启东市二中2018-2019学年高二上学期第二次月考试卷数学
江苏省启东中学2018-2019学年高二上学期第二次月考数学试题 Word版含答案

江苏省启东中学2018-2019学年第一学期第二次月考高二数学试卷(考试时间:120分钟;总分160分)一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.命题“0x ∀>, 20x x -≤”的否定是 .2.已知命题2:,0p x R x x m ∀∈+-≥,命题:q 点()1,2A -在圆()()221x m y m -++=的内部.若命题“p 或q ”为假命题,则实数m 的取值范围 . 3.设复数满足()33421i z i -=+,则=z .4.根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是 .5.若直线02=--y x 被圆()422=++a y x 所截得的弦长为22,则实数a 的值为______.6.已知双曲线12222=-by a x 的一个焦点与抛物线x y 42=的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为 .7.在平面直角坐标系中,点A ,点B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线042=-+y x 相切,则圆C 面积的最小值为 .8.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b2与2)(b a +类比,则有2222bb a a b a +⋅+=+)(④(ab )c =a (bc )与()⋅⋅类比,则有()()a ⋅=⋅⋅其中结论正确的序号是 .9.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70]的汽车大约有_________辆.(第9题) (第10题)10.根据如图所示伪代码,可知输出结果S ,I = , .11.观察下列各式: 1a b +=, 223a b +=, 334a b +=, 447a b +=, 5511a b +=,…,则1111a b +=_________.12.已知正方形ABCD ,则以B A ,为焦点,且过D C ,两点的椭圆的离心率为__________. 13.已知圆()()221:231C x y ++-=,圆()()222:349C x y -+-=,A 、B 分别是圆1C 和圆2C 上的动点,点P 是y 轴上的动点,则PB PA -的最大值为 .14.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则b 2=________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应携程文字说明、证明或演算步骤15.已知复数z=1+mi (i 是虚数单位,m ∈R ),且为纯虚数(是z 的共轭复数).(1)设复数,求|z 1|;(2)设复数,且复数z 2所对应的点在第一象限,求实数a 的取值范围.16.已知f (x )=x 2+ax +b .(1)求:f (1)+f (3)-2f (2);(2)求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.17.已知集合A 是函数)820lg(2x x y -+=的定义域,集合B 是不等式)0(012-22>≥-+a a x x 的解集,B x q A x p ∈∈:,:(1)若φ=B A ,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围.18.如图,在平面直角坐标系内,已知点A(1,0),B(-1,0),圆C 的方程为0218622=+--+y x y x ,点p 为圆上的动点.(1)求过点A 的圆C 的切线方程.(2)求22BP AP +的最大值及此时对应的点p 的坐标.19.已知椭圆2222:1(0)x y E a b a b +=>>的右顶点为A ,上顶点为B ,离心率e =O 为坐标原点,圆224:5O x y +=与直线AB 相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知四边形ABCD 内接于椭圆,//E AB DC .记直线,AC BD 的斜率分别为12,k k ,试问12k k ⋅是否为定值?证明你的结论.20.在平面直角坐标系xOy 中,椭圆C: x 2m +y 28-m=1.(1)若椭圆C 的焦点在x 轴上,求实数m 的取值范围; (2)若m =6,①P 是椭圆C 上的动点, M 点的坐标为(1,0),求PM 的最小值及对应的点P 的坐标;②过椭圆C的右焦点F作与坐标轴不垂直的直线,交椭圆C于A,B两点,线段AB的垂直平分线l交x轴于点N,证明:ABFN是定值,并求出这个定值.江苏省启东中学2018-2019学年第一学期第二次月考高二数学试卷(加试题)(考试时间:30分钟;总分40分)袁辉本大题共4小题,每小题10分,共计40分,请把答案填写在答题卡相应位置上1.已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=AB,b=AC.(1)a+b的坐标;(2)求a与b的夹角的余弦值2.已知平面内一动点P在x轴的上方,点P到F(0.1)的距离与它到y轴的距离的差等于1.(1)求动点P轨迹C的方程;(2)设A,B为曲线C上两点,A与B的横坐标之和为4.求直线AB的斜率;3.观察以下4个等式:21<, 22211<+,3231211<++, 1++<,(1)照以上式子规律,猜想第n 个等式(n ∈N );(2)用数学归纳法证明上述所猜想的第n 个等式成立(n ∈N ).4.如图,三棱锥ABC P -中,⊥PC 平面ABC ,3=PC ,2π=∠ACB 。
江苏省启东中学2019.doc

江苏省启东中学2018江苏省启东中学2018-2019学年度第二学期期中考试高二数学一、填空题(本大题共14小题,每题5分,共计70分)1.从3双鞋子中,任取4只,其中至少有两只鞋是一双,这个事件是. 填“必然”,“不可能”或“随机”事件.2.当你到一个红绿灯路口时,红灯的时间为20秒,黄灯的时间为5秒,绿灯的时间为35秒,那么你看到红灯的概率是.3.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是.4.从1,2,3,4这四个数中随机地取两个数,则其中一个数是另一个数的两倍的概率是.5.函数(0,)的极小值为.6.设点是曲线上的任意一点,则到直线的距离的最小值为.7.某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为.8.曲线y=+x2在点0,3处的切线与坐标轴围成的三角形的面积为.9.函数的单调减区间为. 10.已知a0,函数fx=xx-a2和gx=-x2+a-1x+a存在相同的极值点,则a=_______. 11.若函数,则等于. 12.已知函数fx=x32x.若fa-1+f2a2≤0,则实数a 的取值范围是________.13.已知定义在上的函数满足,其中是函数的导函数,若,则实数m的取值范围为. 14.已知fx,若关于的方程恰好有4 个不相等的实数解,则实数的取值范围为.二、解答题(本大题共6小题,共计90分)15. (本小题满分14分)袋中有7个球,其中4个白球,3个红球,从袋中任意取出2个球,求下列事件的概率1A取出的2个球都是白球;2B取出的2个球中1个是白球,另1个是红球.16. 本小题满分14分已知函数,曲线在点处的切线方程为,在处有极值.求的解析式.求在上的最小值.17.(本小题满分15分)已知函数(1当a-2,b3时,若方程m0的有1个实根,求m的值;(2)当时,若fx在0,+∞上为增函数,求实数a的取值范围.18. 本小题满分15分已知函数,.(1)若是的极值点,求函数的单调性;(2)若时,,求的取值范围.19. 本小题满分16分如图是一个半径为2千米,圆心角为的扇形游览区的平面示意图.C是半径OB上一点,D是圆弧上一点,且CD∥OA.现在线段OC,线段CD及圆弧三段所示位置设立广告位,经测算广告位出租收入是线段OC处每千米为2a元,线段CD及圆弧处每千米均为a元.设∠AOD=x弧度,广告位出租的总收入为y元.1求y关于x的函数解析式,并指出该函数的定义域;2试问x为何值时,广告位出租的总收入最大并求出其最大值.20. 本小题满分16分已知函数fx=xlnx,gx=λx2-1λ为常数.1若函数y=fx与函数y=gx在x=1处有相同的切线,求实数λ的值;2若λ=,且x≥1,求证fx≤gx;3若对任意x∈[1,+∞,不等式fx≤gx恒成立,求实数λ的取值范围.江苏省启东中学2018-2019学年度第二学期期中考试高二数学命题人蔡罡二、填空题(本大题共14小题,每题5分,共计70分)1.从3双鞋子中,任取4只,其中至少有两只鞋是一双,这个事件是填“必然”,“不可能”或“随机”事件.必然2.当你到一个红绿灯路口时,红灯的时间为20秒,黄灯的时间为5秒,绿灯的时间为35秒,那么你看到红灯的概率是3.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是4.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是5. 函数(0,)的极小值为.6.设点是曲线上的任意一点,则到直线的距离的最小值为.7.某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为8.曲线y =+x2在点0,3处的切线与坐标轴围成的三角形的面积为9.函数的单调减区间为. 10.已知a0,函数fx=xx-a2和gx=-x2+a-1x+a存在相同的极值点,则a=________.3 11.若函数,则等于. 12. 已知函数fx=x32x.若fa-1+f2a2≤0,则实数a的取值范围是________.解析因为f-x=-x3-2x=-fx,所以函数fx是奇函数.因为f′x=3x22≥2,所以函数fx在R上单调递增.又fa-1+f2a2≤0,即f2a2≤f1-a,所以2a2≤1-a,即2a2+a-1≤0,解得-1≤a≤,故实数a的取值范围是. 13. 已知定义在上的函数满足,其中是函数的导函数若,则实数m的取值范围为. 解析令,,则,,,函数在递减,,,,,即,故,解得,故. 14.已知fx,若关于的方程恰好有 4 个不相等的实数解,则实数的取值范围为. ()解析方程得,f(x)=1或f(x)=-m﹣1;解f(x)=1得x=0,故方程f(x)=-m﹣1有3个不是0的根;当x≥1时,f(x),f′(x);故f(x)在(1,e)上单调递增,在(e,∞)上单调递减;f(1)=0,f(e),且x1时,;当x<1时,f(x)=在(﹣∞,1)上是减函数;故f(x)的大致图像如下故若使方程f(x)=-m﹣1有3个不是0的根,则0<-m﹣1;即m<-1;所以实数的取值范围为(),二、解答题(本大题共6小题,共计90分)15. (本小题满分14分)袋中有7个球,其中4个白球,3个红球,从袋中任意取出2个球,求下列事件的概率1A取出的2个球都是白球;2B取出的2个球中1个是白球,另1个是红球.【解析】设4个白球的编号为1,2,3,4,3个红球的编号为5,6,7,从袋中的7个小球中任取2个的方法为1,2,1,3,1,4,1,5,1,6,1,7 ,2,3,2,4,2,5,2,6,2,7 ,3,4,3,5,3,6,3,7 ,4,5,4,6,4,7 ,5,6,5,7 ,6,7 ,共21种.6分1从袋中的7个球中任取2个,所取的2个球全是白球的方法总数,即是从4个白球中任取2个的方法总数,共有6种,即为1,2,1,3,1,4,2,3,2,4,3,4.∴取出的2个球全是白球的概率为PA=10分2从袋中的7个球中任取2个,其中1个为红球,而另1个为白球,其取法包括1,5,1,6,1,7 ,2,5,2,6,2,7 ,3,5,3,6,3,7 ,4,5,4,6 ,4,7 ,共12种.∴取出的2个球中1个是白球,另1个是红球的概率为PB=. 14分16. 本小题满分14分已知函数,曲线在点处的切线方程为,在处有极值.求的解析式.求在上的最小值.【解析】解,.1分曲线在点P处的切线方程为,即3分在处有极值,所以,5分由得,,,所以7分由知.令,得,.9分当时,;当时,;当时,,11分.又因,所以在区间上的最小值为.14分17.(本小题满分15分)已知函数(1当a-2,b3时,若方程m0的有1个实根,求m的值;(2)当时,若fx在0,+∞上为增函数,求实数a的取值范围.【解析】2分5分7分(2)当时,,∴又fx在0,+∞上为增函数,∴∴,而即∴故a的取值范围是15分18. 本小题满分15分已知函数,.(1)若是的极值点,求函数的单调性;(2)若时,,求的取值范围.【解析】(1),. 因为是的极值点,所以,可得.1分所以,. 