深基坑施工中的变形监测

合集下载

深基坑变形监测的控制要点

深基坑变形监测的控制要点

深基坑变形监测的控制要点建筑在向上往高空发展的同时,为了基础稳固可靠,车辆有地方停泊,地下空间有效利用,现在的房建项目多数都需要基坑甚至是深基坑开挖施工。

由此也带来基坑围护安全问题,需要对深基坑的变形状态进行监测。

深基坑的变形监测分为基坑自身变形监测和周围环境变形监测,在《建筑基坑工程监测技术标准》GB 50497-2019中,对不同安全等级的基坑,应做的监测项目做了比较明确的规定,具体见下表。

在此表中,可以看出,基坑变形监测项目主要分为位移监测和应力监测两部分,水位监测也可以认为是位移监测的延伸。

本篇文章主要讨论基坑变形监测中重点要注意的一些环节。

一、监测点布置1、基准点的布设1)竖向位移基准点布置竖向位移观测的高程基准点不应少于3个,并定期进行联测。

高程基准点与观测点的距离不宜太远,以保证观测方便和足够的观测精度;并且基准点须埋设在变形影响范围以外、且易于长期保存的地方,高程基准点也可选择在基础深且稳定的建筑物上。

在选择的合适范围预先合理埋设BM1、BM2、BM3三个基准点,为了测量方便,视现场情况设置基准点。

可选用浅埋钢管水准标石或墙上水准标志等。

2)竖向位移基准点测量基准点使用前,采用当地高程系统或假定高程系统使用精密水准仪对三个基准点联测,经平差计算后的高程数据作为本工程三个基准点的高程依据。

3)水平位移基准点布置水平位移监测基准点应布置在基坑变形区域以外,宜设立有强制对中的观测墩,如果采用精密的光学对中所装置,对中误差不宜大于0.5mm。

4)水平位移基准点测量基准点平面坐标数据以施工坐标或假定相对坐标系为依据,布设导线测量三个基准点,经平差后的坐标数据做为工程基准点位移监测的已知数据。

2、变形监测点的布设变形监测点布设一般参考设计图纸中的监测布点图,设计图纸中有未涉及而现场需要布设监测点的,按照《建筑基坑工程监测技术标准》GB 50497-2019中的规定布设监测点,这里不再进行赘述。

