2332x <<时,55x x ->,5342x <<, 当32x ≥时,1x x +>,32x ≥, 所以不等式()f x x >的解集为15,,24⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. (2)由(1)知()f x 的单调减区间为2,3⎛⎫-∞ ⎪⎝⎭,单调增区间为2,3⎛⎫+∞ ⎪⎝⎭, 又()21f -=,()10f -=,()01f =-,()10f =,()23f =,所以2021a a <+≤,所以112a -≤<-或102a <≤, 故a 的取值范围为111,0,22⎡⎫⎛⎤--⋃⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】本题主要考查了含绝对值不等式的求解及应用,其中解答中熟记含绝对值不等式的解法,以及合理利用绝对值不等式的性质是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.。
安徽省宿州市2019-2020学年高考第三次大联考数学试卷含解析

安徽省宿州市2019-2020学年高考第三次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知:cos sin 2p x y π⎛⎫=+⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】【分析】 根据诱导公式化简sin cos 2y y π⎛⎫+=⎪⎝⎭再分析即可. 【详解】 因为cos sin cos 2x y y π⎛⎫=+= ⎪⎝⎭,所以q 成立可以推出p 成立,但p 成立得不到q 成立,例如5cos cos 33ππ=,而533ππ≠,所以p 是q 的必要而不充分条件. 故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.2.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足PA m PF =,若m 取得最大值时,点P 恰好在以,A F 为焦点的椭圆上,则椭圆的离心率为( )A 1B 1CD 【答案】B【解析】【分析】设(),P x y ,利用两点间的距离公式求出m 的表达式,结合基本不等式的性质求出m 的最大值时的P 点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设(),P x y ,因为A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点, 所以()()0,1,0,1A F -,则PAm PF ==== 当0y =时,1m =,当0y >时,m ==≤= 当且仅当1y =时取等号,∴此时()2,1P ±,2PA PF ==, Q 点P 在以,A F 为焦点的椭圆上,22c AF ==,∴由椭圆的定义得22a PA PF =+=,所以椭圆的离心率212c c e a a ====,故选B. 【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.3.已知角α的终边经过点P(00sin 47,cos 47),则sin(013α-)= A .12 B .C .12- D . 【答案】A【解析】【详解】由题意可得三角函数的定义可知:22cos 47sin cos 47sin 47cos 47α==+o o o o ,22sin 47cos sin 47sin 47cos 47α==+o o o o ,则: ()()sin 13sin cos13cos sin13cos 47cos13sin 47sin131cos 4713cos 60.2ααα-=-=-=+==o o oo o o oo o o 本题选择A 选项.4.如图,已知平面αβ⊥,l αβ⋂=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( )A .5B .3C .12D .1【答案】B【解析】【分析】PBA ∠为所求的二面角的平面角,由DAP CPB ~n n 得出PA PB,求出P 在α内的轨迹,根据轨迹的特点求出PBA ∠的最大值对应的余弦值【详解】 DA l ⊥Q ,αβ⊥,l αβ⋂=,AD β⊂AD α∴⊥,同理BC α⊥DPA ∴∠为直线PD 与平面α所成的角,CPB ∠为直线PC 与平面α所成的角DPA CPB ∴∠=∠,又90DAP CBP ∠=∠=︒DAP CPB ∴~n n ,12PA DA PB BC == 在平面α内,以AB 为x 轴,以AB 的中垂线为y 轴建立平面直角坐标系则()()3030A B -,,,,设()()0P x y y >, ()()2222233x y x y ∴++=-+()22516x y ++= P ∴在α内的轨迹为()50M -,为圆心,以4为半径的上半圆Q 平面PBC ⋂平面BC β=,PB BC ⊥,AB BC ⊥PBA ∴∠为二面角P BC D --的平面角,∴当PB 与圆相切时,PBA ∠最大,cos PBA ∠取得最小值 此时4843PM MB MP PB PB ==⊥=,,,433cos 82PB PBA MB ∠=== 故选B【点睛】 本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.5.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .17【答案】B【解析】【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果.【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=,样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915-=.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.6.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】求得()51x ax +的二项展开式的通项为15C k k k a x +⨯⋅,令2k =时,可得3x 项的系数为90,即25290C =a ⨯,求得a ,即可得出结果.【详解】若3a =则()()55=113x ax x x ++二项展开式的通项为+15C 3k k k x ⨯⋅,令13k +=,即2k =,则3x 项的系数为252C 3=90⨯,充分性成立;当()51x ax +的展开式中3x 项的系数为90,则有25290C =a ⨯,从而3a =±,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.7.设2log 3a =,4log 6b =,0.15c -=,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【答案】A【解析】【分析】先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,a b ,再由中间值1可得三者的大小关系.【详解】 ()2log 31,2a =∈,()422log 6log 1,log 3b ==,()0.150,1c -=∈,因此a b c >>,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.8.设a R ∈,0b >,则“32a b >”是“3log a b >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】根据对数的运算分别从充分性和必要性去证明即可.【详解】若32a b >, 0b >,则3log 2a b >,可得3log a b >;若3log a b >,可得3a b >,无法得到32a b >,所以“32a b >”是“3log a b >”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:① 若p q ⇒为真命题且q p ⇒为假命题,则命题p 是命题q 的充分不必要条件;② 若p q ⇒为假命题且q p ⇒为真命题,则命题p 是命题q 的必要不充分条件;③ 若p q ⇒为真命题且q p ⇒为真命题,则命题p 是命题q 的充要条件;④ 若p q ⇒为假命题且q p ⇒为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤ 判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.9.下列与函数y =定义域和单调性都相同的函数是( ) A .2log 2x y = B .21log 2x y ⎛⎫= ⎪⎝⎭ C .21log y x = D .14y x = 【答案】C【解析】【分析】分析函数y =的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项. 【详解】函数y =的定义域为()0,∞+,在()0,∞+上为减函数. A 选项,2log 2x y =的定义域为()0,∞+,在()0,∞+上为增函数,不符合.B 选项,21log 2x y ⎛⎫= ⎪⎝⎭的定义域为R ,不符合. C 选项,21log y x =的定义域为()0,∞+,在()0,∞+上为减函数,符合. D 选项,14y x =的定义域为[)0,+∞,不符合.故选:C【点睛】本小题主要考查函数的定义域和单调性,属于基础题.10.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( )A .2-B .1-C .1D .2【答案】C【解析】【分析】利用等差数列的性质化简已知条件,求得2a 的值.【详解】由于等差数列{}n a 满足443S a =+,所以123443a a a a a +++=+,1233a a a ++=,2233,1a a ==. 故选:C【点睛】本小题主要考查等差数列的性质,属于基础题. 11.过双曲线()2222:10,0x y C a b a b-=>>左焦点F 的直线l 交C 的左支于,A B 两点,直线AO (O 是坐标原点)交C 的右支于点D ,若DF AB ⊥,且BF DF =,则C 的离心率是( ) A .5 B .2 C .5 D .10 【答案】D【解析】【分析】如图,设双曲线的右焦点为2F ,连接2DF 并延长交右支于C ,连接FC ,设2DF x =,利用双曲线的几何性质可以得到2DF x a =+,4FC x a =+,结合Rt FDC ∆、2Rt FDF ∆可求离心率.【详解】如图,设双曲线的右焦点为2F ,连接FC ,连接2DF 并延长交右支于C .因为2,==FO OF AO OD ,故四边形2FAF D 为平行四边形,故2FD DF ⊥.又双曲线为中心对称图形,故2F C BF =.设2DF x =,则2DF x a =+,故22F C x a =+,故4FC x a =+.因为FDC ∆为直角三角形,故()()()2224222x a x a x a +=+++,解得x a =.在2Rt FDF ∆中,有22249c a a =+,所以c e a ===. 故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于,,a b c 的方程,本题属于难题.12.已知函数2,0()0x x f x x -⎧⎪=>…,若()02f x <,则0x 的取值范围是( ) A .(,1)-∞-B .(1,0]-C .(1,)-+∞D .(,0)-∞【答案】B【解析】【分析】 对0x 分类讨论,代入解析式求出0()f x ,解不等式,即可求解.【详解】函数2,0()0x x f x x -⎧⎪=>…,由()02f x < 得00220x x -⎧<⎪⎨⎪⎩…或020x <>⎪⎩ 解得010-<x ….故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
安徽六校2019届高三第二次联考数学(文)试卷(含答案)

安徽六校教育研究会2019届高三第二次联考数学试题(文)考试时间:120 分钟;试卷分值:150 分注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{M x =∈R 2||}x x =,{1,0,1}N =-,则MN =( )A .{}0B .{}1C .{}0,1D .{}1,0,1-2.设z =1i1i +-,z 是z 的共轭复数,则z z ⋅=( ) A .1- B .i C .1 D .43. 钝角三角形ABC 的面积是1,且AB = AC = 2,则BC =( )A B C .1 D 14.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌” 就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为n a ,则1a =( )A .23B .32C .35D . 385.将函数x y cos =的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y =sin ()6x π-的图象,则ϕ等于( )A .6π B .56πC . 34πD .35π6.两个非零向量,a b 满足||||2||+=-=a b a b a ,则向量b 与-a b 夹角为( )A. 56πB. 6πC. 23π D. 3π7.某个微信群某次进行的抢红包活动中,群主所发红包的总金额为10元,被随机分配为2.49元、1.32元、2.19元、0.63元、3.37元,共5份,供甲、乙等5人抢,每人只能抢一次,则 甲、乙二人抢到的金额之和不低于4元的概率是( )A .25 B .12 C .34 D .568.已知某几何体的三视图如图所示,则该几何体的体积为( )A .38π B .4π C .524π D .724π(第8题图) (第10题图)9.已知双曲线22221(0)x y a b a b-=,>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=相交的弦长为a 3,则双曲线的离心率为( )A .3B .73C D .55 10.执行如图所示的程序框图,若输出的p 的值等于11,那么输入的N 的值可以是( )A .121B .120C .11D .10 11.下列命题是假命题...的是( ) A .某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,若用分层抽样的方法抽出一个容量为30的样本,则一般职员应抽出18人B .用独立性检验(2×2列联表法)来考察两个分类变量是否有关系时,算出的随机变量K 2的值越大,说明“X 与Y 有关系”成立的可能性越大C .已知向量a (1,2)x =-,b (2,1)=,则2->x 是0⋅>a b 的必要条件D .若()()12321-222++=++y x y x ,则点),(y x M 的轨迹为抛物线12.