2分因为在上单调递增,且时,,4分所以时,,,单调递减;时,,,单调递增.故在上单调递减,在上单调递增.7分(2)由得,因为,所以. 8分设,则.令,10分则,显然在内单调递减,且,所以时,,单调递减,12分则,即,所以在内单减,从而. 所以. 15分19. 本小题满分16分如图是一个半径为2千米,圆心角为的扇形游览区的平面示意图.C是半径OB上一点,D是圆弧上一点,且CD∥OA.现在线段OC,线段CD及圆弧三段所示位置设立广告位,经测算广告位出租收入是线段OC处每千米为2a元,线段CD及圆弧处每千米均为a元.设∠AOD=x 弧度,广告位出租的总收入为y元.1求y关于x的函数解析式,并指出该函数的定义域;2试问x为何值时,广告位出租的总收入最大并求出其最大值.【解析】1因为CD ∥OA,所以∠ODC=∠AOD=xrad. 在△OCD中,∠OCD =,∠COD=-x,OD=2km. 由正弦定理,得===,得OC=sinxkm,CD=sinkm. 4分又圆弧DB长为2km,所以y=2asinx+a[sin+2] =2a,x∈.8分2记fx=2a,则f′x=2acosx-sinx-1=2a,令f′x=0,得x=.10分当x变化时,f′x,fx的变化如下表x f′x +0 -fx 递增极大值递减所以fx在x=处取得极大值,这个极大值就是最大值,即f =2a=2a. 故当x=时,广告位出租的总收入最大,最大值为2a元.16分20. 本小题满分16分已知函数fx=xlnx,gx =λx2-1λ为常数.1若函数y=fx与函数y=gx在x=1处有相同的切线,求实数λ的值;2若λ=,且x≥1,求证fx≤gx;3若对任意x∈[1,+∞,不等式fx≤gx恒成立,求实数λ的取值范围.【解析】1f′x=lnx+1,则f′1=1且f1=0. 所以函数y=fx在x=1处的切线方程为y=x-1,2分从而g′1=2λ=1,即λ=.4分2证明设函数hx=xlnx-x2-1,则h′x =lnx+1-x. 设px=lnx+1-x,从而p′x=-1≤0对任意x ∈[1,+∞恒成立,6分所以px=lnx+1-x≤p1=0,即h′x≤0,因此函数hx=xlnx-x2-1在[1,+∞上单调递减,即hx≤h1=0,所以当x≥1时,fx≤gx恒成立.8分3解设函数Hx=xlnx-λx2-1,从而对任意x∈[1,+∞,不等式Hx≤0=H1恒成立.又H′x=lnx+1-2λx,当H′x=lnx+1-2λx≤0,即≤2λ恒成立时,函数Hx单调递减.10分设rx=,则r′x =≤0,所以rxmax=r1=1,即1≤2λ,解得λ≥,符合题意;12分当λ≤0时,H′x=lnx+1-2λx≥0恒成立,此时函数Hx 单调递增.于是,不等式Hx≥H1=0对任意x∈[1,+∞恒成立,不符合题意;当01,14分当x∈时,q′x=-2λ0,此时qx=H′x=lnx+1-2λx单调递增,所以H′x=lnx+1-2λxH′1=1-2λ0,故当x∈时,函数Hx单调递增.于是当x∈时,Hx0成立,不符合题意.综上所述,实数λ的取值范围是[,+∞.16分(用洛必达定理求可适当给分)江苏省启东中学2018-2019学年度第二学期期中考试高二数学附加题命题人蔡罡(本大题共4小题,每题10分,共计40分)1. 求下列函数的导函数(1)(2)解(1)(2)2.有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.(1)共有多少种放法(用数字作答)(2)恰有一个盒不放球,有多少种放法(用数字作答)解(1)每个球都有4种方法,故有种种不同的放法(2)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有种不同的放法. 3. 在“五四青年节”到来之际,启东中学将开展一系列的读书教育活动.为了解高二学生读书教育情况,决定采用分层抽样的方法从高二年级A、B、C、D四个社团中随机抽取12名学生参加问卷调査.已知各社团人数统计如下(1)若从参加问卷调查的12名学生中随机抽取2名,求这2名学生来自同一个社团的概率;(2)在参加问卷调查的12名学生中,从来自A、B、D三个社团的学生中随机抽取3名,用表示从社团抽得学生的人数,求的分布列和数学期望. 3. 解(1)A、B、C、D社团共有学生名,抽取名学生,抽取比例为. 则抽取的名学生中,社团名,社团名,社团名,社团名. 则名学生抽取名学生,来自同一个社团的概率为. (2)12名学生中来自三个社团的学生共有名,若从中任取名,抽取社团的人数服从超几何分布,的取值为则的分布列为在该超几何分布中,所以数学期望4、已知二项式. (1)若它的二项式系数之和为.求展开式中系数最大的项;(2)若,求二项式的值被除的余数. 4、解(1)展开式中系数最大的项为第项. (2)转化为被除的余数,,即余数为。
启东市第二高级中学2018-2019学年高二上学期第二次月考试卷数学

启东市第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( )A .B .C .D .2. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞--C .),3[]1,35[+∞-- D .),3()1,2(+∞--3. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .64. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )A .5B .4C .3D .25. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1 C .﹣=1 D .﹣=16. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( )A .[1,+∞)B .[0.2}C .[1,2]D .(﹣∞,2]7. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .318. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D109. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅10.在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 11.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.12.已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65BC .5D 二、填空题13.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e e xxf x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.15.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.18.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
2018-2019学年江苏省启东中学高二上学期第二次月考数学试题(解析版)

2018-2019学年江苏省南通市启东中学高二(上)第二次月考数学试卷一、填空题(本大题共14小题,共70.0分)1.命题“,”的否定是______.【答案】,【解析】解:全称命题的否定是特称命题,则命题的否定是:,,故答案为:,根据全称命题的否定是特称命题进行求解即可.本题主要考查含有量词的命题的否定,比较基础.2.已知命题p:,,命题q:点在圆的内部若命题“p或q”为假命题,则实数m的取值范围______.【答案】或【解析】解:命题p:,,可得,即,可得;命题q:点在圆的内部,可得,解得,若命题“p或q”为假命题,即p,q均为假命题,,即有或,可得或故答案为:或.求得p,q均为真命题时m的范围,再由题意可得p,q均为假命题,解m的不等式可得所求范围.本题考查复合命题的真假判断,考查不等式的解法,以及转化思想和运算能力,属于基础题.3.设复数z满足,则______.【答案】【解析】解:,,故,故答案为:.根据复数的运算,求出z,从而求出z的模即可.本题考查了复数运算,考查转化思想以及复数求模,是一道常规题.4.根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为______.【答案】3【解析】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数的值,,故答案为:3分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数的值,代入,,即可得到答案.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.若直线被圆所截得的弦长为,则实数a的值为______.【答案】0或4【解析】解:直线被圆所截得的弦长为,圆心到直线的距离,,即,,或.故答案为:0或4.由圆的方程,得到圆心与半径,再求得圆心到直线的距离,由求解即可.本题考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,是中档题.6.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率等于,则该双曲线的方程为______.【答案】【解析】解:抛物线方程为,,得抛物线的焦点为.双曲线的一个焦点与抛物的焦点重合,双曲线的右焦点为双曲线的离心率等,,即由联解,得,,该双曲线的方程为.故答案为:.根据抛物线的方程算出其焦点为,从而得出双曲线的右焦点为再设出双曲线的方程,利用离心率的公式和a、b、c的平方关系建立方程组,解出a、b的值即可得到该双曲线的方程.本题给出抛物线的焦点为双曲线右焦点,求双曲线的方程着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.7.在平面直角坐标系中,A、B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线相切,则圆C面积的最小值为______.【答案】【解析】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得,过点O作直线的垂直线段OF,交AB于D,交直线于F,则当D恰为OF中点时,圆C的半径最小,即面积最小.此时圆的直径为到直线的距离为:,此时圆C的面积的最小值为:.故答案为.如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得,过点O作直线的垂直线段OF,交AB于D,交直线于F,则当D恰为AB中点时,圆C的半径最小,即面积最小.本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.8.给出下列三个类比结论:与类比,则有;与类比,则有;与类比,则有与类比,则有其中结论正确的序号是______.【答案】【解析】解:根据题意,依次分析4个推理:对于与类比,但不成立,错误;对于与类比,但,不成立,错误;对于与类比,则,成立,正确;对于与类比,但,不成立,错误;故答案为:.根据题意,依次分析4个推理,综合即可得答案.本题考查类比推理的应用,注意类比推理的定义,属于基础题.9.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在的汽车大约有______辆【答案】80【解析】解:由图时速在的汽车在样本中所占的频率为又样本容量是200时速在的汽车大约有辆故答案为:80辆此类题的求解,一般是用频率模拟概率,可由图象求出时速在的汽车的频率,再由样本总容量为200,按比例计算出时速在之间的辆数本题考查频率分布直方图,解题的关键是由图形得出所研究的对象的频率,用此频率模拟概率进行计算,本题考查了识图的能力10.根据如图所示伪代码,可知输出结果S,______.【答案】17,9【解析】解:根据如图所示伪代码,可知;,,;,;,;,;此时不满足循环条件,推出循环,输出,.故答案为:17,9.模拟程序的运行过程,即可得出程序运行后输出的S、I的值.本题考查了程序的运行问题,是基础题.11.观察下列各式:,,,,,,则______.【答案】199【解析】解:等式的右边对应的数为1,3,4,7,11,,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第11项.对应的数列为1,3,4,7,11,18,29,47,76,123,199,第11项为199,故答案为:199.观察1,3,4,7,11,的规律,利用归纳推理即可得到第11个数的数值.本题考查归纳推理的应用,得到等式的右边数的规律是解决本题的关键,比较基础.12.