基坑变形监测工程方案

基坑变形监测工程方案

基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。

在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。

1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。

监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。

监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。

2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。

可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。

3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。

监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。

4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。

可以使用倾斜仪、位移计等仪器设备进行监测。

二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。

传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。

在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。

三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。

在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。

四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。

一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。

五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。

深基坑工程中的变形监测与处理方法

深基坑工程中的变形监测与处理方法

深基坑工程中的变形监测与处理方法深基坑工程是现代建筑施工中常见的一项技术挑战,它涉及到深埋地下的巨大土体开挖和支护工程。

在这一过程中,土体的变形是无法避免的,而人们则需要通过变形监测和相应的处理方法来保证工程的安全性和可靠性。

在深基坑工程中,变形监测是至关重要的。

它可以帮助工程师了解土体的变形情况,及时发现潜在的风险,并根据监测数据进行合理的调整和处理。

变形监测可以采用多种方法,如测量支护墙体的变形、测量土体的沉降和位移等。

其中,最常用的方法是采用传感器进行实时监测,如倾斜度传感器、沉降计、位移计等。

监测数据的处理与分析是变形监测的关键步骤。

工程师需要对监测数据进行准确的分析和解读,判断土体的变形情况,并根据情况采取相应的措施。

传统的处理方法是通过人工统计和计算,但随着计算机技术的发展,现代工程师可以借助计算机软件进行数据处理和分析,提高工作效率和准确度。

处理变形监测数据时,工程师需要考虑多个因素。

首先,他们需要将监测数据与设计值进行比较,以判断变形是否在可接受的范围内。

其次,他们需要考虑土体的复杂性和不均匀性,采用合适的数学模型进行数据分析。

此外,他们还需要关注时间因素,根据监测数据的变化趋势,判断土体的变形速度和趋势,并及时采取相应措施。

在处理变形监测数据时,工程师还可以借助经验和专业知识进行判断和决策。

他们可以根据历史数据和类似工程的经验,判断当前工程的安全性,并根据情况调整支护结构和施工方法。

此外,他们还可以借助专业的地质和土力学知识,对土体的特性和变形机理进行深入分析,为工程施工提供参考和建议。

除了变形监测和处理,深基坑工程中还有其他一些重要的安全措施。

例如,在施工前需要进行全面的勘察和调查,了解地下水位、土体的物理性质和结构等。

此外,在开挖和支护过程中,还需要采取相应的排水措施,以减少土体的渗透和水压。

总之,深基坑工程中的变形监测与处理方法是确保工程安全和可靠的重要环节。

通过科学的监测方法和准确的数据处理,工程师可以及时发现土体的变形情况,并采取相应的措施。

深基坑变形监测内容

深基坑变形监测内容

深基坑变形监测内容一、引言深基坑变形监测是在土木工程领域中非常重要的一个环节,它能够及时发现并评估深基坑的变形情况,为工程的安全运行提供可靠的依据。

本文将从监测的目的、方法、技术和数据分析等方面进行阐述,旨在全面了解深基坑变形监测的内容。

二、监测目的深基坑变形监测的主要目的是为了评估土木工程的安全性和稳定性。

通过监测,可以及时发现并掌握深基坑的变形情况,为工程管理者提供及时的决策依据。

同时,监测还可以帮助工程设计人员了解地下土体的力学特性,为工程设计和施工提供参考。

三、监测方法深基坑变形监测的方法多种多样,根据具体情况可以选择不同的方法。

常见的监测方法包括测量法、遥感法、声波法和应变测量等。

其中,测量法是最常用的方法之一,可以通过测量基坑周围的标志物的变形情况来评估基坑的变形程度。

遥感法则通过遥感技术获取图像信息,并对基坑进行变形分析。

声波法是通过声波的传播速度和振动特性来评估基坑的变形情况。

应变测量则是通过测量基坑周围土体的应变情况来评估基坑的变形程度。

四、监测技术深基坑变形监测的技术在不断发展和创新,现有的监测技术主要包括全站仪技术、GPS技术、遥感技术、声波技术和应变计技术等。

全站仪技术是一种精确测量基坑变形的技术,它可以实时监测基坑的位移和变形情况。

GPS技术则可以实时监测基坑周围土体的位移情况,并通过数据分析评估基坑的变形程度。

遥感技术则可以通过遥感图像来评估基坑的变形情况。

声波技术则可以通过声波的传播速度和振动特性来评估基坑的变形程度。

应变计技术则可以通过测量土体的应变情况来评估基坑的变形程度。