若对于函数()()2ln 1f x x x =++图象上任意一点处的切线1l ,在函数x xx a x g -=2c o s 2s i n 2)(的图象上总存在一条切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A .(,[2,)-∞+∞B .1⎡-⎢⎣⎦C .12122⎛⎡⎤--∞+∞ ⎢⎥ ⎝⎦⎣⎦,,D .112⎤⎥⎣⎦,二、填空题:本题共4小题,每小题5分,共20分.13.设,x y 满足不等式组1030,x y x y x y -+≥⎧⎪+-≤⎨⎪∈⎩N ,则2x y -的所有值构成的集合中元素个数为____个.14.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.今有抛物线22y px =(0p >),如图,一平行x 轴的光线射向抛物线上的点P ,反射后又射向抛物线上的点Q ,再反射后又沿平行x 轴方向射出,且两平行光线间的最小距离为3,则抛物线的方程为 .(第14题图) (第16题图)15.已知等比数列{}n a 的首项为32,公比为12-,前n 项和为n S ,且对任意的n ∈N *,都有12n nA SB S ≤-≤恒成立,则B A -的最小值为______________. 16.如图,在侧棱长为3的正三棱锥A-BCD 中,每个侧面都是等腰直角三角形,在该三棱锥的表面上有一个动点P ,且点P 到点B 的距离始终等于P 在三棱锥表面形成的曲线的长度为_____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(本小题满分12分)已知在锐角ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=.(Ⅰ)求角A 的大小; (Ⅱ)已知函数tx x f -=1)(,且方程0)cos 3()(sin =+B f B f 有解,求实数t 的取值范围.18.(本小题满分12分)詹姆斯·哈登(James Harden )是美国NBA 当红球星,自2012年10月加盟休斯顿火箭队以来,逐渐成长为球队的领袖.2017-18赛季哈登当选常规赛MVP(最有价值(Ⅰ)根据表中数据,求y 关于t 的线性回归方程a t b y ˆˆ+=(110t ≤≤,t ∈N *);(Ⅱ)根据线性回归方程预测哈登在2019-20赛季常规赛场均得分.【附】对于一组数据1122(,),(,),(,)n n t y t y t y ,其回归直线a t b yˆˆˆ+=的斜率和截距的最小二乘DA估计分别为:∑∑==---=ni ini i it ty y t tb121)())((ˆ,t b y a ˆˆ-=. (参考数据:6.17))((61=--∑=i ii y y t t ,计算结果保留小数点后一位)19、(本小题满分12分)如图,ABCD 为矩形,点A 、E 、B 、F 共面,且ABE ∆和ABF ∆均为等腰直角三角形,且BAE AFB ∠=∠=90°.(Ⅰ)若平面ABCD ⊥平面AEBF ,证明平面 BCF ⊥平面ADF ;(Ⅱ)问在线段EC 上是否存在一点G ,使得 BG ∥平面CDF ,若存在,求出此时三棱锥G-ABE 与三棱锥G-ADF 的体积之比.20.(本小题满分12分)已知函数()21x f x e x ax =---. (Ⅰ)若f (x )在定义域内单调递增,求实数a 的范围;(Ⅱ)设函数()()3x g x xf x e x x =-++,若()g x 至多有一个极值点,求a 的取值集合.21.(本小题满分12分)如图,C 、D 是离心率为12的椭圆的左、右顶点,1F 、2F 是该椭圆的左、右焦点, A 、B 是直线x =-4上两个动点,连接AD 和BD ,它们分别与椭圆交于点E 、F 两点,且线段EF 恰好过椭圆的左焦点1F . 当EF CD ⊥时,点E 恰为线段AD 的中点.(Ⅰ)求椭圆的方程;(Ⅱ)求证:以AB 为直径的圆始终与直线EF 相切.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.在直角坐标系xOy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=-⎩(t 为参数,0απ<<). 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系(且两种坐标系取相同的长度单位),曲线C 的极坐标方程为24sin cos θρθ=. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 相交于A 、B 两点,若AB ≥16,求角α的取值范围.23.已知关于x 的函数()f x =|1|||x x m ++-.(Ⅰ)若()3f x ≥对所有的x ∈R 恒成立,求实数m 的取值范围;(Ⅱ)若关于x 的不等式2()2f m m x x -≥-的解集非空,求实数m 的取值范围.安徽六校教育研究会2019届高三第二次联考数学试题(文)参考答案13、7 14、23y x = 15、136 162 17、解:(1)在ABC △中,由正弦定理得sin sin sin cos 0A B B A -=.……………(2分) 即()sin sin cos 0B A A -=,又角B 为三角形内角,sin 0B ≠,所以sin cos 0A A -=,tan (4分)又因为A ………………………………(6分)(2))(x f 的图像关于)0,(t 对称,由0)cos 3()(sin =+B f B f ,可得t B B 2cos 3sin =+,)3sin(π+=B t ,……………(9分)又ABC △为锐角三角形,所以24ππ<<B ,……………(10分)653127πππ<+<B ,426)3sin(21+<+<πB ,所以)426,21(+∈t .………………………………(12分)18、解:(1)由题意可知:5.3=t ,……………(1分)9.27=y ,……………(2分)622222221()( 2.5)( 1.5)(0.5)0.5 1.5 2.517.5i i t t =-=-+-+-+++=∑,……………(4分)∴0.15.176.17^==b ,………………………………(6分) 又4.245.30.19.27^^=⨯-=-=t b y a, ∴y 关于t 的线性回归方程为 1.024.4y t =+. (010t ≤≤,*t ∈N )………(8分) (2)由(1)可得,年份代码8t =,……………(9分) 此时 1.0824.432y =⨯+=,所以,可预测哈登在2019-20赛季常规赛场均得分为32.4. ………………………………(12分)19、证明:(1)∵ABCD 为矩形,∴BC ⊥AB ,又∵平面ABCD ⊥平面AEBF ,BC ⊂平面ABCD ,平面ABCD∩平面AEBF=AB , ∴BC ⊥平面AEBF , ……………(2分)又∵AF ⊂平面AEBF ,∴BC ⊥AF. ……………(3分) ∵∠AFB=90°,即AF ⊥BF ,且BC 、BF ⊂平面BCF ,BC∩BF=B , ∴AF ⊥平面BCF. ……………(5分)又∵AF ⊂平面ADF ,∴平面ADF ⊥平面BCF. ………………………………(6分) (2)∵BC ∥AD ,AD ⊂平面ADF ,∴BC ∥平面ADF.∵ABE ∆和ABF ∆均为等腰直角三角形,且BAE AFB ∠=∠=90°, ∴∠FAB=∠ABE=45°,∴AF ∥BE ,又AF ⊂平面ADF ,∴BE ∥平面ADF , ∵BC∩BE=B ,∴平面BCE ∥平面ADF.延长EB 到点H ,使得BH =AF ,又BC //AD ,连CH 、HF ,易证ABHF 是平行四边形, ∴HF //AB //CD ,∴HFDC 是平行四边形,∴CH ∥DF.过点B 作CH 的平行线,交EC 于点G ,即BG ∥CH ∥DF ,(DF ⊂平面CDF ) ∴BG ∥平面CDF ,即此点G 为所求的G 点. ………………………………(9分) 又22AF BH ==,∴EG=23EC ,又2ABE ABF S S ∆∆=, 2444433333G ABE C ABE C ABFD ABF B ADF G ADF V V V V V V ------=====, 故43G ABE G ADF V V --=..………………………………(12分) 20、解:(1)由02)('≥--=a x e x f x,……………(1分)得x e a x 2-≤, 令x e x h x 2)(-=,02)('=-=xe x h .……………(3分)得2ln =x ,当2ln <x 时,0)('<x h ,当2ln >x 时,0)('>x h .故当2ln =x 时,2ln 22)2(ln )(min -==h x h .2ln 22-≤∴a .………………………………(6分) (2) x x e ax xe x g --=2)(,)2()('a e x x g x -=.……………(7分)当0≤a 时,由0)(',0>>x g x 且0)(',0<<x g x ,故0是)(x g 唯一的极小值点;……………(9分)令,0)('=x g 得)2ln(,021a x x ==. 当21=a 时,21x x =,0)('≥x g 恒成立,)(x g 无极值点.故⎭⎬⎫⎩⎨⎧≤∈210或a a a .………………………………(12分)21. 解(1)∵当EF CD ⊥时,点E 恰为线段AD 的中点,∴4a c c +=-,又12c e a ==,联立解得:1c =,2a =,b =……………(3分)∴椭圆的方程为22143x y +=.………………………………(4分) (2)设EF 的方程为:1x my =-,E (11,x y )、F (22,x y ),221431x y x my ⎧+=⎪⎨⎪=-⎩联立得:22(34)690m y my +--=∴22(6)36(34)0m m ∆=-++>,∴122122634934m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩……(*) ………………………………(6分) 又设(4,)A A y -,由A 、E 、D 三点共线得11116623A y y y x my --==--,同理可得2263B y y my -=-. ……………(8分)∴22121212221212122296236623()34346()6()696333()9393434A B mmy y my y y y m m y y m m my my m y y m y y m m m m -----++++=+=-=-=----++-+++∴1212221212122266||||18()333()9393434A B y y y y y y my my m y y m y y m m m m ----=-===---++-+++.………………………………(10分)设AB 中点为M ,则M 坐标为(4,2A By y +-)即(4,-3m ), ∴点M 到直线EF的距离211||||22A B d y y AB ===-=.故以AB 为直径的圆始终与直线EF 相切. ………………………………(12分)22. 解:(1)∵24sin cos θρθ=,∴2cos 4sin ρθθ=,∴22cos 4sin ρθρθ=,……………(2分) 即24x y =. 故曲线C 的直角坐标方程为24x y =. ………………………………(4分)(2)将直线l 的参数方程代入曲线C 中得 22cos 4(1sin )t t αα=-,∴22cos 4sin 40t t αα⋅+⋅-=,由题意cos 0α≠,2212212216sin 16cos 164sin cos 4cos t t t t ααααα⎧⎪∆=+=⎪-⎪+=⎨⎪-⎪=⎪⎩……………(6分)∴1224||||16cos AB t t α=-==≥,……………(7分) ∴21cos 4α≤,∴11cos 22α-≤≤且cos 0α≠,又0απ<<, ∴角α的取值范围为{|32ππαα≤<或2}23ππα<≤. ………………………………(10分) 23. 解:(1)()|1||||1|3f x x x m m =++-≥+≥,∴13m +≥或13m +≤-, ∴2m ≥或4m ≤-.故m 的取值范围为(,4][2,)-∞-+∞. ………………………………(5分) (2)∵2()2f m m x x -≥-的解集非空,∴2min |1|2()m m x x +-≥-,∴1|1|24m m +≥-,……………(7分) ①当18m <时,1204m -<,1|1|24m m +≥-恒成立,即18m <均符合题意;②当18m ≥时,1204m -≥,10m +>,∴不等式1|1|24m m +≥-可化为1124m m +≥-,解之得1584m ≤≤.由①②得,实数m 的取值范围为5(,]4-∞. ………………………………(10分)。
2019年12月安徽省皖江名校联盟2020届高三毕业班联考检测数学(文)试题(解析版)
绝密★启用前安徽省皖江名校联盟2020届高三毕业班上学期12联考检测数学(文)试题(解析版)2019年12月一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z 满足()1243i z i -=+(i 为虚数单位),则复数z 的模等于( )C. D. 【答案】B【解析】【分析】根据复数模的性质和求解直接解得结果即可.【详解】4312i z i +===- 故选:B【点睛】本题考查复数模长的求解,涉及到复数模的性质的应用,属于基础题.2.已知全集为R ,集合{}2,1,0,1,2A =--,102x B x x -⎧⎫=<⎨⎬+⎩⎭,则()U A C B ⋂的元素个数为( )A. 1B. 2C. 3D. 4 【答案】C【解析】【分析】解分式不等式求得集合B ,根据交集和补集的定义求得集合()U A C B ⋂,进而得到元素个数. 【详解】{}10212x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭{2U C B x x ∴=≤-或}1x ≥ (){}2,1,2U A C B ∴=-,有3个元素故选:C【点睛】本题考查集合元素个数的求解,涉及到分式不等式的求解、交集和补集的混合运算,属于基础题.3.已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论.【详解】(),a b 为开区间 ∴最小值点一定是极小值点 ∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【点睛】本题考查充分条件、必要条件的判断,涉及到导数极值与最值的相关知识;关键是能够明确极值点处的导数值为0,但导数值为0的点未必是极值点.。
安徽省2019届高三上学期第二次联考数学(文)试题(解析版)