已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的离心率为______.【答案】【解析】解:设正方形边长为1,则,.,..故答案为:由“以A、B为焦点”可求得c,再由“过C、D两点”结合椭圆的定义可知,可求a,再由离心率公式求得其离心率.本题通过正方形来构造椭圆,来考查其定义及性质,题目灵活新颖,转化巧妙,是一道好题.13.已知圆:,圆:,A、B分别是圆和圆上的动点,点P是y轴上的动点,则的最大值为______.【答案】【解析】解:由题意可得圆和圆的圆心分别为,,关于y轴的对称点为,故,当P、、三点共线时,取最大值,的最大值为,故答案为:先由对称性求出的最大值,再加上两个半径的和即可.本题考查两圆的位置关系,数形结合并利用对称性转化是解决问题的关键,属中档题.14.已知椭圆:与双曲线:有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于A,B两点,若恰好将线段AB三等分,则______.【答案】【解析】解:由题意,的焦点为,一条渐近线方程为,根据对称性可知以的长轴为直径的圆交于A、B两点,满足AB为圆的直径且椭圆与双曲线有公共的焦点,的半焦距,可得,设与在第一象限的交点的坐标为,代入的方程,解得,由对称性可得直线被截得的弦长,结合题意得,所以,由联解,得再联解,可得得,故答案为:由双曲线方程确定一条渐近线为,可得AB为圆直径且,因椭圆与双曲线有公共焦点,得设与在第一象限的交点为,代入解出再由对称性知直线被截得的弦长,根据恰好将线段AB三等分解出,联解可得,的值,得到答案.本题给出双曲线与椭圆共焦点,在双曲线的渐近线与椭圆长轴为直径的圆相交所得的弦AB被椭圆三等分时,求椭圆的之值着重考查了椭圆、双曲线的标准方程与简单几何性质与直线与圆等知识,属于中档题.二、解答题(本大题共10小题,共130.0分)15.已知复数是虚数单位,,且为纯虚数是z的共轭复数.设复数,求;设复数,且复数所对应的点在第一象限,求实数a的取值范围.【答案】解:,..又为纯虚数,,解得..,;,,又复数所对应的点在第一象限,,解得:.【解析】由已知列式求出m值.把m值代入,直接利用复数模的计算公式求解;把z代入,利用复数代数形式的乘除运算化简,再由实部大于0且虚部小于0列不等式组求解.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,考查复数模的求法,是中档题.16.已知求证:;,,中至少有一个不小于.【答案】证明:.假设,,都小于,则,,.由可知,又,则有,矛盾所以假设不成立,原题得证.【解析】根据函数的解析式,分别将,2,3代入求得,,,进而求得;“至少有一个不小于”的反面情况较简单,比较方便证明,故从反面进行证明,用反证法.反证法是一种从反面的角度思考问题的证明方法,体现的原则是正难则反反证法的基本思想:否定结论就会导致矛盾,证题模式可以简要的概括为“否定推理否定”.17.已知集合A是函数的定义域,集合B是不等式的解集,p:,q:,Ⅰ若,求a的取值范围;Ⅱ若¬是q的充分不必要条件,求a的取值范围.【答案】解:Ⅰ由条件得:,或若,则必须满足所以,a的取值范围的取值范围为:;Ⅱ易得::或,是q的充分不必要条件,或是或的真子集,则的取值范围的取值范围为:.【解析】Ⅰ分别求函数的定义域和不等式的解集化简集合A,由得到区间端点值之间的关系,解不等式组得到a的取值范围;Ⅱ求出对应的x的取值范围,由是q的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解a的范围.本题考查了函数定义域的求法,考查了一元二次不等式的解法,考查了数学转化思想方法,解答的关键是对区间端点值的比较,是中档题.18.如图,在平面直角坐标系内,已知点,,圆C的方程为,点P为圆上的动点.求过点A的圆C的切线方程.求的最小值及此时对应的点P的坐标.【答案】解:当k存在时,设过点A切线的方程为,圆心坐标为,半径,,解得:,所求的切线方程为;当k不存在时方程也满足,综上所述,所求的直线方程为或.设点,则:由两点之间的距离公式知:,要取得最大值只要使最大即可,又P为圆上点,所以:,,此时直线OC:,由,解得:舍去或,点P的坐标为【解析】直接利用点到直线的距离公式求出直线的方程.利用直线与圆的位置关系,建立方程组,最后求出结果.本题考查的知识要点:直线与圆的位置关系的应用,二元二次方程组的解法主要考查学生的运算能力和转化能力,属于基础题型.19.已知椭圆:的右顶点为A,上顶点为B,离心率,O为坐标原点,圆:与直线AB相切.Ⅰ求椭圆C的标准方程;Ⅱ已知四边形ABCD内接于椭圆E,记直线AC,BD的斜率分别为,,试问是否为定值?证明你的结论.【答案】解:直线AB的方程为,即,由圆O与直线AB相切,得,即,设椭圆的半焦距为c,则,,由得,.故椭圆的标准方程为;为定值,证明过程如下:由得直线AB的方程为,故可设直线DC的方程为,显然.设,联立消去y得,则,解得,且,,.由,,则,,,.【解析】Ⅰ根据圆:与直线AB相切可得,根据离心率可得,.解得求出,即可,Ⅱ可设直线DC的方程为,显然设,根据韦达定理和斜率公式即可求出本题考查了椭圆的标准方程与性质、直线与椭圆相交问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.20.在平面直角坐标系xOy中,椭圆C:.若椭圆C的焦点在x轴上,求实数m的取值范围;若,是椭圆C上的动点,M点的坐标为,求PM的最小值及对应的点P的坐标;过椭圆C的右焦点F作与坐标轴不垂直的直线,交椭圆C于A,B两点,线段AB的垂直平分线l交x轴于点N,证明:是定值,并求出这个定值.【答案】解:由题意得,,解得,所以实数m的取值范围是;因为,所以椭圆C的方程为,设点P坐标为,则,因为点M的坐标为,所以,,所以当时,PM的最小值为,此时对应的点P坐标为;由,,得,即,从而椭圆C的右焦点F的坐标为,右准线方程为,离心率,设,,AB的中点,则,,两式相减得,,即,令,则线段AB的垂直平分线l的方程为,令,则,因为,所以,因为.故,即为定值.【解析】由焦点在x轴上得,,解出即可;设点P坐标为,则,由两点间距离公式可表示出,根据二次函数的性质即可求得的最小值,从而得到PM的最小值,注意x的取值范围;易求焦点F的坐标及右准线方程,设,,AB的中点,利用平方差法可用H坐标表示直线AB的斜率,用点斜式写出AB中垂线方程,从而得点N横坐标,进而得到线段FN的长,由第二定义可表示出线段AB长,是定值可证;本题考查直线与圆锥曲线的位置关系、椭圆方程的求解及椭圆的第二定义,考查学生综合运用知识分析解决问题的能力,属中档题.21.已知空间中三点0,,1,,0,,设,.的坐标;求与的夹角的余弦值【答案】解:;;;.【解析】根据A,B,C三点的坐标即可求出向量,从而得出的坐标;根据的坐标即可求出,根据即可求出向量夹角的余弦值.考查根据点的坐标求向量坐标的方法,向量坐标的加法和数量积运算,以及向量夹角的余弦公式.22.已知平面内一动点P在x轴的上方,点P到的距离与它到y轴的距离的差等于1.求动点P轨迹C的方程;设A,B为曲线C上两点,A与B的横坐标之和为求直线AB的斜率;【答案】解:设动点P的坐标为,由题意为因为,化简得:,所以动点P的轨迹C的方程为,,设,,则,,,又,所以直线AB的斜率.【解析】设动点P的坐标为,由题意为,化简即可;设,,运用直线的斜率公式,结合条件,即可得到所求.本题考查直线与抛物线的位置关系,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题.23.观察以下4个等式:,,,,照以上式子规律,猜想第n个不等式;用数学归纳法证明上述所猜想的第n个不等式成立.【答案】解:对任意的,证明:当时,左边,右边.左边右边,所以不等式成立,假设时,不等式成立,即.那么当时,.这就是说,当时,不等式成立由可知,原不等式对任意都成立.【解析】利用已知条件,观察规律写出第4个不等式,并猜想第n不个等式;用数学归纳法的证明步骤证明上述所猜想的第n个不等式成立本题考查数学归纳法证明猜想成立,注意证明步骤的应用,缺一不可.24.如图,三棱锥中,平面.分别为线段AB,BC上的点,且.证明:平面PCD求二面角的余弦值.【答案】证明:平面ABC,平面ABC,,为等腰直角三角形,.,DE垂直于平面PCD内两条相交直线,平面PCD.解:由知,为等腰直角三角形,.如图,过D作DF垂直CE于F,则,又已知,故FB.由,得,,故AC.以C为坐标原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则0,,0,,0,,2,,1,,,,.设平面PAD的法向量为,由,,得,取,得1,.由可知平面PCD,故平面PCD的法向量,,故所求二面角的余弦值为.【解析】要证明平面PCD,可转化为证明与;建立空间直角坐标系,将问题转化为求平面PAD与平面PCD的法向量的夹角的余弦值.本题主要考查空间中线面的垂直关系、二面角的求法、空间向量的应用,考查考生的逻辑思维能力、运算求解能力、转化能力.。
KS解析江苏省启东中学高二月月考数学理试题Wor含解析

江苏省启东中学2018-2019学年度第二学期高二年级第二次月考数学试卷(理科)考试时间:120分钟 满分:160分 命题人:杨黄健一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的值为_______. 【答案】3 【解析】 【分析】由题意结合集合元素的互异性分类讨论求解实数m 的值即可. 【详解】由题意分类讨论:若2m =,则2320m m -+=,不满足集合元素的互异性,舍去; 若2322m m -+=,解得:3m =或0m =, 其中0m =不满足集合元素的互异性,舍去, 综上可得,3m =.【点睛】本题主要考查集合与元素的关系,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.2.设全集U R =,若{}2,1,0,1,2A =--,2{|log (1)}B x y x ==-,则()U A C B ⋂=________.【答案】{}1,2 【解析】 【分析】求出集合B 中函数的定义域,再求的集合B 的补集,然后和集合A 取交集. 【详解】(),1B =-∞,(){}[){}2,1,0,1,21,1,2U A C B ⋂=--⋂+∞=,故填{}1,2. 【点睛】本小题主要考查集合的研究对象,考查集合交集和补集的混合运算,还考查了对数函数的定义域.属于基础题.3.若函数()f x 满足0'()3f x =-,则当h 趋向于0时,()()003f x h f x h h+--趋向于________. 【答案】-12 【解析】 【分析】由当h 趋向于0时,()()()()00003344f x h f x h f x h f x h h h+--+--=⨯,再根据0'()f x 的定义和极限的运算,即可求解. 【详解】当h 趋向于0时,()()()()00003344f x h f x h f x h f x h h h+--+--=⨯, 因为0'()3f x =-,则()()0003lim34h f x h f x h h→+--=-,所以()()()()00000033lim4lim 34124h h f x h f x h f x h f x h h h→→+--+--=⨯=-⨯=-.【点睛】本题主要考查了导数的概念,以及极限的运算,其中解答中合理利用导数的概念与运算,以及极限的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.4.已知命题p :0x ∀>,总有(1)1xx e +>,则p 的否定为______________.【答案】0:0p x ⌝∃>,使得()0011xx e +≤【解析】 【分析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题:0p x ∀>,总有()11xx e +>, 所以p 的否定p ⌝为:00x ∃>,使得()0011xx e +≤ 故答案为:00x ∃>,使得()0011xx e +≤【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.5.已知命题p :(3)(1)0x x -+>,命题q :22210(0)x x m m -+->>,若命题p 是命题q的充分不必要条件,则实数m 的取值范围是__________. 【答案】(0,2) 【解析】 【分析】先求出命题p 和命题q 的取值范围,再根据命题p 和命题q 的充分不必要条件,利用集合之间的关系,即可求解.【详解】由题意,可的命题p 得1x <-或3x >,即集合{|1A x x =<-或3}x > 命题q 得1x m <-+或1x m >+,即集合{1B x m =<-+或1}x m >+, 因为命题p 和命题q 的充分不必要条件,即集合A 是集合B 的真子集,所以1113m m -+≥-⎧⎨+≤⎩,解得2m ≤,又0m >,所以02m <≤,又由当2m =时,命题p 和命题q 相等,所以2m ≠, 所以实数m 的取值范围是02m <<,即(0,2)m ∈.