光控路灯电路集锦

合集下载

光控路灯自动控制器电路图

光控路灯自动控制器电路图

光控路灯自动控制器电路图:路灯自动控制器,是天黑自动开灯、天亮自动关灯的装置,能节约劳力、电力和延长灯泡寿命,能自动根据天气晴或阴来推后或提前开灯时间。

适用于工矿、街道、航标等外部照明控制,亦适合电力供应紧张地区的家属照明在天亮后自动关断电源,以节约生活用电。

工作原理如图所示。

接通220v交流电源,电容C4两端将获得十12v直流电压。

天黑时.光敏电阻RG呈高阻,三极管VTl、v1.2均截止。

继电器KMl未通电,KMl的触点2—3闭合。

交流继电器KM2路灯自动控制器,是天黑自动开灯、天亮自动关灯的装置,能节约劳力、电力和延长灯泡寿命,能自动根据天气晴或阴来推后或提前开灯时间。

适用于工矿、街道、航标等外部照明控制,亦适合电力供应紧张地区的家属照明在天亮后自动关断电源,以节约生活用电。

工作原理如图所示。

接通220v交流电源,电容C4两端将获得十12v直流电压。

天黑时.光敏电阻RG呈高阻,三极管VTl、v1.2均截止。

继电器KMl未通电,KMl的触点2—3闭合。

交流继电器KM2通电工作.KM2的触点l—2、4—5闭合,发光二极管vD3显示$情号指示,照明灯H自动燃亮。

天亮时,RG呈低阻,VT1获基极电流而导通,其射松输出高电位使vT2饱和导通。

kMl动作,KMl的触点2—3断开,KM2断电而释放,KM2的触点2-3闭合,4-5断开,vD3将显示绿色信号指示,路灯H自动熄灭。

其中,电阻R1,电容c1起延时作用,以防止夜间闪电干扰而导致电路误下作。

R2为限流电阻。

电阻R3、电位器RP为vTl的偏置电阻,调节P可改变vTl、vT2的导通电压。

二极管vDl为保护二极管。

电容c2用于消除继电器KMl的吸合及释放可能产生的抖动现象。

电阻R5、电容c3为消火花电路。

二极管vD2、电容c4为半波电流。

WHT8778光控路灯电路

WHT8778光控路灯电路

WHT8778光控路灯电路
WHT8778光控路灯电路
本例介绍的光控路灯,具有自动开关功能,可用于街道、楼道、建筑施工工地等公共场合的夜间照明。

电路工作原理
该光控路灯电路由电源电路和光控电子开关电路组成,如图所示。

电源电路由整流二极管VDl-VD4、限流电阻器Rl和稳压二极管VSl 组成。

光控电子开关电路由电阻器R2、R3、光敏晶体管RC、电子开关集成电路IC、稳压二极管VS2和晶闸管VT组成。

交流220V电压经Rl限流降压及VSl稳压后,产生+l2V电压。


+l2V电压一路直接加至IC的l脚;另一路经R2和RG分压及VS2钳位处理后,为IC的5脚提供触发电压。

白天,RG受光照射而呈低阻状态,使IC的5脚为低电平,IC内部的电子开关处于关断状态,2脚、3脚输出低电平,VT截止,路灯EL不亮。

夜晚,RG无光照射而变为高阻状态,使IC的5脚变为高电平,IC内部的电子开关接通,2脚、3脚输出高电平,使VT受触发而导通,EL 点亮。

元器件选择
Rl选用1/2W金属膜电阻器;R2和R3均选用1/4W金属膜电阻器。

RG选用亮阻小于lkΩ、暗阻大于lMΩ的光敏电阻器。

VSl选用lW、l2V的硅稳压二极管,例如1N4742等型号;VS2选用1/2W、3V的硅稳压二极管,例如lN5987B等型号。

VDl-VD4均选用1N4007型硅整流二极管。

VT选用耐压值为400V的双向晶闸管,其电流容量视路灯总功率而定。

IC选用TWH8778或QT3353型电子开关集成电路。

路灯自动控制电路

路灯自动控制电路

路灯自动控制电路路灯是校园的一道风景,也是校园照明不可缺少的设施。

目前很多的学校还要采用人工控制方式来控制路灯的开关,因为控制人员和控制开关一般处于室内,所以就难免出现了路灯早开、晚开、早关、晚关等一系列问题。

这不仅仅影响了全校师生的工作活动,同时也会造成电能浪费。

为了能在适当的时候打开路灯为师生服务同时使控制智能化更安全化,应使用自动控制装置。

本设计采用光敏电阻和通用集成运放LM324作为光照强度传感器,当光照强度变化的时候光敏电阻的阻值也跟着变化,从而使LM324的输入电压变化,当变化到一定值的时候LM324的输出会产生突变,利用LM324的输出去控制继电器,从而达到控制路灯的目的。