安徽省2019届高三上学期第二次联考数学(文)试题一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={x|x −2<0},B ={x|−3<2x <6},则A ∩B =( )A. {x|−32<x <3}B. {x|−2<x <2}C. {x|−32<x <2} D. {x|−2<x <3} 【答案】C【解析】解:∵A ={x|x <2},B ={x|−32<x <3}, ∴A ∩B ={x|−32<x <2}. 故选:C .求解一元一次不等式简化集合A 、B ,然后直接利用交集运算得答案. 本题考查了交集及其运算,是基础题.2. 复数z =(1+i)(3+i),则|z|=( )A. 2√2B. 8C. 2√5D. 20【答案】C【解析】解:∵z =(1+i)(3+i)=2+4i , ∴|z|=√22+42=2√5. 故选:C .利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3. 在△ABC 中,AB =AC ,∠BAC =π5,则向量AB ⃗⃗⃗⃗⃗ 与BC⃗⃗⃗⃗⃗ 的夹角为( ) A. π5B. 3π5C. 2π5D. 4π5【答案】B【解析】解:如图,∵AB =AC ,∠BAC =π5, ∴∠ABC =∠ACB =2π5,则向量AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为π−∠ABC =3π5.故选:B .由题意画出图形,数形结合得答案.本题考查向量的夹角,考查数形结合的解题思想方法,是基础题.4.设点P(x,y)是图中阴影部分表示的平行四边形区域(含边界)内一点,则z=x−2y的最小值为()A. −1B. −2C. −4D. −6【答案】D【解析】解:由图可知,当直线z=x−2y经过点(2,4)时,z取最小值−6.故选:D.利用线性规划的知识,求出最优解,然后求解z=x−2y的最小值.本题考查线性规划的简单应用,是基本知识的考查.5.已知向量e1⃗⃗⃗ ,e2⃗⃗⃗ 满足|e1⃗⃗⃗ |=2|e2⃗⃗⃗ |=2,“e1⃗⃗⃗ ⋅e2⃗⃗⃗ >1”是“|e1⃗⃗⃗ +e2⃗⃗⃗ |>√6”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】解:若|e1+e2|>√6,则|e1+e2|2>4+2e1⋅e2+1>6,即e1⋅e2>12.故“e1⋅e2>1”是“|e1+e2|>√6”的充分不必要条件.故选:B.根据向量的模的计算可得即e1⋅e2>12,再根据充分条件和必要条件的定义即可判断.本题考查了向量的模和充分条件和必要条件,属于基础题.6.将偶函数f(x)=sin(3x+φ)(0<φ<π)的图象向右平移π12个单位长度后,得到的曲线的对称中心为()A. (kπ3+π4,0)(k∈Z) B. (kπ3+π12,0)(k∈Z)C. (kπ3+π6,0)(k∈Z) D. (kπ3+7π36,0)(k∈Z)【答案】A【解析】解:∵f(x)=sin(3x +φ)(0<φ<π)为偶函数, ∴φ=π2, ∴f(x)=cos3x . ∴f(x −π12)=cos(3x −π4). 令3x −π4=kπ+π2(k ∈Z),得x =kπ3+π4(k ∈Z).故选:A .利用函数为偶函数及φ的范围即可求得φ的值,根据函数y =Asin(ωx +φ)的图象变换求得得到曲线的解析式,根据余弦函数的性质即可求解.本题考查了三角函数的图象平移,考查了三角函数奇偶性的性质,是基础题.7. 若函数f(x)=lg(sinx +mcosx)的最大值为12,则|m|=( )A. 2B. 2√2C. 3D. √10【答案】C【解析】解:f(x)=lg[√1+m 2sin(x +φ)]≤lg√1+m 2=12,则√1+m 2=10,m =3. 故选:C .利用两角和与差的三角函数化简表达式,通过函数的最大值,转化求解m 即可. 本题考查函数的最值的求法,两角和与差的三角函数的应用,考查计算能力.8. △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知acsinB =10sinC ,a +b =7,且cos C 2=√155,则c =( )A. 4B. 5C. 2√6D. 7【答案】B【解析】解:∵acsinB =10sinC.由正弦定理可得:∴abc =10c ,即ab =10. ∵cos C2=√155,∴cosC =2×(√155)2−1=15,则c =√a 2+b 2−2abcosC =√72−2×10−20×15=5.故选:B .利用正弦定理以及二倍角公式,结合余弦定理转化求解即可. 本题考查正弦定理以及余弦定理的应用,考查转化思想以及计算能力.9. 若函数f(x)=log 13(x 2+2a −1)的值域为R ,则a 的取值范围为( ) A. (−∞,12)B. (−∞,12]C. [12,+∞)D. (12,+∞)【答案】B【解析】解:依题意可得y=x2+2a−1要取遍所有正数,则2a−1≤0,即a≤12.故选:B.利用复合函数以及的对数函数的性质求解即可.本题考查复合函数的应用,函数的值域的求法,考查转化思想以及计算能力.10.设S n是数列{a n}的前n项和,若a n+S n=2n,2b n=2a n+2−a n+1,则1b1+12b2+⋯+1100b100=()A. 9798B. 9899C. 99100D. 100101【答案】D【解析】解:当n≥2时,a n−1+S n−1=2n−1,则a n−a n−1+(S n−S n−1)=2n−2n−1= 2n−1,即2a n−a n−1=2n−1,则b n=log22n+1=n+1,从而1nb n =1n−1n+1,故1b1+12b2+⋯+1100b100=1−12+12−13+⋯+199−1100+1100−1101=1−1101=100101.故选:D.利用递推关系式,求解数列的通项公式,然后利用裂项相消法求解数列的和即可.本题考查数列的递推关系式的应用,数列求和的方法,考查计算能力.11.函数f(x)=x3sinx在[−π,π]上的图象大致为()A. B.C. D.【答案】B【解析】解:f(−x)=(−x)3sin(−x)=x 3sinx =f(x),则函数f(x)为偶函数,故排除A ,D , 当x =5π6时,f(5π6)=(56π)3×12>8, 故选:B .先判断函数为偶函数,再根据特殊值计算即可.本题考查了函数图象识别,考查了函数的奇偶性和函数值,属于基础题.12. 若函数f(x)=52ln(x +1)+1a(x+1)−ax 在(0,1)上为增函数,则a 的取值范围为()A. [−1,0)∪[12,1]B. (−∞,0)∪[14,2]C. [−1,0)∪(0,14]D. (−∞,0)∪[12,1]【答案】D【解析】解:函数f(x)=52ln(x +1)+1a(x+1)−ax 在(0,1)上为增函数,令t =x +1,则t ∈(1,2),可得ℎ(t)=52lnt +1at −at +a ,t ∈(1,2),依题意可得ℎ′(t)=52t −1at 2−a ≥0对t ∈(1,2)恒成立, 即at 2−52t +1a ≤0对t ∈(1,2)恒成立. 设g(t)=at 2−52t +1a ,t ∈(1,2).当a >0时,{g(1)=a +1a −52≤0g(2)=4a +1a −5≤0解得12≤a ≤1. 当a <0时,∵g(0)=1a <0,−−522a =54a<0,∴g(t)<0对t ∈(1,2)恒成立.综上,a 的取值范围为(−∞,0)∪[12,1]. 故选:D .利用换元法,通过函数的导数,转化通过函数的单调性求解即可. 本题考查函数的导数的应用,换元法的应用,考查转化思想以及计算能力.二、填空题(本大题共4小题,共20.0分)13. 若向量AB ⃗⃗⃗⃗⃗ =(2,3),BC ⃗⃗⃗⃗⃗ =(−4,m),且A ,B ,C 三点共线,则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =______. 【答案】−26【解析】解:∵A ,B ,C 三点共线, ∴AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ , ,∴2m =3×(−4), 则m =−6,AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =−8−18=−26.故答案为:−26.A ,B ,C 三点共线,可得AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,然后结合向量共线的坐标表示即可求解. 本题主要考查了平面向量共线的坐标表示,属于基础试题.14. 某第三方支付平台的会员每天登陆该平台都能得到积分,第一天得1积分,以后只要连续登陆每天所得积分都比前一天多1分.某会员连续登陆两周,则他两周共得______积分. 【答案】105【解析】解:依题意可得该会员这两周每天所得积分依次成等差数列, 首项为1,公差为1. 故他这两周共得(1+14)×142=105积分.故答案为:105.利用等差数列的通项公式与求和公式即可得出.本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.15. 若θ∈(−π6,π12),且2sin 2θ+√3sin2θ=−15,则tan(2θ+π12)=______. 【答案】17【解析】解:由2sin 2θ+√3sin2θ=−15,得2sin 2θ+√3sin2θ=1−cos2θ+√3sin2θ=1+2sin(2θ−π6)=−15, ∴sin(2θ−π6)=−35,∵θ∈(−π6,π12),∴2θ−π6∈(−π2,0),则cos(2θ−π6)=45,∴tan(2θ−π6)=−34, ∴tan(2θ+π12)=tan[(2θ−π6)+π4]=1+(−34)1−(−34)=17, 故答案为:17.由已知可得sin(2θ−π6)=−35,进一步得到tan(2θ−π6)=−34,再由两角和的正切求解. 本题考查三角函数的化简求值,考查两角和的正切,是基础题.16. 若f(x)+3f(1x )=x +3x −2log 2x 对x ∈(0,+∞)恒成立,且存在x 0∈[2,4],使得f(x 0)>m 成立,则m 的取值范围为______. 【答案】(−∞,6)【解析】解:由f(x)+3f(1x )=x+3x−2log2x……①那么f(1x )+3f(x)=1x+3x−2log21x……②由①②解得f(x)=x+log2x∵x0∈[2,4],使得f(x0)>m成立,即f(x0)max>m成立;∵f(x)=x+log2x在x∈[2,4]是递增函数,∴f(x)max=f(4)=6;即6>m;可得m的取值范围(−∞,6).故答案为:(−∞,6).利用构造思想求解f(x)的解析式,由x0∈[2,4],使得f(x0)>m成立,即f(x0)max>m;即可得m的取值范围.本题主要考查了函数恒成立问题的求解,转化思想的应用,利用单调性求区间内的最值.三、解答题(本大题共6小题)17.在数列{a n}中,a1=1,a n+1a n =4(n+1)2n(n+2),设b n=n+1n⋅a n.(1)证明:数列{b n}是等比数列,并求{a n}的通项公式;(2)求{b n}的前n项和T n.【答案】解:(1)证明:数列{a n}中,a1=1,a n+1a n =4(n+1)2n(n+2),设b n=n+1n⋅a n,b n+1 b n =n+2n+1⋅a n+1n+1n⋅a n=n(n+2)(n+1)2⋅a n+1a n=n(n+2)(n+1)2⋅4(n+1)2n(n+2)=4,可得数列{b n}是首项为2,公比为4的等比数列.从而b n=n+1n⋅a n=2⋅4n−1,则a n=nn+1⋅22n−1;(2)由(1)知,b n=2⋅4n−1,所以T n=2(1+4+⋯+4n−1),即T n=2×(1−4n)1−4=2(4n−1)3.【解析】(1)结合条件由等比数列的定义即可得证,再由等比数列的通项公式可得所求通项公式;(2)由等比数列的求和公式,化简计算可得所求和.本题考查等比数列的定义和通项公式、求和公式的运用,考查化简整理的运算能力,属于基础题.18.已知函数f(x)=sin(mx−π3)(0<m<4)的图象关于直线x=5π12对称.(1)求f(x)的最小正周期;(2)求f(x)在[0,2π]上的单调递增区间;(3)若tanα=−2,求f(α).【答案】解:(1)∵f(x)的图象关于直线x=5π12对称,∴5π12m−π3=kπ+π2(k∈Z),∴m=2+125k(k∈Z),∵0<m<4,∴m=2.故T=2π2=π.(2)令−π2+2kπ≤2x−π3≤π2+2kπ(k∈Z),得−π12+kπ≤x≤5π12+kπ(k∈Z),∵x∈[0,2π],∴x∈[0,5π12]∪[11π12,17π12]∪[23π12,2π].故f(x)在[0,2π]上的单调递增区间为[0,5π12]∪[11π12,17π12]∪[23π12,2π].(3)f(α)=12sin2α−√32cos2α=12×2tanα1+tan2α−√32×1−tan2α1+tan2α=−25−√32×−35=3√3−410.【解析】(1)由f(x)的图象关于直线x=5π12对称,结合正弦函数的性质可知x=5π12为函数取得最值,结合正弦函数的性质及范围可求m,进而可求周期;(2)结合(1)的m及正弦函数的性质,令−π2+2kπ≤2x−π3≤π2+2kπ,然后结合所给x的范围可求;(3)把所求的f(α)利用同角基本关系转化为关于tanα的关系式,代入可求.本题主要考查了正弦函数的对称性,周期及单调区间的求解,还考查了同角基本关系的综合应用,试题具有一定的综合性.19.在△ABC中,已知3+2sinB=4cos2B,且B为锐角.(1)求sinB;(2)若(4+√15)sinB=AC⋅(sinA+sinC),且△ABC的面积为√152,求△ABC的周长.【答案】解:(1)△ABC中,3+2sinB=4cos2B=4(1−2sin2B).解得sinB=14或sinB=−12;又B为锐角,∴sinB=14;(2)设内角A,B,C所对的边分别为a,b,c,∵(4+√15)sinB=AC⋅(sinA+sinC),∴(4+√15)b=b⋅(a+c),∴a+c=4+√15;又∵△ABC的面积为√152,∴12acsinB=12ac×14=√152,∴ac=4√15;当B为锐角,cosB=√154,由余弦定理得b2=a2+c2−2accosB=(a+c)2−2ac−2ac×√154=1,解得b=1,∴△ABC的周长为5+√15;当B为钝角时,cosB=−√154,由余弦定理得b2=a2+c2−2accosB=(a+c)2−2ac−2ac×√154=61,∴b=√61,∴△ABC的周长为4+√15+√61.【解析】(1)利用二倍角公式化简3+2sinB=4cos2B,解方程求出sinB的值;(2)利用正弦定理求得a+c的值,再根据三角形的面积公式和余弦定理求得b的值,从而求出△ABC的周长.本题考查了正弦、余弦定理的应用问题,也考查了三角形面积公式与周长计算问题,是中档题.20.△ABC的内角A,B,C所对的边分别为a,b,c.已知4csinC=(b+a)(sinB−sinA).(1)试问a,b,c是否可能依次成等差数列?为什么?(2)当cosC取得最小值时,求ca.【答案】解:(1)∵4csinC=(b+a)(sinB−sinA),∴4sin2C=sin2B−sin2A,∴4c2=b2−a2.假设a,b,c依次成等差数列,则b=a+c2,则4c2+a2=(a+c2)2,即15c2+3a2=2ac,又15c2+3a2≠2ac,从而假设不成立,故a,b,c不可能依次成等差数列.(2)∵4c2=b2−a2,∴c2=b2−a24.