【点睛】本题主要考查了充分不必要条件的应用,其中解答中正确求解命题p 和命题q ,转化为集合之间的关系求解是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.6.已知()tan f x x =,则4'()3f π等于__________. 【答案】4 【解析】 【分析】根据导数的运算法则,即可得到结论. 【详解】∵f (x )=tan x sinxcosx=, ∴f ′(x )22221cos x sin x cos x cos x+==,则f ′(43π)2143cos π==4, 故答案为:4.【点睛】本题主要考查导数的计算,要求熟练掌握常见函数的导数公式,比较基础.7.对于集合M ,N ,定义{|}M N x x M x N -=∈∉且,()()M N M N N M ⊕=--U ,设9|,4A x x x R ⎧⎫=≥-∈⎨⎬⎩⎭,{|0,}B x x x R =<∈,则A B ⊕=________. 【答案】[)9,0,4⎛⎫-∞-⋃+∞ ⎪⎝⎭【解析】 【分析】根据题意求出集合A B -和B A -,然后再求出()()A B B A -⋃-即所求.【详解】依题意得A -B ={x |x ≥0,x ∈R},B -A =9|,4x x x R ⎧⎫<-∈⎨⎬⎩⎭, 故A ⊕B =9,4⎛⎫-∞-⎪⎝⎭∪[0,+∞). 故答案为[)9,0,4⎛⎫-∞-⋃+∞ ⎪⎝⎭. 【点睛】本题是定义新运算的问题,考查接受和处理新信息的能力,解题时要充分理解题目的含义,进行全面分析,灵活处理.8.已知过点(1,)A m 恰能作曲线3()3f x x x =-的两条切线,则m 的值是_____.【答案】-3或-2 【解析】设切点为(a ,a 3-3a ).∵f (x )=x 3-3x , ∴f'(x )=3x 2-3, ∴切线的斜率k=3a 2-3,由点斜式可得切线方程为y-(a 3-3a )=(3a 2-3)(x-a ).∵切线过点A (1,m ), ∴m -(a 3-3a )=(3a 2-3)(1-a ),即2a 3-3a 2=-3-m.∵过点A (1,m )可作曲线y=f (x )的两条切线, ∴关于a 的方程2a 3-3a 2=-3-m 有两个不同的根.令g (x )=2x 3-3x 2,∴g'(x )=6x 2-6x.令g'(x )=0,解得x=0或x=1,当x<0时,g'(x )>0,当0<x<1时,g'(x )<0,当x>1时,g'(x )>0,∴g (x )在(-∞,0)内单调递增,在(0,1)内单调递减,在(1,+∞)内单调递增, ∴当x=0时,g (x )取得极大值g (0)=0,当x=1时,g (x )取得极小值g (1)=-1.关于a 的方程2a 3-3a 2=-3-m 有两个不同的根,等价于y=g (x )与y=-3-m 的图象有两个不同的交点,∴-3-m=-1或-3-m=0,解得m=-3或m=-2, ∴实数m 的值是-3或-2.9.已知函数()f x 是定义在R 上的偶函数,若对于BC AP λ=u u u v u u u v,都有3(2)()f x f x +=-,且当[0,2)x ∈时,2()log (1)f x x =+,则(2017)f -(2019)f +=__________.【答案】0 【解析】 【分析】根据条件关系得到当0x ≥时,函数是周期为4的周期函数,利用函数的周期性和奇偶性进行转化求解即可.【详解】解:对于0x ≥,都有()()12f x f x +=-, ∴()()()()11412f x f x f x f x +=-=-=+-,即当0x ≥时,函数()f x 是周期为4的周期函数,∵当[)0,2x ∈时,()()21f x log x =+,∴()()()()220172017504411log 21f f f f -==⨯+===,()()()()()120195044332111f f f f f =⨯+==+=-=-, 则()()20172019110f f -+=-+=. 故答案为:0.【点睛】本题主要考查函数值的计算,根据条件求出函数的周期,以及利用函数的周期性和奇偶性进行转化是解决本题的关键.10.已知函数21()2ln 2f x ax ax x =-+在(1,3)内不单调,则实数a 的取值范围是________. 【答案】13a <-或1a > 【解析】 【分析】求得函数()f x 的导函数,对a 分成0,0a a =≠两类,根据函数在()1,3内不单调列不等式,解不等式求得a 的取值范围.【详解】函数()f x 的定义域为()0,∞+,()2'21ax ax f x x-+=,当0a =时,()10f x x '=>,()f x 单调递增,不符合题意.当0a ≠时,构造函数()()2210h x ax ax x =-+>,函数()h x 的对称轴为1x =,要使()f x 在()1,3内不单调,则需()()130h h ⋅<,即()()1310a a -++<,解得13a <-或1a >. 【点睛】本小题主要考查利用导数研究函数的单调区间,考查分类讨论的数学思想方法,属于中档题.11.已知函数()f x 对于任意实数x 都有()()f x f x -=,且当BC AP λ=u u u v u u u v时,()sin x f x e x =-,若实数a 满足(log 2)(1)a f f <,则a 的取值范围是________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】 【分析】先证明函数在[0,+∞ )上单调递增,在,0)(-∞上单调递减,再利用函数的图像和性质解不等式|2log a |<1得解.【详解】由题得,当x ≥0时,()cos xf x e x '=-,因为x ≥0,所以01,cos 0x xe e e x ≥=∴-≥, 所以函数在[0,+∞ )上单调递增, 因为()()f x f x -=,所以函数是偶函数,所以函数在,0)(-∞上单调递减, 因为()()2log 1f a f <,所以|2log a |<1,所以-1<2log a <1, 所以122a <<. 故答案为:1,22⎛⎫⎪⎝⎭【点睛】本题主要考查利用导数研究函数的单调性,考查函数的奇偶性和单调性的应用,考查对数不等式的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.若关于x 的不等式9log 2xa x -≤在10,2⎛⎤ ⎥⎝⎦上恒成立,则a 的取值范围为______.【答案】1,12⎡⎫⎪⎢⎣⎭【解析】 【分析】关于x 的不等式92log x a x -≤在10,2⎛⎤ ⎥⎝⎦上恒成立等价于92log xa x -≤在10,2⎛⎤ ⎥⎝⎦恒成立,进而转化为函数()log a g x x =的图象恒在()92xf x =-图象的上方,利用指数函数与对数函数的性质,即可求解.【详解】由题意,关于x 的不等式92log x a x -≤在10,2⎛⎤ ⎥⎝⎦上恒成立等价于92log xa x -≤在10,2⎛⎤ ⎥⎝⎦恒成立,设()92x f x =-,()log a g x x =,因为92log x a x -≤在10,2⎛⎤ ⎥⎝⎦上恒成立, 所以当10,2x ⎛⎤∈ ⎥⎝⎦时,函数()log a g x x =的图象恒在()92xf x =-图象的上方,由图象可知,当1a >时,函数()92xf x =-的图象在()log a g x x =图象的上方,不符合题意,舍去;当01a <<时,函数()log a g x x =的图象恒在()92xf x =-图象的上方,则121log 922a ≥-,即1log 12a≥,解得112a ≤<, 综上可知,实数a 的取值范围是1,12⎡⎫⎪⎢⎣⎭.【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,以及不等式的恒成立问题的求解,其中解答中把不等式恒成立转化为两个函数的关系,借助指数函数与对数函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.13.已知函数2ln 2,0()3,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩,函数()()1g x f x kx =-+有四个零点,则实数k 的取值范围是______. 【答案】1(1,)2-- 【解析】 【分析】将问题转化为()y f x =与1y kx =-有四个不同的交点的问题;画出()y f x =图象后可知,当1y kx =-与()f x 在0x >和0x ≤上分别相切时,两切线斜率之间的范围即为所求k 的范围,利用导数几何意义和二次函数的知识分别求解出两条切线斜率,从而得到所求范围. 【详解】()()1g x f x kx =-+有四个零点等价于()y f x =与1y kx =-有四个不同的交点 当0x >时,()ln 2f x x x x =-,()ln 1f x x '=- 当()0,x e ∈时,()0f x '<;当(),x e ∈+∞时,()0f x '>即()f x 在()0,e 上单调递减,在(),e +∞上单调递增 ()()min f x f e e ∴==- 当0x ≤时,()232f x x x =+,此时()min 39416f x f ⎛⎫=-=- ⎪⎝⎭由此可得()f x 图象如下图所示:1y kx =-Q 恒过()0,1-,由图象可知,直线位于图中阴影部分时,有四个不同交点即临界状态为1y kx =-与()f x 两段图象分别相切 当1y kx =-与()()2302f x x x x =+≤相切时,可得:12k =-当1y kx =-与()()ln 20f x x x x x =->相切时 设切点坐标为(),ln 2a a a a -,则()ln 1k f a a '==- 又1y kx =-恒过()0,1-,则ln 21a a a k a -+=-即ln 21ln 1a a a a a-+-=,解得:1a = 1k ∴=-由图象可知:11,2k ⎛⎫∈-- ⎪⎝⎭【点睛】本题考查利用函数零点个数求解参数范围的问题,其中还涉及到导数几何意义的应用、二次函数的相关知识.解决零点问题的常用方法为数形结合的方法,将问题转化为曲线与直线的交点问题后,通过函数图象寻找临界状态,从而使问题得以求解.14.已知方程()2ln 2||2x m x -=-,有且仅有四个解1x ,2x ,3x ,4x ,则()1234m x x x x +++=__________.【答案】4e【解析】由图可知1234428x x x x +++=⨯= ,且3x > 时,ln(2)y x =- 与2(2)y m x =- 只有一个交点,令21t x =-> ,则由223ln 12ln ln t tt mt m m t t-='=⇒=⇒ ,再由312ln 0t m t e t-'==⇒=,不难得到当t e = 时ln(2)y x =- 与2(2)y m x =- 只有一个交点,即ln 12e m e e==,因此()12344 m x x x x e +++=点睛:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤.15.(1)已知集合233|1,,224A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,2{|1}B x x m =+≥.p :x A ∈,q :x B ∈,并且p 是q 的充分条件,求实数m 的取值范围.(2)已知p :x R ∃∈,210mx +≤,q :x R ∀∈,210x mx ++>,若p q ∨为假命题,求实数m 的取值范围.【答案】(1)33,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)2m ≥ 【解析】 【分析】(1)由二次函数的性质,求得7{|2}16A y y =≤≤,又由21x m +≥,求得集合2{|1}B x x m =≥-,根据命题p 是命题q 的充分条件,所以A B ⊆,列出不等式,即可求解. (2)依题意知,,p q 均为假命题,分别求得实数m 的取值范围,即可求解.【详解】(1)由223371()2416y x x x =-+=-+,∵3,24x ⎡⎤∈⎢⎥⎣⎦,∴min 716y =,max 2y =, ∴7,216y ⎡⎤∈⎢⎥⎣⎦,所以集合7|216A y y ⎧⎫=≤≤⎨⎬⎩⎭,由21x m +≥,得21x m -≥,所以集合2{|1}B x x m =≥-,因为命题p 是命题q 的充分条件,所以A B ⊆,则27116m -≤,解得34m ≥或34m ≤-,∴实数m 的取值范围是33,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭.(2)依题意知,p ,q 均为假命题,当p 是假命题时,210mx +>恒成立,则有0m ≥, 当q 是假命题时,则有240m ∆=-≥,2m ≤-或2m ≥.所以由,p q 均为假命题,得022m m m ≥⎧⎨≤-≥⎩或,即2m ≥.【点睛】本题主要考查了复合命题的真假求参数,以及充要条件的应用,其中解答中正确得出集合间的关系,列出不等式,以及根据复合命题的真假关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.16. 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若3xy≤,则奖励玩具一个;②若8xy≥,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】(Ⅰ)516.(Ⅱ)小亮获得水杯的概率大于获得饮料的概率.【解析】试题分析:(Ⅰ)确定基本事件的概率,利用古典概型的概率公式求小亮获得玩具的概率;(Ⅱ)求出小亮获得水杯与获得饮料的概率,即可得出结论试题解析:(1)两次记录的所有结果为(1,1),(1,,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个。