然后利用数电集成电路制作一个时钟电路,时钟定时电路可以控制半夜灯,即是凌晨时候只点亮50%的路灯,而且路灯功耗降低到原来的70%。

时钟定时电路同时还具有控制路灯系统的功能,这样就有了故障保护,保证了夜间照明。

本设计还具有路灯工作时间计时功能、定时时间可调等功能,是多功能路灯自动控制电路,能满足校园照明等需要。

电源部分整流滤波各种电子电路都要求用稳定的直流电源供电,由整流滤波电路可输出较为平滑的直流电压。

整流部分采用桥式整流,使用1N4001硅整流二极管。

其最高反向工作电压(峰值)为50V,最大整流电流为1A,正向压降小于等于1V,反向电流小于5uA。

因此整流二极管1N4001能满足电路的需要。

本设计采用3300uF有极性电容进行信号滤波。

直流稳压表1 7806三端稳压器的参数(Ci=0.33μF,C。

=0.1μF, Ta=25℃ )输出电压范围(v)最大输入电压(V)最大输出电流(A)△V0(温度变化引起)(mV/℃)器件压降(Vi-V0)(V)输出电阻MΩ5.75~6.25 35 1.5 ±0.7(I0=50OmA)2~2.5(I0=lA) 17本设计采用大部分CMOS集成CD4000系列集成块,它们的供电电压允许在+3~+18V范围内,还有整个电路运行所需要的最大电流是500mA,最大输出电阻远小于17mΩ。

光控开关的秘密,用几根电阻搭建光控路灯!

光控开关的秘密,用几根电阻搭建光控路灯!

光控开关的秘密,用几根电阻搭建光控路灯!这是爆炸实验室推送的第557个科学实验每天一个小实验,带娃玩成科学家每到傍晚马路两旁的路灯就会自动亮起他们总是同时打开然后又在天快亮的时候同时关闭也从没见人来开关路灯路灯怎么就自己打开关闭了呢?今天爆爆带大家破解路灯自动开关的秘密一起动手做一个智能小路灯吧!- 智能路灯 -导线x1/长杆x1/电池盒x1/中板x1/扎带x2/固定插头x1/T型杆x1/接线端子x1/零件包x14mm螺丝/10mm螺丝/小铁架x1/光敏电阻x1/三极管x1/发光二极管x1/电阻x1三极管平面朝上和光敏电阻、电阻通过下图方式进行链接step2将电池盒的黑线和红线按照下图方式链接step3将黑色导线和红色导线按照下图方式进行链接step4将红色导线和黑色导线和两头接线端子进行链接发光二极管长腿为正极短腿为负极通过接线端子把发光二极管的长腿和红线链接短腿和负极链接step5将电池盒用双面胶固定在长杆上用螺丝把两个接线端子固定在长杆上step6把另一个端子固定在T形杆上用小铁架把T型杆和长杆如下图方式链接在一起step8把固定插头用螺丝固定在中板上step9用扎带固定好线路step10将路灯长杆插入固定插头中装入电池我们的智能小路灯就做好啦step11用手挡住遮挡住光敏电阻会发现灯泡瞬间就亮了起来手挪开二极管又熄灭了把室内灯光关掉智能小路灯会自动亮起室内灯光打开智能小路灯又会自动熄灭这就是为什么每到夜晚天黑后路灯都会自动打开而到了天亮后路灯都会自动关闭的原因啦是不是非常神奇!快带娃一起亲手自制一个智能小路灯吧!智能路灯能在关灯后自动亮,开灯后自动灭,是因为光敏电阻的作用。