∵cosC=a2+b2−c22ab ,∴cosC=a2+b2−b2−a242ab=5a2+3b28ab.∴cosC=5a2+3b28ab ≥2√5a2×3b28ab=√154,当且仅当5a2=3b2,即b=√153a时,取等号.∵c2=b2−a24=(√153a)2−a24=a26,∴ca =√66.【解析】(1)利用正弦定理结合假设a,b,c依次成等差数列,转化证明a,b,c不可能依次成等差数列.(2)利用余弦定理以及基本不等式转化求解即可.本题考查数列与三角形的解法,余弦定理的应用,考查转化思想以及计算能力.21.已知函数f(x)=(a−1)lnx+x+ax.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)讨论f(x)的单调性与极值点.【答案】解:(1)当a=1时,f(x)=x+1x ,则f(2)=52,f′(x)=1−1x2,所以所求切线的斜率为k=f′(1)=1−14=34.故所求的切线方程为y−52=34(x−2),即3x−4y+4=0.(2)y=f(x)的定义域为(0,+∞),f′(x)=a−1x +1−ax2=x2+(a−1)x−ax2=(x+a)(x−1)x2.①当a≥0时,当x∈(0,1)时,;当x∈(1,+∞)时,0'/>.所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.此时,f(x)的极小值点为1.②当a<0时,令,得x=−a或x=1.(i)当−1<a<0时,0<−a<1.当x∈(0,−a)∪(1,+∞)时,0'/>,当x∈(−a,1)时,.所以f(x)在(0,−a)和(1,+∞)上单调递增,在(−a,1)上单调递减.此时,f(x)的极小值点为1,极大值点为−a.(ii)当a=−1时,对x∈(0,+∞)恒成立,所以f(x)在(0,+∞)上单调递增,f(x)无极值.(iii)当a<−1时,−a>1,当x∈(0,1)∪(−a,+∞)时,0'/>;当x∈(1,−a)时,.所以f(x)在(0,1)和(−a,+∞)上单调递增,在(1,−a)上单调递减.此时,f(x)的极小值点为−a,极大值点为1.【解析】(1)求出f(x)=x+1x,求出切点坐标,函数的导数,得到切线的斜率,然后求解切线方程.(2)y=f(x)的定义域为(0,+∞),求出函数的导数,通过①当a≥0时,②当a<0时,判断导函数的符号,得到函数的单调性,推出函数的极值点.本题考查函数的导数的应用切线方程以及函数的单调性函数的极值的求法,考查转化思第11页,共12页 想以及分类讨论思想的应用.22. 已知函数f(x)=ae x −x +1.(1)若f(x)在(0,3)上只有一个零点,求a 的取值范围;(2)设x 0为f(x)的极小值点,证明:f(x 0)>−1a 2+2a +34. 【答案】(1)解:因为f(x)在(0,3)上只有一个零点. 所以方程a =x−1e x 在(0,3)上只有一个解. 设ℎ(x)=x−1e x ,则ℎ′(x)=2−x e x ,当0<a <2时, 0'/>;当2<x <3时,. 所以ℎ(x)max =ℎ(2)=1e 2.又ℎ(0)=−1,ℎ(3)=2e 3,故a 的取值范围为(−1,2e 3)∪{1e 2}.(2)证明:,当a ≤0时,恒成立,f(x)无极值,故a >0. 令,得x =−lna . 当x <−lna 时,;当x >−lna 时, 0'/>, 故f(x)的极小值为f(−lna)=2+lna .故要证f(x 0)>−1a 2+2a +34,只需证lna +1a 2−2a +54>0.设函数g(x)=lnx +1x −1,g′(x)=x−1x 2(x >0). 当0<x <1时,;当x >1时, 0'/>. 故g(x)max =g(1)=0.而1a 2−3a +94=(1a −32)2≥0.于是lna +1a 2−2a +54=lna +1a −1+1a 2−3a +94≥0,又lna +1a −1≥0与1a 2−3a +94≥0的取等条件不同,则lna +1a 2−2a +54≥0,从而f(x 0)>−1a 2+2a +34.【解析】(1)f(x)在(0,3)上只有一个零点.方程a =x−1e x 在(0,3)上只有一个解.设ℎ(x)=x−1e x ,则ℎ′(x)=2−xe x ,求解函数的最值,推出结果即可.,当a ≤0时,恒成立,f(x)无极值,故a >0.令,得x =−lna.f(x)的极小值为f(−lna)=2+lna .只需证lna +1a 2−2a +54>0.设函数g(x)=lnx +1x −1,g′(x)=x−1x 2(x >0).判断函数的单调性,求解函数的最大值,然后转化证明即可.本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力.第12页,共12页。
安徽省安庆市2019-2020学年高考第三次大联考数学试卷含解析
安徽省安庆市2019-2020学年高考第三次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知11()x x f x e e x --=-+,则不等式()(32)2f x f x +-≤的解集是( ) A .[)1,+∞ B .[)0,+∞ C .(],0-∞ D .(],1-∞【答案】A 【解析】 【分析】构造函数()()1g x f x =-,通过分析()g x 的单调性和对称性,求得不等式()(32)2f x f x +-≤的解集. 【详解】构造函数()()()11111x x g x f x ex e --=-=-+-,()g x 是单调递增函数,且向左移动一个单位得到()()11x xh x g x e x e =+=-+, ()h x 的定义域为R ,且()()1xx h x e x h x e-=--=-, 所以()h x 为奇函数,图像关于原点对称,所以()g x 图像关于()1,0对称. 不等式()(32)2f x f x +-≤等价于()()13210f x f x -+--≤, 等价于()()320g x g x +-≤,注意到()10g =,结合()g x 图像关于()1,0对称和()g x 单调递增可知3221x x x +-≤⇒≥. 所以不等式()(32)2f x f x +-≤的解集是[)1,+∞. 故选:A 【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.2.已知函数()2x f x x x ln a ⎛⎫=- ⎪⎝⎭,关于x 的方程f (x )=a 存在四个不同实数根,则实数a 的取值范围是( )A .(0,1)∪(1,e )B .10e ⎛⎫ ⎪⎝⎭,C .11e ⎛⎫ ⎪⎝⎭,D .(0,1)【答案】D 【解析】【分析】原问题转化为221x x a a =有四个不同的实根,换元处理令t =,对g (t)21lnt t t ⎫=--⎪⎭进行零点个数讨论. 【详解】由题意,a >2,令t =, 则f (x )=a ⇔2x x x ln a a ⎛⎫-= ⎪⎝⎭⇔221x x a a -=⇔221t -=⇔210lnt t t ⎫-=⎪⎭. 记g (t)21lnt t t ⎫=-⎪⎭.当t <2时,g (t )=2ln (﹣t)t 1t-)单调递减,且g (﹣2)=2, 又g (2)=2,∴只需g (t )=2在(2,+∞)上有两个不等于2的不等根.则210lnt t t ⎫--=⎪⎭221tlntt =-, 记h (t )221tlntt =-(t >2且t≠2), 则h′(t )()()()22222222212122141(1)(1)t t lnt lnt t t lnt t t t ⎛⎫-+- ⎪+--+⎝⎭==--.令φ(t )2211t lnt t -=-+,则φ′(t )()()2222222221211(1)(1)(1)t t t t t t t t t +---=-=-++<2. ∵φ(2)=2,∴φ(t )2211t lnt t -=-+在(2,2)大于2,在(2,+∞)上小于2.∴h′(t )在(2,2)上大于2,在(2,+∞)上小于2, 则h (t )在(2,2)上单调递增,在(2,+∞)上单调递减. 由211222112t t tlnt lnt limlim t →→+==-1,即a <2.∴实数a 的取值范围是(2,2). 故选:D . 【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.3.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在[250,350]内的学生人数为( )A .800B .1000C .1200D .1600【答案】B 【解析】 【分析】由图可列方程算得a ,然后求出成绩在[250,350]内的频率,最后根据频数=总数×频率可以求得成绩在[250,350]内的学生人数.【详解】由频率和为1,得(0.0020.00420.002)501a +++⨯=,解得0.006a =, 所以成绩在[250,350]内的频率(0.0040.006)500.5=+⨯=, 所以成绩在[250,350]内的学生人数20000.51000=⨯=. 故选:B 【点睛】本题主要考查频率直方图的应用,属基础题.4.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( ) A .43i + B .43i -C .43i -+D .43i --【答案】A 【解析】 【分析】利用复数的乘法、除法运算求出z ,再根据共轭复数的概念即可求解.由34zi i =+,则3434431i i z i i +-===--, 所以z =43i +. 故选:A 【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.5.在复平面内,复数z=i 对应的点为Z ,将向量OZ uuu r绕原点O 按逆时针方向旋转6π,所得向量对应的复数是( ) A.12-+ B.12i + C.12-D.12i 【答案】A 【解析】 【分析】由复数z 求得点Z 的坐标,得到向量OZ uuu r的坐标,逆时针旋转6π,得到向量OB uuu r 的坐标,则对应的复数可求. 【详解】解:∵复数z=i (i 为虚数单位)在复平面中对应点Z (0,1), ∴OZ uuu r =(0,1),将OZ uuu r绕原点O 逆时针旋转6π得到OB uuu r , 设OB uuu r=(a ,b),0,0a b <>,则cos 6OZ OB b OZ OB π⋅===u u u r u u u r u u u r u u u r ,即b =, 又221a b +=,解得:1,2a b =-=,∴1,22OB ⎛=- ⎝⎭u u u r ,对应复数为122-+. 故选:A.本题考查复数的代数表示法及其几何意义,是基础题.6.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )A .438π+B .238π+C .434π+D .834π+【答案】A 【解析】由题意得到该几何体是一个组合体,前半部分是一个高为234的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为2131143423423834233V ππ=⨯⨯⨯⨯⨯⨯=+故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7.已知集合{}2,1,0,1,2A =--,2}2{|0B x x x =-+>,则A B =I ( ) A .{}1,0- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1,2--【答案】D 【解析】 【分析】先求出集合B ,再与集合A 求交集即可. 【详解】由已知,22172()024x x x -+=-+>,故B R =,所以A B =I {}2,1,0,1,2--. 故选:D.本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.8.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A 【解析】 【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形, 且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
2019届安徽省重点高中高三大联考数学(文)试题(带答案解析)
2019届安徽省重点高中高三大联考数学(文)试题1.已知集合{}12A x Z x =∈-≤<,则满足条件A B B =I 的集合B 的个数为( ) A .4 B .7C .3D .8 2.已知复数1i z =-,则22z z +,在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.国庆节期间,滕州市实验小学举行了一次科普知识竞赛活动,设置了一等奖、二等奖、三等奖、四等奖及纪念奖,获奖人数的分配情况如图所示,各个奖品的单价分别为:一等奖50元、二等奖20元、三等奖10元,四等奖5元,纪念奖2元,则以下说法中不正确...的是( )A .获纪念奖的人数最多B .各个奖项中二等奖的总费用最高C .购买奖品的费用平均数为6.65元D .购买奖品的费用中位数为5元 4.给出下列四个结论:①若p q ∧是真命题,则p ⌝可能是真命题;②命题“若p 则q ”与命题“若q ⌝,则p ⌝”互为逆否命题;③若“p ⌝或q ”是假命题,则“p 且q ⌝”是真命题;④若p 是q 的充分条件,q 是r 的充分条件,则p 是r 的充分条件.其中正确的个数为( )A .1B .2C .3D .45.已知函数()1,01,0x e x f x x -⎧>=⎨-≤⎩,函数()()g x f x x =-的一个零点为m ,令()23m h x x -=,则函数()h x 是( )A .奇函数且在()0,∞+上单调递增B .偶函数且在()0,∞+上单调递减C .奇函数且在()0,∞+上单调递减D .偶函数且在()0,∞+上单调递增 6.已知双曲线()222210,0x y a b a b-=>>的左、右顶点为A ,B ,点P 为双曲线上异于A ,B 的任意一点,设直线PA ,PB 的斜率分别为1k ,2k ,若1212k k =,则双曲线的离心率为( )A B .2 C D .327.如图,是某几何体的三视图,该几何体的轴截面的面积为8,则该几何体的外接球的表面积为( )A .12512π B .25π C .252π D .100π8.若函数()()23sin2cos 2f x x x x ωωω=π-++,且()3f α=,()2f β=,若αβ-的最小值是2π,则下列结论正确的是( ) A .1ω=,函数()f x 的最大值为1B .12ω=,函数()f x 的最大值为3 C .2ω=,函数()f x 的最大值为3 D .12ω=,函数()f x 的最大值为1 9.如图,在平行四边形ABCD 中,E,F 分别为BC,CD 上的一点,且1,23BE BC DF FC ==u u u v u u u v u u u v u u u v ,则AF DE +=u u u v u u u v ( )A .5133AB AD -u u u v u u u v B .5533AB AD +u u u v u u u vC .4233AB AD -u u u v u u u v D .5133AB AD +u u u v u u u v 10.