五、数据分析深基坑变形监测所获取的数据需要进行分析和处理,以得出准确的结论。

数据分析可以采用统计分析、趋势分析和模型分析等方法。

统计分析可以对监测数据进行整体统计,了解基坑的变形情况。

趋势分析则可以通过监测数据的变化趋势来评估基坑的变形程度。

模型分析则可以通过建立数学模型,对监测数据进行拟合和预测,以评估基坑的变形情况。

深基坑变形监测

深基坑变形监测

深基坑变形监测深基坑变形监测主要是为了确保深基坑施工过程中的安全和稳定性,及时发现并解决潜在的变形问题。

本文将介绍深基坑变形监测的意义、方法和技术,以及实施监测的关键点。

深基坑施工是城市建设中常见的工程方式之一,通常用于地铁、大型商业综合体等项目的建设。

深基坑施工过程中,由于地下水位、土壤条件等因素的影响,基坑结构会发生变形和沉降,导致地面沉降、建筑物倾斜等问题。

深基坑变形监测的意义主要包括以下几个方面:1.确保施工安全:深基坑结构的变形和沉降可能导致施工过程中的事故,对施工人员和周边居民的生命财产安全造成威胁。

通过变形监测,可以实时了解基坑变形情况,及时采取措施,确保施工安全。

2.保证工程质量:深基坑变形可能会对周边建筑物和地下管线等产生不利影响,导致土壤沉降、房屋裂缝等问题。

及时发现并解决变形问题,可以保证基坑施工后的工程质量。

3.控制环境污染:深基坑施工过程中可能会对周边环境造成噪音、振动、粉尘等污染。

通过变形监测,可以及时控制施工影响,减少环境污染。

深基坑变形监测的方法和技术多种多样,常用的包括全站仪监测、测量标杆监测、变形挠度监测等。

下面将介绍其中几种常用的监测方法和技术:1.全站仪监测:全站仪是一种高精度的测量仪器,可以同时测量水平角、垂直角和斜距。

在深基坑变形监测中,可以使用全站仪监测基坑边缘的标志点,通过连续测量,了解基坑的变形情况。

2.测量标杆监测:测量标杆是固定在基坑边缘或建筑物周围的标志物,通过测量标杆的位置和高程变化,可以判断基坑的变形情况。

常用的测量标杆包括水平标杆、竖直标杆和倾斜标杆等。

3.变形挠度监测:变形挠度监测是通过安装在建筑物或基坑结构上的变形传感器来测量变形挠度。

常见的变形传感器有测斜管、水平位移计、水准仪等。

通过实时监测和分析变形挠度的变化,可以了解基坑的变形状况。

深基坑变形监测是一个复杂的过程,需要注意一些关键点,以保证监测的准确性和可靠性。

1.监测方案设计:在进行深基坑变形监测之前,需要制定监测方案,确定监测参数和监测设备的布置。

深基坑变形监测

深基坑变形监测

深基坑变形监测深基坑是指建筑工程中所挖的较深的方形或圆形坑,一般用于地下车库、地下商场、地下工程等。

由于基坑承受来自周围土体的向内挤压力和自身重力的作用,会导致基坑变形,因此需要进行变形监测。

深基坑变形监测是指通过监测基坑周围土体和基坑本身在施工过程中的变形情况,及时掌握变形信息,以便采取相应的加固措施,保证基坑的安全施工和使用。

深基坑变形监测一般包括以下几个方面的内容:1. 地表沉降监测:通过在基坑周围设置沉降观测点,测量地表的沉降量,了解基坑附近土体的变形情况。

常用的监测方法包括测量地表高程、GPS定位等。

通过地表沉降监测可以判断基坑的变形是否存在异常情况。

2. 周边建筑物变形监测:在基坑周边设置监测点,通过使用位移传感器等监测设备,对周边建筑物的变形进行监测。

一旦发现附近建筑物有明显的位移现象,说明基坑造成了周边土体的变形,需要采取相应的措施进行加固。

3. 土体应力监测:通过设置土压力计、应变仪等监测设备,测量土体的水平应力和垂直应力。

监测土体的应力变化可以判断基坑周围土体是否存在破坏的趋势,及时采取措施减小土体应力。

4. 混凝土结构变形监测:通过在深基坑的混凝土结构内设置测量点,使用变形测量仪等设备,对混凝土结构的变形进行实时监测。

常见的监测参数包括混凝土的裂缝宽度、混凝土结构的变形速度等。

通过混凝土结构变形监测可以判断深基坑的变形是否达到设计要求,并根据实际情况进行相应的加固措施。

深基坑的变形监测是保证基坑施工和使用安全的重要手段。

通过实时监测基坑的变形情况,可以及时发现问题并采取措施进行处理,避免因基坑变形导致的事故发生。

深基坑变形监测是建筑工程施工的必要环节,也是保障施工质量和安全的重要措施。

深基坑变形监测及变形规律的分析

深基坑变形监测及变形规律的分析

从 监 测 成 果 表 中的 数 据 可 以 看 出:截 止 到 2014年 6月 30
数 据 .·记 录 测 点 深 度 和 读数 。 测 读 完 毕后 ,将 测 头旋 转 180。插 号 ,护 坡 桩 桩 顶 竖 向 位 移 累计 变 化 最 大 值 为 8.9r am,未达 到 设
入 同 一对 导槽 内,以上 述 方 法再 测 一 次 .测 点 深度 与 第 一 次 相 计 报 警 值 ,该 点 为 S040监 测 点 .其 位 于本 基 坑 东侧 边 坡 中 部 同 。③ 每 一 深 度 的 正 反 两读 数 的 绝 对值 宜相 同 ,当读 数 有 异 常 区域偏 南 ,其 变化 曲 线见 图 2。从 图 2可 以看 出 :监 测 点 S040
z z z PsgiolePfrp
LOW " caRBON W ORLD 2016/5
z z z PsgiolePfrp
进 行 观 测 .采 用 往 返 测 进 行 监 测 。在 测 量 过 程 中 ,严 格 按 照 《建 号 .护 坡 桩 桩 顶 水 平位 移 累计 变 化 最 大 值 为 14.1mm,未达 到
6 监测成 果分析
6.1 土钉墙坡顶水平位移监测
从 监 测 成 果表 中的数 据 可 以 看 出 :截 止 到 2014年 7月 15 号 ,土钉 墙 坡 顶 水 平 位 移 累计 变化 最 大值 为 14.5mm,未 达 到 设 计 报 警 值 .该 点 为 PD009监 测 点 ,其 位 于 本基 坑 北侧 边坡 东 部 区域 .其 变 化 曲线 见 图 2。从 图 2可 以 看 出 :监 测 点 PD009 相 关 区域 在 整 个 监 测 过 程 中其 变 化前 期 呈 缓 慢 变 天 , 中期 呈 现 上 下波 动 .后 期 呈 趋 于平稳 的发展 态势 .整 个监 测过 程 中变化 值 均未 达到 设计报 警值 ,该 区域 边坡发 展 态势 良好 ,边坡安 全 。