光敏电阻对光十分敏感,在无光照的时候,电阻变得很小,可以让电流通过,这时候路灯就亮了。

当有光照的时候,电阻变得非常大,阻断了电流通过,路灯就灭了。

自动光控制路灯电路设计(已实现)

自动光控制路灯电路设计(已实现)

电子线路课程设计题目路灯控制器设计专业班级09物电电信一班学生姓名徐旷怡陈梦达周吉指导教师张丹二O一二年十一月路灯控制器的设计设计说明:安装在公共场所或道路两旁的路灯,通常是随环境的亮和暗而自动的关断和开启或者自身亮度,同时可以对消耗的电功率进行测量。

实验时用1W白光LED (3.3V@300mA)代替路灯,用调光台灯替代环境光线变化。

(LED采用恒流供电,电流变化可以与LED亮度的变化约为线性变化。

)设计要求:基本部分1、自制电路供电的稳压电源;2、LED采用恒流供电。

3、该控制器具有环境亮度检测和控制功能,当处于暗(亮)环境下能够自动开(关)灯,为了演示方便,在现场演示时,当调光台灯(模拟自然光)较暗(较亮)时相当于暗环境(亮环境),此时另一个白光LED(模拟路灯)将被点亮(熄灭),以此实现光控功能。

发挥部分1、设计一个环境光线检测器,其输出电压能随光线近线性变化;2、受控的LED灯能随环境光线的明暗变化调整亮度,使在LED灯光照射范围内的光照强度保持恒定。

一、设计方案为了实现LED灯随环境光线的明暗变化调节亮度,我们使用了光敏三级管3DU33和运算放大器构成的基本电路。

通过光敏三级管得感光特性控制第一级运算放大器的输入电压,然后通过反馈来调节LED灯的明暗变化。

实现该电路的电路原理图如下:图1二、原件清单三、电路原理我们设计的电路原理图可以分为三个组成部分:电压控制电路,运算放大器比较电路和电流负反馈电路。

1、运算放大器比较电路如图2,电压控制电路是根据3DU33的感光特性来控制支路电压值得变化。

当有光照(1000lx)的情况下流过光敏三极管的光电流有10mA,这时电阻R1(1k)就会分得大部分电压,于是支路的电压就很小甚至为零;反过来,当环境光线不充足时,流过光敏三极管的暗电流只有几十微安,这时电阻R1分压就会降低,支路就会获得更大的电压。

通过光敏三极管的特性进行线性分压,从而能很好的控制运算放大器输入电压的变化来调节LED灯。

基于NE555构成的光控路灯电路设计

基于NE555构成的光控路灯电路设计

基于NE555构成的光控路灯电路设计一、电路设计1、实现功能简介:通过NE555定时器和由滑动变阻器等效的光敏电阻等构成简单电路实现路灯的智能化控制,使其白天熄灭,晚上自动点亮。

2、电路原理图:3、电路工作原理:该光控自动路灯的电路是电容C1、C2和二极管D1~D4组成电容降压,桥式整流电路,1R、R2为泄放电阻,稳压二极管D7将前级整流过的电压稳定在12V左右,以此作为NE555的工作电压,C3为电源滤波电容,能有效的抑制整流电压波纹,得到平滑的直流电压。

电路中NE555接成双稳态电路。

R3等效为光敏电阻,和电位器组成简单的分压器。

NE555的2脚和6脚接白天光敏电阻阻值大约为1KΩ,3脚输出端为低电位,电位器不工作,路灯不亮。

当夜幕降临时,光敏电阻因为接收光照减少而呈现高阻态。

当2、6脚电位在三分之一电源电压以下时双稳态电位器被置位,3脚输出高电位,继电器导通从而使路灯导通发光。

通过调节电阻R4可以改变光敏电阻灵敏度,当R4减小时,则路灯亮刚亮时R3临界电阻也减小,即在外界光强较强时路灯就亮,灵敏度提高。

同理当电阻R4增大时,灵敏度降低。

C4为滤波电容,用以提高5脚电位的稳定性。

二极管D5并在继电器线圈两端,可以保护集成电路不受线圈自感电动势作用而损坏。

二、电路仿真结果:经过测试,当电阻R4为150k Ω时,R3为高阻值时3脚输出端为高电平,输出端由高电位跳变为低电位时R3阻值为50k Ω,R3为低阻时3脚输出端输出低电平,并且输出端由低电平跳变为高电平时R3阻值为200k Ω。