执行如图所示的程序框图,输出的结果为( )A .1B .2C .3D .411.设G 是ABC V 的重心,且()()()sin sin sin 0A GA B GB C GC ++=u u u r u u u r u u u r ,若ABCV 外接圆的半径为1,则ABC V 的面积为( )A.2 B.4 C .34 D .91612.各项均为正数的等比数列{}n a 满足:634a a a =,18128a a =,函数()2201220f x a x a x a x =++⋅⋅⋅+,若曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线垂直于直线1050kx y m -+=,则k =( )A .12-B .12C .2D .2-13.已知x ,y 满足不等式组230y x x y y ≤⎧⎪+≤⎨⎪≥⎩,则11y z x -=+的取值范围是________. 14.如图,在长方体1111ABCD A B C D -中,对角线1DB 与平面11ADD A ,ABCD ,11DCC D 的夹角分别为α,β,θ,且111118A B BB C B ++=,2221111124A B BB C B ++=,则sin sin sin αβθ++=________.15.已知函数()cos ,01,01x x x f x x x x -≤⎧⎪=-⎨>⎪+⎩,()()23log 3g x x =-,则不等式()()1f g x ⎡⎤<⎣⎦的解集为________.16.已知圆1C :()()22224x y -+-=,2C :()()22212x y +++=,点P 是圆1C 上的一个动点,AB 是圆2C 的一条动弦,且2AB =,则PA PB +u u u r u u u r 的最大值是________.17.已知数列{}n a 的前n 项和为n S ,且()2*23n S n n n N =+∈,数列{}nb 满足:()2*4n n a b n n n N =+∈.(1)求数列{}n b 的通项公式;(2)设数列{}n b 的前n 项和为n T ,当45n T >时,求n 的最小值.18.如图,四边形ABCD 是矩形,2AB =π,4=AD ,E ,F 分别为DC ,AB 上的一点,且23DE DC =,23AF AB =,将矩形ABCD 卷成以AD ,BC 为母线的圆柱的半个侧面,且AB ,CD 分别为圆柱的上、下底面的直径.(1)求证:平面ADEF ⊥平面BCEF ;(2)求四棱锥D BCEF -的体积.19.滕州市公交公司一切为了市民着想,为方便市区学生的上下学,专门开通了学生公交专线,在学生上学、放学的时间段运行,为了更好地掌握发车间隔时间,公司工作人员对滕州二中车站发车间隔时间与侯车人数之间的关系进行了调查研究,现得到如下数据:调查小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据不相邻的概率;(2)若选取的是前两组数据,请根据后四组数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的差均不超过1人,则称为最佳回归方程,在(2)中求出的回归方程是否是最佳回归方程?若规定一辆公交车的载客人数不超过35人,则间隔时间设置为18分钟,是否合适?参考公式:()()()1122211ˆn n i i i ii i n n i i i i x y nx y x x y y b x nx x x ====---==--∑∑∑∑,ˆˆay bx =-.20.已知椭圆C :()222210x y a b a b+=>>的左、右焦点为1F ,2F ,上、下顶点为1B ,2B ,四边形1221B F B F 是面积为2的正方形.(1)求椭圆的标准方程;(2)已知点()2,0P ,过点2F 的直线l 与椭圆交于M ,N 两点,求证:22MPF NPF ∠=∠.21.已知函数()()21202f x ax x a =+≠,()lng x x =. (1)令()()()h x f x g x =-,若曲线()y h x =在点()()1,1h 处的切线的纵截距为2-,求a 的值;(2)设0a >,若方程()()()21g x xf x a x '=-+在区间1e e ⎛⎫ ⎪⎝⎭,内有且只有两个不相等的实数根,求实数a 的取值范围.22.在平面直角坐标系xOy 中,直线l 的参数方程为2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点O 为极点x ,轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=. (1)若直线l 与圆C 相切,求α的值;(2)直线l 与圆C 相交于不同两点A ,B ,线段AB 的中点为Q ,求点Q 的轨迹的参数方程.23.已知不等式32x a b c +≥++,a ,b ,R c ∈.(1)当22a b +=,1c x =+时,解不等式32x a b c +≥++;(2)当2226a b c ++=时,不等式32x a b c +≥++对所有实数a ,b ,c 都成立,求实数x 的取值范围.参考答案1.D【解析】【分析】先求得集合A 的元素,根据A B B =I 得到B A ⊆,由328=求得集合A 子集的个数,也即集合B 的个数.【详解】{}{}121,0,1A x Z x =∈-≤<=-,∵A B B =I ,∴B A ⊆,∵集合A 有3个元素,∴其子集有328=个.故选:D.【点睛】本小题主要考查根据交集的结果求集合,考查子集个数的计算,属于基础题.2.D【解析】【分析】 利用复数的乘方运算、复数的模运算化简2222i z z +=-,由此判断出其对应点所在象限.【详解】∵1i z =-,∴()22221i 22i z z +=-+=-,则22z z +在复平面上对应的点在第四象限.故选:D.【点睛】本小题主要考查复数的乘方运算、复数的模运算,考查复数对应点的坐标所在象限,属于基础题.3.B【解析】【分析】根据扇形统计图判断出纪念奖占的比例,由此判断A 选项的正确性.计算出各奖项的费用,由此判断B 选项的正确性.计算出平均费用,由此判断C 选项的正确性.计算出中位数,由此判断D 选项的正确性.【详解】设参加竞赛的人数为a 人,由扇形统计图可知,一等奖占2%,二等奖占8%,三等奖占15%,四等奖占35%,获得纪念奖的人数占40%,最多,A 正确;各奖项的费用:一等奖2%a 50a ⨯=,二等奖8%20 1.6a a ⨯=,三等奖15%10 1.5a a ⨯=,四等奖35%5 1.75a a ⨯=,纪念奖40%20.8a a ⨯=,B 错误;平均费用为502%208%1015%535%240% 6.65⨯+⨯+⨯+⨯+⨯=元,C 正确;由各个获奖的人数的比例知,购买奖品的费用的中位数为5元,D 正确.故选:B.【点睛】本小题主要考查根据扇形统计图进行分析,属于基础题.4.C【解析】【分析】根据含有逻辑联结词命题真假性的判断,判断①的正确性.利用逆否命题的知识判断②的正确性. 根据含有逻辑联结词命题真假性的判断,判断③的正确性.根据充分条件的概念判断④的正确性.【详解】若p q ∧是真命题,则p ,q 都是真命题,∴p ⌝是假命题,①错误;由逆否命题的定义可得,②正确;若“p ⌝或q ”是假命题,则p ⌝,q 都是假命题,∴p ,q ⌝都是真命题,③正确;④由于p 是q 的充分条件,q 是r 的充分条件,即,p q q r ⇒⇒,则p r ⇒,所以p 是r 的充分条件,故④正确故选:C.【点睛】本小题主要考查含有逻辑联结词命题真假性的判断,考查逆否命题,考查充分条件,属于基础题.5.B【解析】【分析】根据()f x x =,求得x 的值,由此求得m 的值,进而求得()h x 的解析式,由此判断出()h x 的奇偶性和在()0,∞+上的单调性.【详解】函数()()g x f x x =-的零点,即为()f x x =的根,由10x x e x ->⎧⎨=⎩或01x x ≤⎧⎨-=⎩解得,1x =或1x =-,即1m =±,则()2h x x -=,∴函数()h x 是偶函数且在()0,∞+上单调递减.故选:B.【点睛】本小题主要考查幂函数的单调性和奇偶性,考查函数零点的求法,属于基础题.6.C【解析】【分析】设出P 点坐标,求得12,k k 的表达式,利用1212k k =列方程,结合P 在双曲线上,化简求得222b a =,进而求得双曲线的离心率.【详解】由题设知,(),0A a -,(),0B a ,设(),P x y ,则1y k x a =+,2y k x a=-, ∴2122212y y y k k x a x a x a =⨯==+--,∴(),P x y 点在双曲线上,∴()22222b y x a a=-,则()22222212b x a a x a -=-,化简得,222b a =,又222bc a =-,∴2223c a =,则e =. 故选:C.【点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题. 7.B【解析】【分析】根据三视图判断出几何体为圆锥,利用轴截面的面积列方程求得圆锥的高.利用勾股定理列方程求得外接球的半径,进而求得外接球的表面积.【详解】由三视图知,该几何体是一个圆锥,底面半径为2r =,设圆锥的高为h ,则轴截面的面积为1482S h =⨯=,∴4h =,设圆锥的外接球的半径为R ,则由题意得,222h R r R -+=,即22242R R -+=,解得,52R =,∴外接球的表面积为2425S R ππ==. 故选:B.【点睛】本小题主要考查根据三视图还原原图,考查几何体外接球有关的计算,属于基础题. 8.B【解析】【分析】利用诱导公式、降次公式和辅助角公式,化简()f x 解析式,根据()3f α=,()2f β=以及αβ-的最小值(四分之一周期),求得()f x 的最小正周期,由此求得ω的值,以及()f x 的最大值.【详解】()()2233sin 2cos sin 222f x x x x x x ωωωωω=π-++=++12cos 22sin 22226x x x ωωωπ⎛⎫=-+=-+ ⎪⎝⎭, ∵()3f α=,()2f β=,且αβ-的最小值是2π,∴周期为422ππ⨯=,则222ππω=, ∴12ω=,则()sin 26f x x π⎛⎫=-+ ⎪⎝⎭,∴()f x 的最大值为3. 故选:B.【点睛】本小题主要考查三角恒等变换,考查三角函数的周期性和最值,属于中档题.9.D【解析】【分析】把,AF DE u u u r u u u r 分别用,AB AD u u u r u u u r 表示出来再相加即得.【详解】∵四边形ABCD 是平行四边形,且2DF FC =u u u r u u u r , 2233AF AD DF AD DC AD AB ∴=+=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r 又13BE BC =u u u r u u u r ,∴2233DE DC CE AB CB AB AD =+=+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 则22513333AF DE AD AB AB AD AB AD +=++-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 故选:D.【点睛】本题考查向量的线性运算,掌握向量加法减法和数乘运算法则是解题基础.10.D【解析】【分析】运行程序,当k 不是偶数时,退出循环,输出x 的值.【详解】由程序框图知,1k =,21log 0x x =⇒=,否112x ⇒=+=,2log 10x =>,是213x ⇒=+=,31log 32k =+=,是21log 0x x ⇒=⇒=, 否112x ⇒=+=,2log 10x =>,是224x ⇒=+=,32log 4k =+,否,输出4x =.故选:D.【点睛】本小题主要考查根据循环结构程序框图计算输出的结果,属于基础题.11.B【解析】【分析】根据G 是三角形ABC 的重心得到0GA GB GC ++=u u u r u u u r u u u r ,结合已知条件进行化简,求得sin sin sin A B C ==,由此判断出三角形ABC 是等边三角形,再结合三角形ABC 外接圆半径以及正弦定理,求得三角形ABC 的边长,由此求得三角形ABC 的面积.【详解】∵G 是ABC V 的重心,∴0GA GB GC ++=u u u r u u u r u u u r, 则GA GB GC =--u u u r u u u r u u u r ,代入()()()sin sin sin 0A GA B GB C GC ++=u u u r u u u r u u u r 得,()()sin sin sin sin 0A B GB A C GC -+-=u u u r u u u r ,∵GB GC ⋅u u u r u u u r 不共线,∴sin sin 0A B -=且sin sin 0A C -=,即sin sin sin A B C ==,∴ABC V 是等边三角形,又ABC V 外接圆的半径为1,∴由正弦定理得,22sin 60a R ==︒,则a =∴244ABC S a ==△. 故选:B.【点睛】 本小题主要考查三角形重心的向量表示,考查正弦定理的运用,考查化归与转化的数学思想方法,属于中档题.12.A【解析】【分析】将已知条件转化为1,a q 的的形式列方程组,解方程组求得1,a q ,进而求得n a .利用12f ⎛⎫' ⎪⎝⎭求得切线的斜率,根据两条直线垂直的条件列方程,解方程求得k 的值.【详解】设数列{}n a 的公比为q ,由634a a a =,18128a a =得,523111711128a q a q a q a a q ⎧=⋅⎨⋅=⎩, 解得,11a =,2q =,∴12n n a -=,∵()2201220f x a x a x a x =++⋅⋅⋅+,∴()191220220f x a a x a x '=++⋅⋅⋅+,则191220111220222f a a a ⎛⎫⎛⎫'=+⋅+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭, ∵111112122n n n n a ---⎛⎫⎛⎫⋅=⨯= ⎪ ⎪⎝⎭⎝⎭,∴()1912202012011122012202102222f a a a +⎛⎫⎛⎫'=+⋅+⋅⋅⋅+=++⋅⋅⋅+== ⎪ ⎪⎝⎭⎝⎭, 由题设知,2101105k ⨯=-,∴12k =-. 故选:A.【点睛】 本小题主要考查等比数列通项公式的基本量计算,考查导数与切线方程,考查两条直线垂直的条件,属于中档题.13.11,2⎡⎤-⎢⎥⎣⎦【解析】【分析】 画出可行域,11y z x -=+表示的是可行域内的点和()1,1B -连线的斜率,结合图像求得斜率的取值范围,也即求得z 的取值范围.