启东市高中2018-2019学年高二上学期第二次月考试卷数学

启东市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1 B .﹣=1 C .﹣=1 D .﹣=12. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不能被5整除 D .a ,b 有1个不能被5整除3. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A .B .C .2D .34. 若A (3,﹣6),B (﹣5,2),C (6,y )三点共线,则y=( )A .13B .﹣13C .9D .﹣95. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A .B .18C .D .6. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .7. 过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°8. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13B .15C .12D .119.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos2﹣sin cos﹣的值为()A.B.C.﹣D.﹣10.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为()A.4320 B.2400 C.2160 D.132011.459和357的最大公约数()A.3 B.9 C.17 D.5112.设集合S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,则实数a的取值范围是()A.﹣3<a<﹣1 B.﹣3≤a≤﹣1 C.a≤﹣3或a≥﹣1 D.a<﹣3或a>﹣1二、填空题13.如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.14.已知双曲线的一条渐近线方程为y=x,则实数m等于.15.已知平面上两点M(﹣5,0)和N(5,0),若直线上存在点P使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1是“单曲型直线”的是 .16.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .17.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.18.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .三、解答题19.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.20.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.21.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.22.在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a.(1)求角C的大小;(2)若c=2,a2+b2=6,求△ABC的面积.23.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:(单位:元),求X的分布列及数学期望.24.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.启东市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.2.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.3.【答案】D【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.4.【答案】D【解析】解:由题意,=(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D.【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.5.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.6.【答案】B【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),∴a n+1=3a n>0,∴数列{a n}是等比数列,公比q=3.又a2+a4+a6=9,∴=a5+a7+a9=33×9=35,则log(a5+a7+a9)==﹣5.故选;B.7.【答案】B【解析】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.8.【答案】A【解析】解:设点P 到双曲线的右焦点的距离是x ,∵双曲线上一点P 到左焦点的距离为5,∴|x ﹣5|=2×4 ∵x >0,∴x=13 故选A .9. 【答案】 A【解析】解:∵|BC|=1,点B 的坐标为(,﹣),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos (﹣α)=,﹣sin (﹣α)=﹣,∴sin (﹣α)=.∴cos α=cos[﹣(﹣α)]=coscos (﹣α)+sin sin (﹣α)=+=,∴sin α=sin[﹣(﹣α)]=sincos (﹣α)﹣cos sin (﹣α)=﹣=.∴cos 2﹣sin cos ﹣=(2cos2﹣1)﹣sin α=cos α﹣sin α=﹣=,故选:A .【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.10.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种, 故选D .【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.11.【答案】D【解析】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选:D.【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.本题也可以验证得到结果.12.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.二、填空题13.【答案】4【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成.故答案为:4.14.【答案】4.【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x,∴=2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.15.【答案】①②.【解析】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即,(x>0).对于①,联立,消y得7x2﹣18x﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y得x2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y得20x2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②.故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.16.【答案】.【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.17.1【解析】18.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.20.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.∴,解得,∴a n﹣1+(n﹣1)=n﹣2.(2)=.∴数列{}的前n项和S n=﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n=.21.【答案】【解析】解:(Ⅰ)该连锁分店一年的利润L(万元)与售价x的函数关系式为:L(x)=(x﹣7)(x﹣10)2,x∈[7,9],(Ⅱ)L′(x)=(x﹣10)2+2(x﹣7)(x﹣10)=3(x﹣10)(x﹣8),令L′(x)=0,得x=8或x=10(舍去),∵x∈[7,8],L′(x)>0,x∈[8,9],L′(x)<0,∴L(x)在x∈[7,8]上单调递增,在x∈[8,9]上单调递减,∴L(x)max=L(8)=4;答:每件纪念品的售价为8元,该连锁分店一年的利润L最大,最大值为4万元.【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.22.【答案】【解析】(本小题满分10分)解:(1)∵,∴,…2分在锐角△ABC中,,…3分故sinA≠0,∴,.…5分(2)∵,…6分∴,即ab=2,…8分∴.…10分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题.23.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X24.【答案】【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,∵直线AE是圆O所在平面的垂线,∴AD⊥AE,∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE;(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.∵直线AE,CF是圆O所在平面的两条垂线,∴AE∥CF,∥AE⊥AC,AF⊥AC.∵AE=CF=,∴AEFC为矩形,∵AC=2,∴S AEFC=2,作BM⊥AC交AC于点M,则BM⊥平面AEFC,∴V=2V B﹣AEFC=2×≤=.∴多面体EF﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.。
启东市三中2018-2019学年高二上学期第二次月考试卷数学