则:VV V T 91215050150=∙⎪⎭⎫ ⎝⎛+=+VV V T 512150200150≈∙⎪⎭⎫⎝⎛+=-V V V V T T T 4=-=∆-+理论值:VV V CC T 832=∙=+V V V CC T 431=∙=-V V V V T T T 4=-=∆-+示波器测量各点波形如下:图二图三图四经过查找资料,白天光敏电阻阻值大约为1KΩ,晚上为200KΩ以上,因此所设计电路能实现设计要求。

声光控电路大全

声控、光控大全一、易光控路灯电路1.介绍的光榨路灯,电路简单,使用方便,且流过灯泡的电流为全渡交流电,所以电灯处于正常发光状态。

其亮度要比E剜介绍的半压供电要亮得多,而且电子电路与灯泡采用二线制接法,以简化安装。

220V交流电经VD1—VD4整流加在晶闸管VT的阳极与阴极之间,为晶闸管开通提供了必要的正向电压。

VT的开通是否还受(R+RP)与Rl,的分压比控制,白天自然光线较强,RL呈低电阻,分压比较小,VT f J极为低电平,VT处于关断状态,灯F不亮;当夜幕来临时,照射在R1。

的光线较弱.RL呈现高电阻,分压比加大,就为VT提供了较高的止向触发电压,故VT开通,路灯F即点亮发光。

调节微调电阻RP的阻值,因改变分压比大小,战nf调节电路的光控灵敏度。

2.3.是个性能较好的采用单向品闸管的简易光控路灯电路。

VDP为光敏二极管,白天它呈低电阻,阻值≤ikfl,三极管VT2截止,品闸管VT1因门极无触发电流而处于关断忐,路灯E不亮。

夜晚,VL无光照射呈高电阻,阻值≥iO。

kfl,VT2导通,发射极可输出正向触发电流流经vri的f J极,使VTL开通,F点亮发光。

稠节RP可使电路在需要开灯的光照度F使灯E点亮。

本电路设置了稳压管vS,使电路上作比较稳定可靠。

电路安装时,光敏二极管VDP同样应注息避免灯E的自身光线照射。

4.是一个采用般向晶闸管制作的光控路灯电路.且它也采用二线制接法,所以安装比较简便。

白天,光敏电阻器R1_因受自然光线照射.RT。

呈现低电阻,它与R,分压后,获得的电压低于烈向触发二极管VDH的折转电压,战烈向晶闸管VTH阳断,电灿E不亮。

当夜幕来临时,RI上分得l乜压逐渐州高,当高于VDH的折转电压时,VT11开通,路灯F点亮。

本电路也具有软启动过程,有利于延长灯泡的使用寿命。

增减R,的阻值可以改变电路的光控灵敏度,但一般情况下可以不必调桔。

VDH可用折转电压为26 -40V的双向触发二极管,如2CTS、DH3型等。

路灯控制器电路图

路灯控制器电路图
工作原理:如图1所示。

当光照度逐渐减弱,光敏电阻的电阻值逐渐增大,A点电压随Cds的增大而降低,B点电压亦随之下降。

当B点电压降至IC的下限电压VIL即
1/3VCC时,IC的第三脚输出由原来的低电位变为高电位,推动三极管C、E导通,使得原本是NC继电器切换到NO 绿灯亮起。

如果此时光照度的波动引起B点电压在1/3VDD 上下波动,因不能达到2/3VDD,即IC 的上限电压VIH,所以IC的第三脚输出保持不变,即使此时偶然强光(例如:闪光灯)照射光敏电阻Cds引起A点电压突然高于2/3Vcc,因A点对C1充电,所以B点电压不能突然改变,IC的第三脚输出仍然保持不变。

图1 光控路灯自动控制电路图
直到第二天的黎明来临时,光照度逐渐增强,Cds阻值逐渐减小,A点电压随Cds阻值减少而上升,B点电压也随之上升,当B 点电压升至IC的上限电压VIH,即2/3Vcc 时,IC 的第三脚输出由原来的高电位变为低电位,使得三极管C、E间断路,继电器由NO切回到NC红灯亮起。