【详解】作出不等式组230y x x y y ≤⎧⎪+≤⎨⎪≥⎩所表示的平面区域,如图所示,11y z x -=+的最大值即为直线BA 的斜率12,最小值为直线BO 的斜率1-,故取值范围是11,2⎡⎤-⎢⎥⎣⎦. 故答案为:11,2⎡⎤-⎢⎥⎣⎦【点睛】本小题主要考查斜率型目标函数的取值范围的求法,属于基础题.14【解析】【分析】作出线面角α,β,θ,解直角三角形求得sin ,sin ,sin αβθ的表达式,由此求得sin sin sin αβθ++的值.【详解】连结1DA ,DB ,1DC ,由长方体的性质知,11A DB α∠=,1BDB β∠=,11C DB θ∠=,∵2221111124A B BB C B ++=,∴长方体的对角线1DB =∴11111111111111sin sin sin 3A B BB C B A B BB C B DB DB DB DB αβθ++++=++===.故答案为:3【点睛】本小题主要考查线面角的概念,考查运算求解能力,属于基础题.15.()(),22,-∞-+∞U【解析】【分析】利用导数判断出()f x 在R 上递减,且()01f =,由此化简不等式()()1f g x ⎡⎤<⎣⎦得到()0g x >,列对数不等式求得x 的取值范围,也即求得不等式()()1f g x ⎡⎤<⎣⎦的解集.【详解】∵()cos ,01,01x x x f x x x x -≤⎧⎪=-⎨>⎪+⎩,∴()()2sin 1,02,01x x f x x x --≤⎧⎪->+'=⎨⎪⎩, 则()0f x '≤,∴()f x 在R 上单调递减,又()01f =,∴不等式()1f g x <⎡⎤⎣⎦即为()()0f g x f <⎡⎤⎣⎦,则()0g x >,即()23log 30x ->, ∴231x ->,解得,2x >或2x <-,∴不等式()1f g x <⎡⎤⎣⎦的解集为()(),22,-∞-+∞U .故答案为:()(),22,-∞-+∞U【点睛】本小题主要考查分段函数的性质,考查利用导数研究函数的单调性,考查复合函数不等式的解法,考查对数不等式的解法,属于中档题.16.16【解析】【分析】求得AB 中点D 的轨迹方程,将PA PB +u u u r u u u r 转化为2PD u u u r ,根据圆与圆的位置关系,求得PDu u u r 的最大值,也即求得PA PB +u u u r u u u r 的最大值.【详解】由题设知,圆1C 的圆心为()12,2C ,半径为2,圆2C 的圆心为()22,1C --,,过2C 作2C D AB ⊥交AB 于D ,则D 为AB 的中点, 且21C D ==,∴点D 的轨迹为圆3C :()()22211x y +++=, 其圆心为()32,1C --,半径为1,由向量的平行四边形法则知,2PA PB PD +=u u u r u u u r u u u r ,∵135213C C ==>+=,∴圆1C 与圆3C 外离,则PD u u u r 的最大值为5218++=,PA PB +u u u r u u u r 的最大值是16.故答案为:16【点睛】本小题主要考查动点轨迹方程的求法,考查向量运算,考查圆与圆的位置关系,属于中档题.17.(1)n b n =;(2)10【解析】【分析】(1)利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 的通项公式,结合24n n a b n n =+求得数列{}n b 的通项公式.(2)根据等差数列前n 项和公式求得n T ,由此解不等式45n T >,求得n 的最小值.【详解】(1)∵223n S n n =+,∴当1n =时,115a S ==,当2n ≥时,()()22123213141n n n a S S n n n n n -=-=+----=+, 15a =也满足,∴41n a n =+;∵24n n a b n n =+,∴224441n n n n n n b n a n ++===+, 故数列{}n b 的通项公式为n b n =;(2)由(1)知,n b n =,∴12n n T b b b =++⋅⋅⋅+()11232n n n +=+++⋅⋅⋅+=, 由45n T >得,()1453n n +>,即2900n n +->, ∴9n >或10n <-(舍去),故当45n T >时,n 的最小值为10.【点睛】本小题主要考查已知n S 求n a ,考查等差数列前n 项和,属于基础题.18.(1)证明见解析;(2)3【解析】【分析】(1)根据直径所对圆周角是直角,证得AF BF ⊥,根据圆柱侧棱和底面垂直,证得EF BF ⊥,由此证得BF ⊥平面ADEF ,进而证得平面ADEF ⊥平面BCEF .(2)首先证得DE ⊥平面BCEF ,即DE 是四棱锥D BCEF -的高,再根据锥体体积公式,计算出四棱锥D BCEF -的体积.【详解】(1)证明:∵F 在下底面圆周上,且AB 为下底面半圆的直径,∴AF BF ⊥,由题设知,EF AD ∥,又AD 为圆柱的母线,∴EF 垂直于圆柱的底面,则EF BF ⊥,又AF EF F =I ,∴BF ⊥平面ADEF ,∵BF ⊂平面BCEF ,∴平面ADEF ⊥平面BCEF ;(2)解:设圆柱的底面半径为r ,由题设知,2r π=π,∴2r =,则4CD =, ∵23DE DC =,23AF AB =,∴30∠=︒CDE ,又DE CE ⊥,∴122CE CD ==,DE = 由(1)知,DE ⊥平面BCEF ,∴DE 为四棱锥D BCEF -的高,又4AD BC ==, ∴1133D BCEF BCEF V S DE BC CE DE -=⋅=⋅⋅⋅1423=⨯⨯⨯=. 【点睛】本小题主要考查面面垂直的证明,考查锥体体积的计算,考查空间想象能力和逻辑推理能力,属于中档题.19.(1)23;(2)ˆ 1.49.6y x =+;(3)是,合适 【解析】【分析】(1)利用列举法,结合古典概型概率计算公式,计算出所求概率.(2)根据回归直线方程计算公式,计算出回归直线方程.(3)通过验证估计数据与所选出的检验数据的差均不超过1人,判断出所求回归直线方程为最佳回归方程.令18x =代入回归直线方程,求得$34.835y =<,由此判断合适.【详解】(1)设抽到不相邻两组的数据为事件A ,设这6组数据分别为1,2,3,4,5,6,从中选取2组数据共有:12,13,14,15,16,23,24,25,26,34,35,36,45,46,56共15种情况,其中,抽到相邻数据的情况有:12,23,34,45,56共5种情况,∴()521153P A =-=; (2)后四组数据是:∴1312151413.54x +++== 2926312828.54y +++==, 又4113291226153114281546i i i x y ==⨯+⨯+⨯+⨯=∑, 22222113121514734n i i x==+++=∑,∴122211546413.528.5ˆ 1.4734413.5ni ii n i i x y nx y b xnx ==--⨯⨯===-⨯-∑∑, 则ˆˆ28.5 1.413.59.6ay bx =-=-⨯=, ∴y 关于x 的线性回归方程为ˆ 1.49.6yx =+;(3)由(2)知,当10x =时,ˆ23.6y=, ∴23.6231-<,当11x =时,ˆ25y=,∴25251-<, ∴求出的回归方程是最佳回归方程;当18x =时,ˆ 1.4189.634.8y=⨯+=, ∵34.835<,∴间隔时间设置为18分钟合适.【点睛】本小题主要考查古典概型的概率计算,考查回归直线方程的计算,考查利用回归直线方程进行预测,属于中档题.20.(1)2212x y +=;(2)证明见解析 【解析】【分析】(1)利用正方形的面积和边长关系列方程组,结合222a b c =+解方程组求得2,,a b c 的值,进而求得椭圆的标准方程.(2)当直线l 斜率不存在时,根据对称性判断出22MPF NPF ∠=∠;当直线l 斜率存在时,设出直线l 的方程,联立直线的方程和椭圆方程,化简后写出韦达定理,计算0MP NP k k +=,由此证得22MPF NPF ∠=∠.【详解】(1)解:∵四边形1221B F B F 是面积为2的正方形,∴2222a b c ⎧=⎨=⎩, 又222a b c =+,∴1b c ==,则椭圆C 的标准方程是2212x y +=; (2)证明:由(1)知,()21,0F ,当直线l 的斜率不存在时,l x ⊥轴,则点M ,N 关于x 轴对称,此时有,22MPF NPF ∠=∠;当直线l 的斜率存在时,设直线l 的方程为()1y k x =-,联立()22112y k x x y ⎧=-⎪⎨+=⎪⎩消去y 得, ()2222214220k x k x k +-+-=,设()11,M x y ,()22,N x y , 则2122421k x x k +=+,21222221k x x k -=+, ∵()2,0P ,∴121222MP NP y y k k x x +=+-- ()()()()()()122112121222k x x k x x x x --+--=-- ()()1212121223424kx x k x x k x x x x -++=-++ 2222222222423421210224242121k k k k k k k k k k k -⨯-⨯+++==--⨯+++, 即MP NP k k =-,∴22MPF NPF ∠=∠.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.21.(1)6;(2)21,21e e e ⎛⎫+ ⎪-⎝⎭【解析】【分析】(1)求得()h x 在点()()1,1h 处的切线方程,根据切线的截距为2-列方程,解方程求得a 的值.(2)将方程()()()21g x xf x a x '=-+转化为()212ln 0ax a x x +--=,构造函数()()212ln H x ax a x x =+--,利用()'H x 研究函数()H x 在1e e ⎛⎫ ⎪⎝⎭,内的零点,结合零点存在性定理列不等式组,解不等式组求得a 的取值范围.【详解】(1)由题设知,()212ln 2h x ax x x =+-,0x >, 则()21212ax x h x ax x x+-'=+-=; ∴()11h a '=+,又()1122h a =+, ∴切点为()11,22a +, 则切线方程为()()12112y a a x --=+-, 令0x =,则112y a =-+, 由题设知,1122a -+=-, ∴6a =;(2)∵()2122f x ax x =+,∴()2f x ax '=+, 则方程()()()21g x xf x a x '=-+,即为()2ln 221x ax x a x =+-+, 即为()212ln 0ax a x x +--=; 令()()212ln H x ax a x x =+--,于是原方程在区间1e e ⎛⎫ ⎪⎝⎭,内根的问题, 转化为函数()H x 在1e e ⎛⎫ ⎪⎝⎭,内的零点问题;∵()()1212H x ax a x'=+-- ()()()22121211ax a x ax x x x+--+-==; ∵0a >,∴当()0,1x ∈时,()0H x '<,()H x 是减函数,当()1,x ∈+∞时,()0H x '>,()H x 是增函数,若使()H x 在1e e ⎛⎫ ⎪⎝⎭,内有且只有两个不相等的零点, 只需()()()()()()()()222min 22121121011210121210e a e e a a H e e e e H x H a a a H e ae a e e e a e ⎧-++-⎛⎫=++=>⎪ ⎪⎝⎭⎪⎪==+-=-<⎨⎪=+--=-+->⎪⎪⎩即可, 解得,2121e e a e +<<-, 即a 的取值范围是21,21e e e ⎛⎫+ ⎪-⎝⎭. 【点睛】本小题主要考查利用导数与切线方程求参数,考查利用导数研究方程的根,考查化归与转化的数学思想方法,属于中档题.22.(1)π6α=或5π6α=;(2)1cos 2sin 2x y αα=-+⎧⎨=⎩(α为参数,π5π0,,π66α⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭U ) 【解析】【分析】(1)将圆C 的极坐标方程转化为直角坐标方程,求得直线l 的直角坐标方程,根据圆心到直线的距离等于半径列方程,解方程求得直线l 的斜率,从而求得直线l 的倾斜角.(2)根据直线l 的参数方程,求得,,A B Q 三点对应参数的关系,结合韦达定理,求得点Q 的轨迹的参数方程.【详解】(1)∵圆C 的极坐标方程为1ρ=,∴C 的直角坐标方程为221x y +=,圆心为()0,0,半径为1r =;∵直线l 过点()2,0P -,倾斜角为α,∴当π2α=时,不合题意, 当π2α≠时,斜率为tan k α=, 则直线的方程为()2y k x =+,即20kx y k -+=,∵直线l 与圆C 相切,1=,解得,3k =±,即tan α=,∴π6α=或5π6α=; (2)∵直线l 与圆C 相交于不同两点A ,B ,∴由(1)知,π5π0,,π66α⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭U , 设A ,B ,Q 对应的参数分别为A t ,B t ,Q t , 则2A B Q t t t +=, 将2cos sin x t y t αα=-+⎧⎨=⎩代入221x y +=得, 24cos 30t t α-+=,则4cos A B t t α+=,∴2cos Q t α=,又点Q 的坐标(),x y 满足2cos sin Q Q x t y t αα=-+⎧⎨=⎩, 即222sin 2cos sin x y ααα⎧=-+⎨=⎩,故点Q 的轨迹的参数方程是1cos 2sin 2x y αα=-+⎧⎨=⎩(α为参数,π5π0,,π66α⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭U ). 【点睛】本小题主要考查极坐标方程转化为直角坐标方程,考查直线参数方程中参数的运用,属于中档题.23.(1){}1x x ≥-;(2)(][),93,-∞-+∞U【解析】【分析】(1)利用零点分段法去绝对值,由此求得不等式的解集.(2)利用柯西不等式证得26a b c ++≤,由36x +≥求得实数x 的取值范围.【详解】(1)当22a b +=,1c x =+时, 不等式32x a b c +≥++为321x x +≥++,当3x ≤-时,321x x --≥--,31-≥,无解;当31x -<<-时,321x x +≥--,1x ≥-,无解;当1x ≥-时,321x x +≥++,33≥,∴1x ≥-; 综上,不等式的解集为{}1x x ≥-;(2)由柯西不等式得, ()()()22222222211a b c a b c ++≤++++,∵2226a b c ++=,∴()2236a b c ++≤,则26a b c ++≤;∵不等式32x a b c +≥++对所有实数a ,b ,c 都成立, ∴36x +≥,∴36x +≥或36x +≤-,则3x ≥或9x ≤-,故实数x 的取值范围是:(][),93,-∞-+∞U .