启东市三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A .B .C .2D .32. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .3. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-4. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .86405. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}6. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A.12+ B.12+23πC.12+24πD.12+π7.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)C.D.8.已知幂函数y=f(x)的图象过点(,),则f(2)的值为()A.B.﹣C.2 D.﹣29.函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,e)D.(3,4)10.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日D.2日和11日11.已知2a=3b=m,ab≠0且a,ab,b成等差数列,则m=()A.B.C.D.612.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()A.a>B.﹣<a<1 C.a<﹣1 D.a>﹣1二、填空题13.已知奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f(1﹣m)+f(1﹣2m)<0的实数m的取值范围是.14.记等比数列{a n}的前n项积为Πn,若a4•a5=2,则Π8=.15.如图:直三棱柱ABC﹣A′B′C′的体积为V,点P、Q分别在侧棱AA′和CC′上,AP=C′Q,则四棱锥B﹣APQC的体积为.16.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是.17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1 ee xxf x=-,其中e为自然对数的底数,则不等式()()2240f x f x-+-<的解集为________.18.若等比数列{a n}的前n项和为S n,且,则=.三、解答题19.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A 到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.20.已知cos (+θ)=﹣,<θ<,求的值.21.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.22.设函数f (x )=1+(1+a )x ﹣x 2﹣x 3,其中a >0.(Ⅰ)讨论f (x )在其定义域上的单调性;(Ⅱ)当x ∈时,求f (x )取得最大值和最小值时的x 的值.23.定义在R 上的增函数y=f (x )对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ),则 (1)求f (0); (2)证明:f (x )为奇函数;(3)若f (k •3x )+f (3x ﹣9x﹣2)<0对任意x ∈R 恒成立,求实数k 的取值范围.24.(本小题满分10分)求经过点()1,2P 的直线,且使()()2,3,0,5A B -到它的距离相等的直线 方程.启东市三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b 2﹣8b ﹣3=0,∴解得:b=3或﹣(舍去). 故选:D .2. 【答案】D【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为,画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,∴△A ′B ′C ′的高为=,∴△A ′B ′C ′的面积S==.故选D .【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.3. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系.4. 【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15, 又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320. 故选C【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.【解析】解:∵M∪N=M,∴N⊆M,∴集合N不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础.6.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C.【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.7.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.8.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B.10.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】C.【解析】解:∵2a=3b=m,∴a=log2m,b=log3m,∵a,ab,b成等差数列,∴2ab=a+b,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得m=.故选C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.12.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.二、填空题13.【答案】[﹣,].【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),即,即,得﹣≤m≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.14.【答案】 16 .【解析】解:∵等比数列{a n }的前n 项积为Πn ,∴Π8=a 1•a 2a 3•a 4•a 5a 6•a 7•a 8=(a 4•a 5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.15.【答案】V【解析】【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C , 所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:故答案为:16.【答案】 [,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],故答案为[,1].17.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0xxf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,.18.【答案】 .【解析】解:∵等比数列{a n }的前n 项和为S n ,且, ∴S 4=5S 2,又S 2,S 4﹣S 2,S 6﹣S 4成等比数列,∴(S 4﹣S 2)2=S 2(S 6﹣S 4),∴(5S2﹣S2)2=S2(S6﹣5S2),解得S6=21S2,∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.三、解答题19.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.20.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,∴sinθ+cosθ=﹣,①cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,∴cosθ﹣sinθ=﹣,②联立①②,得cosθ=﹣,sinθ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.21.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质.22.【答案】【解析】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈,当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在单调递增,在上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.23.【答案】【解析】解:(1)在f (x+y )=f (x )+f (y )中, 令x=y=0可得,f (0)=f (0)+f (0), 则f (0)=0,(2)令y=﹣x ,得f (x ﹣x )=f (x )+f (﹣x ), 又f (0)=0,则有0=f (x )+f (﹣x ), 即可证得f (x )为奇函数;(3)因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数, f (k •3x )<﹣f (3x ﹣9x ﹣2)=f (﹣3x +9x +2),即有k •3x <﹣3x +9x+2,得,又有,即有最小值2﹣1,所以要使f (k •3x)+f (3x﹣9x﹣2)<0恒成立,只要使即可,故k 的取值范围是(﹣∞,2﹣1).24.【答案】420x y --=或1x =. 【解析】。
启东市高中2018-2019学年上学期高二数学12月月考试题含解析

启东市高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是()A .B .C .D .2. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016B .[]0,2015C .(]1,2016D .[]1,20173. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=04. 计算log 25log 53log 32的值为()A .1B .2C .4D .85. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6. 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长M )1,0(M y x 22=x M ||PQ 等于( )||PQ A .2 B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.7. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .8. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5B4C3D29. 如图可能是下列哪个函数的图象()A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=10.已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④11.已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )21A .B .C .或D .或21-1-21-1012.已知向量=(﹣1,3),=(x ,2),且,则x=()A .B .C .D .二、填空题13.直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则20x y t +-=216y x =A B x O 面积的最大值为.OAB ∆【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.14.已知,为实数,代数式的最小值是.x y 2222)3(9)2(1y x x y ++-++-+【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.15.曲线y=x+e x 在点A (0,1)处的切线方程是 .16.已知线性回归方程=9,则b= .17.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .18.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 . 三、解答题19.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1)(1)求点C 到直线AB 的距离;(2)求AB 边的高所在直线的方程.20.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥AC .(Ⅰ)求证:AB ⊥SC ;(Ⅱ)设D ,F 分别是AC ,SA 的中点,点G 是△ABD 的重心,求证:FG ∥平面SBC ;(Ⅲ)若SA=AB=2,AC=4,求二面角A ﹣FD ﹣G 的余弦值.21.