如果此时光度的波动引起B点电压在2/3Vcc上下波动,因不能达到
1/3Vcc,即IC的下限电压,所以IC的第三脚输出
保持不变。

C1的充电回路,利用戴维宁等效电路,可改为图2所示光控路灯控制电路
电容充电的电压图2其中
Rth=(R1//RCDS)+R2
Eth=Vcc*(R1//RCDS)
Rth*C1=时间常数NE555双稳态的动作原理即是一个窗型比较器,其输入与输出电压的关系如图3
所示图3。

太阳能路灯控制器电路图

太阳能路灯控制器电路图2010-11-14 14:00太阳能路灯控制器电路图1 .工作原理电路原理见图 1 所示。

该电路由以 U5 为核心组成的蓄电池过充电控制电路、以 U 4A ~U4D为核心组成的蓄电池电压指示电路及显示电压按钮开关 KS1 电路、以 U1B 组成的蓄电池过放电控制电路、以 U1A组成的开灯检测控制电路、以 U2 组成的开灯及延时熄灯及二次开灯定时控制电路,以及以控制三极管Q2驱动继电器组成的输出控制电路等组成。

现分别介绍如下。

(1) 过充电、过放电检测保护部分太阳能电池组件板或阵列由插口 CZ1 的①脚输入,加至防反充电二极管 D2 的正极.D2的负极接 12V 蓄电池的正极,即 CZ1 的③脚。

控制器在初始上电时,由于 C4 的作用使U5②脚为低电平,③脚输出高电平,Q7 导通; Q8 截止,允许太阳能电池给蓄电池充电。

当蓄电池所充的电压小于 14 . 4V 时,由R13 、 (R38 十R39) 组成的串联分压电路送至 U5 ②、⑥电压低于 2 / 3 U5 的供电电压时,即小于6V,电路维持充电状态;随着充电时间的延长,蓄电池电压逐渐升高,当U5 ②、⑥的电压高于 2 / 3 U5 供电电压时,U5③脚输出低电平, Q7 截止、 Q8 导通,给太阳能电池板泄放电流,停止对蓄电池充电。

在U5③脚输出低电平的状态下,其⑦脚导通,相当于将 1140 并入电路中。

此时电路的分压比为: R38+ R39 // R40/IRl3+(R38+R39) // R40 ,不难算出,当蓄电池电压低于设定值 13V 时.电路状态再次翻转,U5③脚输出高电平,允许蓄电池充电。

(2) 开灯检测方法与控制太阳能电池板是一个很好的光敏元件,其输出电流、电压能随着接受光的强度和照度变化而变化,本控制器就是利用这一原理实现开、关灯控制的。

太阳能电池板PVin 输入电压经 R5 、 R6 串联分压后;加至运放U 1A ②脚,其③脚接于 R9 、R8+VR1的分压点上。

太阳能路灯控制器电路2例(组图)

太阳能路灯控制器电路2例(组图)1 .工作原理电路原理见图 1 所示。

该电路由以 U5 为核心组成的蓄电池过充电控制电路、以 U 4A ~U4D为核心组成的蓄电池电压指示电路及显示电压按钮开关 KS1 电路、以 U1B 组成的蓄电池过放电控制电路、以 U1A组成的开灯检测控制电路、以 U2 组成的开灯及延时熄灯及二次开灯定时控制电路,以及以控制三极管Q2驱动继电器组成的输出控制电路等组成。

现分别介绍如下。

(1) 过充电、过放电检测保护部分太阳能电池组件板或阵列由插口 CZ1 的①脚输入,加至防反充电二极管 D2 的正极.D2的负极接 12V 蓄电池的正极,即 CZ1 的③脚。

控制器在初始上电时,由于 C4 的作用使U5②脚为低电平,③脚输出高电平,Q7 导通; Q8 截止,允许太阳能电池给蓄电池充电。

当蓄电池所充的电压小于 14 . 4V 时,由R13 、 (R38 十R39) 组成的串联分压电路送至U5 ②、⑥电压低于 2 / 3 U5 的供电电压时,即小于6V,电路维持充电状态;随着充电时间的延长,蓄电池电压逐渐升高,当U5 ②、⑥的电压高于 2 / 3 U5 供电电压时,U5③脚输出低电平, Q7 截止、 Q8 导通,给太阳能电池板泄放电流,停止对蓄电池充电。