【点睛】本小题主要考查绝对值不等式的解法,考查柯西不等式的运用,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三年级联考数学(文科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填在试卷后面的答题卡上.3.本试卷主要考试内容:高考全部内容.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=i9(-1-2i)的共轭复数为A.2+iB.2-iC.-2+iD.-2-i2.设集合A={a,a+1},B={1,2,3},若A∪B的元素个数为4,则a的取值集合为A.{0}B.{0,3}C.{0,1,3}D.{1,2,3}3.设双曲线C:-=1(a>0,b>0)的实轴长与焦距分别为2,4,则双曲线C的渐近线方程为A.y=±xB.y=±xC.y=±xD.y=±3x4.按文献记载,《百家姓》成文于北宋初年,表1记录了《百家姓》开头的24大姓氏:表1赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张表2记录了2018年中国人口最多的前25大姓氏:表21:李2:王3:张4:刘5:陈6:杨7:赵8:黄9:周10:吴11:徐12:孙13:胡14:朱15:高16:林17:何18:郭19:马20:罗21:梁22:宋23:郑24:谢25:韩从《百家姓》开头的24大姓氏中随机选取1个姓氏,则该姓氏是2018年中国人口最多的前24大姓氏的概率为A. B. C. D.5.函数f(x)=的零点之和为A.-1B.1C.-2D.26.函数f(x)=cos(3x+)的单调递增区间为A.[+,+](k∈Z)B.[+,+](k∈Z)C.[-+,+](k∈Z)D.[-+,+](k∈Z)7.某几何体的三视图如图所示,则该几何体的体积为A.24π-6B.8π-6C.24π+6D.8π+68.已知两个单位向量e1,e2的夹角为60°,向量m=t e1+2e2(t<0),则A.的最大值为-B.的最小值为-2C.的最小值为-D.的最大值为-29.若直线y=kx-2与曲线y=1+3ln x相切,则k=A.2B.C.3D.10.已知不等式组表示的平面区域为等边三角形,则z=x+3y的最小值为A.2+3B.1+3C.2+D.1+11.若函数f(x)=a·()x(≤x≤1)的值域是函数g(x)=(x∈R)的值域的子集,则正数a的取值范围为A.(0,2]B.(0,1]C.(0,2]D.(0,]12.△ABC的内角A,B,C的对边分别为a,b,c.已知10sin A-5sin C=2,cos B=,则=A.B.C.D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.某中学将从甲、乙、丙3人中选一人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下表格:甲乙丙平均数280280290方差201616根据表中的数据,该中学应选参加比赛.14.已知tan(α+)=6,则tanα=.15.四棱锥P-ABCD的每个顶点都在球O的球面上,P A与矩形ABCD所在平面垂直,AB=3,AD=,球O 的表面积为13π,则线段P A的长为.16.斜率为k(k<0)的直线l过点F(0,1),且与曲线y=x2(x≥0)及直线y=-1分别交于A,B两点,若|FB|=6|F A|,则k=.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}满足-=0,且a1=.(1)求数列{a n}的通项公式;(2)求数列{+2n}的前n项和S n.18.(12分)某市A,B两校组织了一次英语笔试(总分120分)联赛,两校各自挑选了英语笔试成绩最好的100名学生参赛,成绩不低于115分定义为优秀.赛后统计了所有参赛学生的成绩(都在区间[100,120]内),将这些数据分成4组:[100,105),[105,110),[110,115),[115,120].得到如下两个频率分布直方图:(1)分别计算A,B两校联赛中的优秀率;(2)联赛结束后两校将根据学生的成绩发放奖学金,已知奖学金y(单位:百元)与其成绩t的关系式为y=.①当a=0时,试问A,B两校哪所学校的获奖人数更多?②当a=0.5时,若以奖学金的总额为判断依据,试问本次联赛A,B两校哪所学校实力更强?19.(12分)如图,在四棱锥B-ACDE中,正方形ACDE所在平面与正△ABC所在平面垂直,M,N分别为BC,AE的中点,F在棱CD上.(1)证明:MN∥平面BDE.(2)已知AB=2,点M到AF的距离为,求三棱锥C-AFM的体积.20.(12分)椭圆+=1(m>1)的左、右顶点分别为A,B,过点B作直线l交直线x=-2于点M,交椭圆于另一点P.(1)求该椭圆的离心率的取值范围;(2)若该椭圆的长轴长为4,证明:·=2m(O为坐标原点).21.(12分)已知函数f(x)=ax3-x2.(1)若f(x)的一个极值点在(1,3)内,求a的取值范围;(2)若a为非负数,求f(x)在[-1,2]上的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).(1)求l和C的普通方程;(2)将l向左平移m(m>0)个单位长度后,得到直线l',若圆C上只有一个点到l'的距离为1,求m.23.[选修4-5:不等式选讲](10分)设函数f(x)=|x-a|+|x-4|(a≠0).(1)当a=1时,求不等式f(x)<x的解集;(2)若f(x)≥-1恒成立,求a的取值范围.数学参考答案(文科)1.A∵z=i9(-1-2i)=i(-1-2i)=2-i,∴=2+i.2.B∵a<a+1,∴a+1=1或a=3,即a=0或3.3.C因为2a=2,2c=4,所以a=1,c=2,b=,所以C的渐近线方程为y=±x.4.D满足条件的姓氏为赵、孙、李、周、吴、郑、王、陈、杨、朱、何、张,共12个,故所求概率为=.5.A函数f(x)=的零点为log62,-log612,故零点之和为log62-log612=-log66=-1.6.A因为f(x)=-sin3x,所以只要求y=sin3x的递减区间.令+2kπ≤3x≤+2kπ(k∈Z),解得+≤x≤+(k∈Z).7.B由三视图可知该几何体是在一个圆锥中挖掉一个长方体得到的,其中圆锥的底面圆的半径为2,高为6,挖掉的长方体的底面是边长为的正方形,高为3.故该几何体的体积为π×22×6-2×3=8π-6.8.A因为t<0,所以====-=-,当=-,即t=-4时,取得最大值,且最大值为-.9.C设切点为(x0,kx0-2),∵y'=,∴由①得kx0=3,代入②得1+3ln x0=1,则x0=1,k=3.10.D依题意可得k=,作出不等式组表示的平面区域如图所示,当直线z=x+3y经过点(1,)时,z取得最小值1+.11.A令y=g(x),则(y-1)x2+yx+y+1=0,当y=1时,x=-2;当y≠1时,Δ=y2-4(y-1)(y+1)≥0,则y2≤.所以g(x)的值域为[-,].因为a>0,所以f(x)的值域为[,],从而0<≤,则0<a≤2.12.C∵cos B=,∴sin B=.又10sin A-5sin C=2,∴2sin A-sin C=sin B,由正弦定理,得2a-c=b,由余弦定理,得(2a-c)2=a2+c2-2ac×,整理得5a=6c,即=.13.乙男子1500米比赛的成绩是时间越短越好的,方差越小发挥水平越稳定,故乙是最佳人选.14.设tanα=x,则=6,解得x=.15.1因为球O的表面积为13π,所以4π()2=13π,则P A=1.16.-易知曲线y=x2(x≥0)是抛物线C:x2=4y的右半部分,如图,其焦点为F(0,1),准线为y=-1.过A作AH⊥准线,垂足为H,则|AH|=|AF|,因为|FB|=6|F A|,所以|AB|=5|AH|,tan∠ABH===,故直线l的斜率为-.17.解:(1)因为-=0,所以a n+1=a n, ........................................................................................................................................................................ 2分又a1=,所以数列{a n}为等比数列,且首项为,公比为. .................................................................................................................... 4分故a n=()n................................................................................................................................................................................ 6分(2)由(1)知=2n,..................................................................................................................................................................... 7分所以+2n=2n+2n.................................................................................................................................................................. 8分所以S n=+=2n+1+n2+n-2............................................................................................................................. 12分18.解:(1)由频率分布直方图知,A校的优秀率为0.06×5=0.3,............................................................................................. 1分B校的优秀率为0.04×5=0.2................................................................................................................................................. 2分(2)①A校的获奖人数为100×(1-0.04×5)=80,...................................................................................................................... 3分B校的获奖人数为100×(1-0.02×5)=90,............................................................................................................................... 4分所以B校的获奖人数更多. ................................................................................................................................................... 5分②A校学生获得的奖学金的总额为0.2×100×0.5+0.5×100×1.5+0.3×100×2.8=169(百元)=16900(元),..................................................................................... 8分B校学生获得的奖学金的总额为0.1×100×0.5+0.7×100×1.5+0.2×100×2.8=166(百元)=16600(元),................................................................................... 11分因为16900>16600,所以A校实力更强.............................................................................................................................. 12分19.(1)证明:取BD的中点G,连接EG,MG,∵M为棱BC的中点,∴MG∥CD,且MG=CD....................................................................................................................................................... 1分又N为棱AE的中点,四边形ACDE为正方形,∴EN∥CD,且EN=CD......................................................................................................................................................... 2分从而EN∥MG,且EN=MG,于是四边形EGMN为平行四边形, .......................................................................................... 3分则MN∥EG............................................................................................................................................................................. 4分∵MN⊄平面BDE,EG⊂平面BDE,∴MN∥平面BDE.......................................................................................................... 5分(2)解:(法一)过M作MI⊥AC于I,∵平面ACDE⊥平面ABC,∴MI⊥平面ACDE, ................................................................................................................... 