如图,四边形是等腰梯形,,四边形ABEF ,2,AB EF AF BE EF AB ====A 是矩形,平面,其中分别是的中点,是的中点.ABCD AD ⊥ABEF ,Q M ,AC EF P BM(1)求证: 平面;PQ A BCE (2)平面.AM ⊥BCM 22.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2.(Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).23.已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)﹣f (x 2).(1)求f (1)的值;(2)若当x >1时,有f (x )<0.求证:f (x )为单调递减函数;(3)在(2)的条件下,若f (5)=﹣1,求f (x )在[3,25]上的最小值. 24.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数,()2ln f x ax x =+,,()21145ln 639f x x x x =++()22122f x x ax =+a R ∈(1)求证:函数在点处的切线恒过定点,并求出定点的坐标;()f x ()(),e f e (2)若在区间上恒成立,求的取值范围;()()2f x f x <()1,+∞a (3)当时,求证:在区间上,满足恒成立的函数有无穷多个.(记23a =()0,+∞()()()12f x g x f x <<()g x)ln5 1.61,6 1.79ln ==启东市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.2.【答案】B【解析】3.【答案】B【解析】解:∵直线x+2y﹣3=0的斜率为﹣,∴与直线x+2y﹣3=0垂直的直线斜率为2,故直线l的方程为y﹣(﹣2)=2(x﹣2),化为一般式可得2x﹣y﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.4.【答案】A【解析】解:log25log53log32==1.故选:A.【点评】本题考查对数的运算法则的应用,考查计算能力.5.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sin θ<0,∴θ是第四象限角.故选:D .【点评】本题考查了象限角的三角函数符号,属于基础题. 6. 【答案】A【解析】过作垂直于轴于,设,则,在中,,为M MN x N ),(00y x M )0,(0x N MNQ Rt ∆0||y MN =MQ 圆的半径,为的一半,因此NQ PQ 2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点在抛物线上,∴,∴,∴.M 0202y x =2200||4(21)4PQ x y =-+=2||=PQ7. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是: =.故选:A .8. 【答案】C【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3.9. 【答案】 C【解析】解:A 中,∵y=2x ﹣x 2﹣1,当x 趋向于﹣∞时,函数y=2x 的值趋向于0,y=x 2+1的值趋向+∞,∴函数y=2x ﹣x 2﹣1的值小于0,∴A 中的函数不满足条件;B 中,∵y=sinx 是周期函数,∴函数y=的图象是以x 轴为中心的波浪线,∴B 中的函数不满足条件;C 中,∵函数y=x 2﹣2x=(x ﹣1)2﹣1,当x <0或x >2时,y >0,当0<x <2时,y <0;且y=e x >0恒成立,∴y=(x 2﹣2x )e x 的图象在x 趋向于﹣∞时,y >0,0<x <2时,y <0,在x 趋向于+∞时,y 趋向于+∞;∴C 中的函数满足条件;D 中,y=的定义域是(0,1)∪(1,+∞),且在x ∈(0,1)时,lnx <0,∴y=<0,∴D 中函数不满足条件.故选:C .【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目. 10.【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ),又图象②过定点(0,1),其对应函数只能是h (x ),那图象④对应Φ(x ),图象③对应函数g (x ).故选:D .【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题. 11.【答案】D 【解析】试题分析:程序是分段函数 ,当时,,解得,当时,,⎩⎨⎧=x y x lg 200>≤x x 0≤x 212=x1-=x 0>x 21lg =x 解得,所以输入的是或,故选D.10=x 1-10考点:1.分段函数;2.程序框图.11111]12.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C .【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题. 二、填空题13.【解析】14..【解析】15.【答案】 2x﹣y+1=0 .【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.16.【答案】 4 .【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.17.【答案】 4 .【解析】解:双曲线x2﹣my2=1化为x2﹣=1,∴a2=1,b2=,∵实轴长是虚轴长的2倍,∴2a=2×2b,化为a2=4b2,即1=,解得m=4.故答案为:4.【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.18.【答案】 .【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.三、解答题19.【答案】【解析】解(1)∵,∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,∴根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.20.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos<,>==.∴二面角A﹣FD﹣G的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.21.【答案】(1)证明见解析;(2)证明见解析.【解析】考点:直线与平面平行的判定;直线与平面垂直的判定.22.【答案】【解析】解:(Ⅰ)∵f(x)=e﹣x(x2+ax),∴f′(x)=﹣e﹣x(x2+ax)+e﹣x(2x+a)=﹣e﹣x(x2+ax﹣2x﹣a);则由题意得f′(0)=﹣(﹣a)=2,故a=2.(Ⅱ)由(Ⅰ)知,f(x)=e﹣x(x2+2x),由g(x)≥f(x)得,﹣x(x﹣t﹣)≥e﹣x(x2+2x),x∈[0,1];当x=0时,该不等式成立;当x∈(0,1]时,不等式﹣x+t+≥e﹣x(x+2)在(0,1]上恒成立,即t≥[e﹣x(x+2)+x﹣]max.设h(x)=e﹣x(x+2)+x﹣,x∈(0,1],h′(x)=﹣e﹣x(x+1)+1,h″(x)=x•e﹣x>0,∴h′(x)在(0,1]单调递增,∴h′(x)>h′(0)=0,∴h(x)在(0,1]单调递增,∴h(x)max=h(1)=1,∴t≥1.(Ⅲ)证明:∵a n+1=(1+)a n,∴=,又a1=1,∴n≥2时,a n=a1••…•=1••…•=n;对n=1也成立,∴a n=n.∵当x∈(0,1]时,f′(x)=﹣e﹣x(x2﹣2)>0,∴f(x)在[0,1]上单调递增,且f(x)≥f(0)=0.又∵f()(1≤i≤n﹣1,i∈N)表示长为f(),宽为的小矩形的面积,∴f()<f(x)dx,(1≤i≤n﹣1,i∈N),∴[f()+f()+…+f()]=[f()+f()+…+f()]<f(x)dx.又由(Ⅱ),取t=1得f(x)≤g(x)=﹣x2+(1+)x,∴f(x)dx≤g(x)dx=+,∴[f()+f()+…+f()]<+,∴f()+f()+…+f()<n(+).【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.23.【答案】【解析】解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)﹣f (x 1)=0,故f (1)=0.…(4分)(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则>1,由于当x >1时,f (x )<0,所以f ()<0,即f (x 1)﹣f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.…(8分)(3)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[3,25]上的最小值为f (25).由f ()=f (x 1)﹣f (x 2)得,f (5)=f ()=f (25)﹣f (5),而f (5)=﹣1,所以f (25)=﹣2.即f (x )在[3,25]上的最小值为﹣2.…(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键.24.【答案】(1)切线恒过定点.(2) 的范围是 (3) 在区间上,满足1,22e ⎛⎫ ⎪⎝⎭a 11,22⎡⎤-⎢⎥⎣⎦()1,+∞恒成立函数有无穷多个()()()12f x g x f x <<()g x 【解析】试题分析:(1)根据导数的几何意义求得切线方程为,故过定点11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭;1,22e ⎛⎫ ⎪⎝⎭试题解析:(1)因为,所以在点处的切线的斜率为,()12f x ax x '=+()f x ()(),e f e 12k ae e=+所以在点处的切线方程为,()f x ()(),e f e ()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭整理得,所以切线恒过定点.11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭1,22e ⎛⎫ ⎪⎝⎭(2)令,对恒成立,()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭()1,x ∈+∞因为()()1212p x a x a x=--+'()22121a x ax x --+=()()()1211*x a x x ⎡⎤---⎣⎦=令,得极值点,,()0p x '=11x =2121x a =-①当时,有,即时,在上有,112a <<211x x >=112a <<()2,x +∞()0p x '>此时在区间上是增函数,并且在该区间上有,不合题意;()p x ()2,x +∞()()()2,p x p x ∈+∞②当时,有,同理可知,在区间上,有,也不合题意;1a ≥211x x <=()p x ()1,+∞()()()1,p x p ∈+∞③当时,有,此时在区间上恒有,12a ≤210a -≤()1,+∞()0p x '<从而在区间上是减函数;()p x ()1,+∞要使在此区间上恒成立,只须满足,()0p x <()111022p a a =--≤⇒≥-所以.1122a -≤≤综上可知的范围是.a 11,22⎡⎤-⎢⎥⎣⎦(利用参数分离得正确答案扣2分)(3)当时,,23a =()21145ln 639f x x x x =++()221423f x x x =+记,.()()22115ln 39y f x f x x x =-=-()1,x ∈+∞因为,22565399x xy x x='-=-令,得0y '=x =所以在为减函数,在上为增函数,()()21y f x f x =-⎛ ⎝⎫+∞⎪⎪⎭所以当时,x =min 59180y =设,则,()()()15901180R x f x λλ=+<<()()()12f x R x f x <<所以在区间上,满足恒成立函数有无穷多个()1,+∞()()()12f x g x f x <<()g x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启东市二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q2. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π3. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++=4. 下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .xy e =5. 二项式(1)(N )n x n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.6. 设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c 7. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题8. 执行如图所示的程序框图,则输出的S 等于( )A .19B .42C .47D .89 9. 十进制数25对应的二进制数是( ) A .11001 B .10011C .10101D .1000110.已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A . B . C . D .11.已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④12.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个二、填空题13.已知i 是虚数单位,复数的模为 .14.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .15.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .16.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .17.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 18.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .三、解答题19.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列. (1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .20.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.21.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.22.如图,在几何体SABCD中,AD⊥平面SCD,BC⊥平面SCD,AD=DC=2,BC=1,又SD=2,∠SDC=120°.(1)求SC与平面SAB所成角的正弦值;(2)求平面SAD与平面SAB所成的锐二面角的余弦值.23.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x=+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.24.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。
,,,,...,.(1)当,时,用列举法表示集合;(2)设、,..。
,..。
,其中、,,,...,.证明:若,则.启东市二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 C【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l , 显然满足l ∥α,m ⊥l ,m ⊂β,而α∥β,故命题q 不正确;﹣q 正确;故选C .【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.2. 【答案】B 【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B .【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.3. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 4. 【答案】A【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 5. 【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 6. 【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a <c <b . 故选:A .7. 【答案】D【解析】解:A .命题“若x 2=1,则x=1”的否命题为“若x 2≠1,则x ≠1”,故A 错误,B .由x 2+5x ﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x 2+5x ﹣6=0”既不充分也不必要条件,故B 错误,C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1≤0﹣5,故C 错误,D .若A >B ,则a >b ,由正弦定理得sinA >sinB ,即命题“在△ABC 中,若A >B ,则sinA >sinB ”的为真命题.则命题的逆否命题也成立,故D 正确 故选:D .【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.8. 【答案】B【解析】解:模拟执行程序框图,可得 k=1 S=1满足条件k <5,S=3,k=2 满足条件k <5,S=8,k=3 满足条件k <5,S=19,k=4 满足条件k <5,S=42,k=5不满足条件k <5,退出循环,输出S 的值为42. 故选:B .【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S ,k 的值是解题的关键,属于基础题.9.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A.【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.10.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.11.【答案】D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.MN 的中点坐标为(﹣,0),MN 斜率为=∴MN 的垂直平分线为y=﹣2(x+),∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y 得9x 2﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点, 故选D12.【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系.二、填空题13.【答案】 .【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.14.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.15.【答案】6.【解析】解:双曲线的方程为4x2﹣9y2=36,即为:﹣=1,可得a=3,则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.16.【答案】平行.【解析】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.0,117.【答案】()【解析】18.【答案】(2,2).【解析】解:∵log a1=0,∴当x﹣1=1,即x=2时,y=2,则函数y=log a(x﹣1)+2的图象恒过定点(2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.三、解答题19.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n }的前n 项和S n ,S n =.20.【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程124322=+y x 中,得01248)34(222=-+++m kmx x k由直线2l 与椭圆C 有且仅有一个公共点知, 0)124)(34(4642222=-+-=∆m k m k ,整理得3422+=k m …………7分且211||kk m d +-=,221||kk m d ++=1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||213kd d d -= ∴2222121213211||4||||)()(km k d d k d d d d d d d +=-=-+=+ ||1||16143||42m m m m +=+-= …………10分∵3422+=k m ∴当0≠k 时,3||>m∴334313||1||=+>+m m ,∴34)(321<+d d d ……11分 2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d∴34232)(321=⨯=+d d d …………12分综上1、2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分21.【答案】(1)320x y ++=;(2)()2228x y -+=.【解析】试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.(2)由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,因为矩形ABCD 两条对角线的交点为()2,0M ,所以M 为距形ABCD 外接圆的圆心, 又AM ==从而距形ABCD 外接圆的方程为()2228x y -+=.1考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.22.【答案】【解析】解:如图,过点D 作DC 的垂线交SC 于E ,以D 为原点, 分别以DC ,DE ,DA 为x ,y ,z 轴建立空间直角坐标系. ∵∠SDC=120°, ∴∠SDE=30°,又SD=2,则点S 到y 轴的距离为1,到x 轴的距离为.则有D (0,0,0),,A (0,0,2),C (2,0,0),B (2,0,1).(1)设平面SAB 的法向量为,∵.则有,取,得,又, 设SC 与平面SAB 所成角为θ,则,故SC 与平面SAB 所成角的正弦值为.(2)设平面SAD 的法向量为,∵,则有,取,得.∴,故平面SAD 与平面SAB 所成的锐二面角的余弦值是.【点评】本题是中档题,考查直线与平面所成角正弦值、余弦值的求法,考查空间想象能力,计算能力,熟练掌握基本定理、基本方法是解决本题的关键.23.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,.【解析】试题分析:(1)由1a =⇒()22111'x f x x x x -=-+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和单调区间;(2)求导并令()'0f x =⇒1x a =,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a=<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]①若1e a≤,则()'0f x ≤对(0]x e ∈,成立,所以()f x 在区间(0]e ,上单调递减, 则()f x 在区间(0]e ,上的最小值为()11ln 0f e a e a e e=+=+>,显然,()f x 在区间(0]e ,的最小值小于0不成立. ②若10e <<,即1a >时,则有所以()f x 在区间(0]e ,上的最小值为ln f a a a a ⎛⎫=+ ⎪⎝⎭,由()11ln 1ln 0f a a a a a a ⎛⎫=+=-< ⎪⎝⎭,得1ln 0a -<,解得a e >,即()a e ∈+∞,,综上,由①②可知,()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,符合题意.……………………………………12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用. 24.【答案】【解析】。