在U5③脚输出低电平的状态下,其⑦脚导通,相当于将 1140 并入电路中。

此时电路的分压比为: R38+ R39 // R40/IRl3+(R38+R39) // R40 ,不难算出,当蓄电池电压低于设定值 13V 时.电路状态再次翻转,U5③脚输出高电平,允许蓄电池充电。

(2) 开灯检测方法与控制太阳能电池板是一个很好的光敏元件,其输出电流、电压能随着接受光的强度和照度变化而变化,本控制器就是利用这一原理实现开、关灯控制的。

太阳能电池板PVin 输入电压经 R5 、 R6 串联分压后;加至运放U 1A ②脚,其③脚接于 R9 、R8+VR1的分压点上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图所示是一个简单易作的光控路灯电路,只要夜幕来临,电灯自动点亮,白天,灯自行熄灭。

该电路具有软启动功能,因为夜幕降临时,自然光线是逐渐缓慢变弱的,所以光敏电阻rl的阻值是逐渐变大,vt门极电平也是逐渐升高。

故晶闸管由关断变为开通是经历一个微导通与弱导通阶段,所以电灯e有一个逐渐变亮的软启动过程。

如图所示是一种简易的光控开关。

在一些公共场所,如楼道、路灯等装上自动光控开关,不仅方便而且也节电。

它在天黑时会自动开灯,天亮时自动熄灭。

调节4.7MΩ电位器,可适用于不同型号的光敏电阻及在一定的条件(黑暗程度)下亮灯。

如图所示的光控路灯,电路简单,使用方便,且流过灯泡的电流为全波交流电,所以电灯处于正常发光状态。

其亮度要比半压供电要亮得多,而且电子电路与灯泡采用二线制接法,以简化安装
如图所示是一个性能较好的采用单向晶闸管的简易光控路灯电路。

vdp为光敏二极管,白天它呈低电阻,阻值≤1kω,三极管vt2截止,晶闸管vt1因门极无触发电流而处于关断态,路灯e不亮。

夜晚,vl无光照射呈高电阻,阻值≥ 100kω,vt2导通,发射极可输出正向触发电流流经vt1的门极,使vt1开通,e点亮发光。

调节rp可使电路在需要开灯的光照度下使灯e点亮。

该电路设置了稳压管vs,使电路工作比较稳定可靠。

电路安装时,光敏二极管vdp同样应注意避免灯e 的自身光线照射。

如图所示是一个采用双向晶闸管制作的光控路灯电路,且它也采用二线制接法,所以安装比较简便。

白天,光敏电阻器rl因受自然光线照射,rl呈现低电阻,它与r1分压后,获得的电压低于双向触发二极管vdh的折转电压,故双向晶闸管vth阻断,电灯e不亮。

当夜幕来临时,rl上分得电压逐渐升高,当高于vdh的折转电压时,vth开通,路灯e点亮。

该电路具有软启动过程,有利于延长灯泡的使用寿命。

增减r1的阻值可以改变电路的光控灵敏度,但一般情况下可以不必调整。

vdh可用转折电压为20~40v的双向触发二极管,如2cts、db3型等。

光敏电阻组成的自动照明灯电路图此电路适用于医院、学生宿舍楼道及公共场所。

它在白天
灭而晚上自动亮。

如图所示是采用双向晶闸管制作的光控自动路灯,它由晶闸管主回路、光控电子开关及电源电路等三大部分组成。

如图所示是一个性能较好的简易光控路灯电路,可用于住宅小区数盏路灯的自动控制,被控路灯可以是白炽灯泡,也可以是节能型荧光灯。

如图所示是一个性能良好的光控自动路灯电路,它具有灵敏度高、性能稳定和抗干扰性能好等特点。

图中,r1、c1组成干扰脉冲吸收电路,可防止夜间短暂光线照射或白天落叶、飞纸等短暂遮挡等因素使电路发生误动作。

t采用220v/25v、25va优质电源变压器,要求
长时间通电不发热。

k可采用jqx-13f、dc24v触点容量为ac220v、15a中功率电磁继电器。

相关文档
最新文档