6分过I作IK⊥AF于K,连接MK,则MK⊥AF. .......................................................................................................................... 7分∵AB=2,∴MI=2××=,∴MK===,∴IK=,过C作CH⊥AF于H,易知==,则CH=×=. ............................................................................... 9分∵CH==,∴CF=1. ........................................................................................................................................ 10分(法二)在正△ABC中,∵M为BC的中点,∴AM⊥BC. ......................................................................................................... 6分∵平面ABC⊥平面ACDE,AC⊥CD,∴CD⊥平面ABC,∴CD⊥AM............................................................................................................................................... 7分∵BC∩CD=C,∴AM⊥平面BCD,∴AM⊥MF....................................................................................................................... 8分设CF=a,在△AFM中,AM=,FM=,AF=,则××=××,解得a=1. ............................................................................................................ 10分从而V C-AFM=V F-ACM=×1×××22=............................................................................................................................. 12分20.(1)解:∵e====, ........................................................................................................................ 2分又m>1,∴0<e<=,∴e∈(0,). ............................................................................................................................................................................ 4分(2)证明:∵椭圆的长轴长为2=4,∴m=2, ............................................................................................................... 5分易知A(-2,0),B(2,0),设M(-2,y0),P(x1,y1),则=(x1,y1),=(-2,y0), .................................................................................................................................................... 6分直线BM的方程为y=-(x-2),即y=-x+y0, ..................................................................................................................... 7分代入椭圆方程x2+2y2=4,得(1+)x2-x+-4=0,......................................................................................................................................................... 8分由韦达定理得2x1=, ................................................................................................................................................... 9分∴x1=,∴y1=, ..................................................................................................................................................... 10分∴·=-2x1+y0y1=-+==4=2m..................................................................................................... 12分21.解:(1)当a=0时,显然不合题意,故a≠0............................................................................................................................. 1分f'(x)=3ax2-2x,令f'(x)=0,得x=0或x=,............................................................................................................................... 2分由题意可得,1<<3,解得<a<,即a的取值范围为(,). ................................................................................................. 4分(2)当a=0时,f(x)=-x2在[-1,2]上的最小值为f(2)=-4............................................................................................................ 5分当0<a≤时,≥6,f'(x)=ax(3x-).∵x∈[-1,2],∴3x-≤0,故f(x)在[-1,0)上单调递增,在(0,2]上单调递减,∴f(x)min=min{f(-1),f(2)}.............................................................................. 6分∵f(2)-f(-1)=(8a-4)-(-a-1)=9a-3≤0,∴f(x)min=f(2)=8a-4......................................................................................................... 7分当a>时,f'(x)=ax(3x-),0<<2,当x∈[-1,0)∪(,2]时,f'(x)>0;当x∈(0,)时,f'(x)<0. ........................................................................................................................................................... 8分∴f(x)min=min{f(-1),f()}.∵f()-f(-1)=(-)-(-a-1)=, ........................................................................................................................... 9分∵a>,∴27a3+27a2-4>0,>0,........................................................................................................................... 10分∴f(x)min=f(-1)=-a-1.............................................................................................................................................................. 11分综上,当0≤a≤时,f(x)min=8a-4;当a>时,f(x)min=-a-1.......................................................................................................... 12分22.解:(1)由题意可得|a|=1, .................................................................................................................................................... 1分故l的参数方程为(t为参数),圆C的参数方程为(θ为参数),消去参数t,得l的普通方程为3x-4y-7=0, ............................................................................................................................ 3分消去参数θ,得C的普通方程为(x-1)2+(y+2)2=1.................................................................................................................. 5分(2)l'的方程为y=(x+m)-,即3x-4y+3m-7=0, ...................................................................................................................... 6分因为圆C只有一个点到l'的距离为1,圆C的半径为1,所以C(1,-2)到l'的距离为2, ................................................................................................................................................. 8分即=2,解得m=2(m=-<0舍去). ..................................................................................................................... 10分23.解:(1)当a=1时,f(x)=, .............................................................................................................................. 3分故不等式f(x)<x的解集为(3,5). ............................................................................................................................................ 5分(2)∵f(x)=|x-a|+|x-4|≥|(x-a)-(x-4)|=|a-4|, .............................................................................................................................. 6分∴|a-4|≥-1=,..................................................................................................................................................................... 7分当a<0或a≥4时,不等式显然成立; ...................................................................................................................................... 8分当0<a<4时,≤1,则1≤a<4.................................................................................................................................................... 9分故a的取值范围为(-∞,0)∪[1,+∞). ..................................................................................................................................... 10分。