深基坑工程施工变形的监测和分析

深基坑工程施工变形的监测和分析

深基坑工程施工变形的监测和分析摘要:变形监测是利用专用的仪器和方法来持续观测变形结构的变形现象,对其变形状态进行分析,并预测其发展动态的各项工作。

实施变形监测的主要目的就是在各种荷载和外力作用下,明确变形体的形状、大小以及位置变化的空间状态以及时间特点。

在精密工程实际测量过程中,最常见的变形体有:深基坑、大坝、高层建筑物、隧道以及地铁等。

通过实施变形监测可以掌握和精准科学地分析变形体各部位的实际变形情况,进而做出提前预报,这对于整个工程质量控制和施工管理来讲,十分重要。

基于此,本文将对深基坑工程施工变形的监测进行分析。

关键词:深基坑工程;施工变形;变形监测1 基坑工程变形监测概述基坑工程变形监测首先应该确定监测对象及监测项目两部分,基坑工程结构不同、所处环境不同,变形监测的侧重点也不同。

确定合理有效的监测对象、监测项目,既能起到监测预警的作用,又能提高监测效率、节省监测成本,是基坑工程变形监测的关键控制点。

基坑工程变形监测对象一般包括基坑支护结构本身,基坑周边土体、地下水、地下管线以及基坑周边建(构)筑物、重要道路等等;监测项目一般包括位移监测(水平位移和竖向位移)、倾斜监测、土压力监测、地下水位监测、内力监测等等。

监测对象和监测项目的最终确定一般应遵循如下程序:首先根据基坑工程专项设计方案中对变形监测部分的设计要求,收集本项目相关地质、勘察、周边环境等资料,结合相关规范规定,初步确定监测对象及监测项目、并编制本项目基坑工程初步变形监测方案;然后组织专业技术人员现场实地踏勘,实地检核变形监测方案技术指标及条件因素,对于存在与现场条件不符、或有遗漏、有安全隐患部分等需进行基坑工程变形监测方案修编,做到监测方案与实际相符,真正起到基坑工程变形监测预警作用,保证监测成本合理高效;再将包含监测对象、监测项目在内的监测方案、监测成本预算提交建设单位,组织设计单位、专家等进行技术、成本等论证;最后根据论证意见再对包含监测对象、监测项目在内的监测方案进行修改审批,经审批的监测方案即可作为监测依据进行基坑工程监测工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深基坑施工中的变形监测
发表时间:2016-04-25T09:40:17.463Z 来源:《工程建设标准化》2016年1月供稿作者:高桂棠
[导读] 国核电力规划设计研究院随着工程设计愈来愈复杂,所需承担的载荷条件越来越苛刻,城市施工的土质特性越来越不稳定。

使得深基坑支护结构,对防止出现强度问题与变形问题的要求极高。

(国核电力规划设计研究院,北京,100095)
【摘要】随着工程设计愈来愈复杂,所需承担的载荷条件越来越苛刻,城市施工的土质特性越来越不稳定。

使得深基坑支护结构,对防止出现强度问题与变形问题的要求极高。

监测工作既是检验深基坑设计理论正确性和发展设计理论的重要手段,同时又是及时指导正确施工,避免基坑工程事故发生的必要措施。

利用基坑开挖前期监测成果来指导后续工程施工的方法已发展成为一种新的信息化施工技术。

【关键词】深基坑;施工;变形监测
前言
由于深基坑工程的实施对建筑工程周边环境和水文地质的要求很高,很难从以往的基坑建造经验中得到有效的借鉴。

同时理论上的分析、预测对多变的地下环境也不适用。

因此在深基坑工程实施中必须要有专业人员时刻做好监测工作,保证基坑实施过程中工作人员的安全和深基坑的质量。

首先深基坑土方开挖时,专业人员要适时记录开挖过程中所遇到的问题,计算监测数据并及时按设计要求预测基坑开挖承受的最大强度,为降低工程成本提供有利的数据参考; 其次要严格按照设计要求进行基坑开挖对地下土层、地下管线、设施以及周围建筑在开挖中所受影响降到最低保证周围建筑及人民的安全;最后工程施工过程中要及时预测险情发生、发展的情况,以便能及时采取安全补救措施。

因此深基坑施工过程中监测技术的应用不仅能取得大量测试数据使工程能安全、稳定的进行,同时还能对工程进行经验总结节省工程成本保证施工方的根本利益。

一、工程概况
某住院综合楼地下两层,地上20 层,总建筑面积约65 000 m2,框架剪力墙结构,建筑物高度约86 m,基础采用筏式基础。

基坑长约84 m,宽82 m,周长约330 m,本基坑工程开挖深度为14. 4 m,属于一级基坑,采用预应力钢杆钢管桩复合土钉墙+ 桩锚联合支护的二级支护形式。

二、基坑监测
由于基坑采取二级支护形式,分3 批次完成整个基坑钢管桩顶部水平位移监测点SWG1 ~ SWG33( SWG 为钢管桩水平位移监测点),以及基坑支护桩桩顶水平位移监测点布设SWZ1 ~ SWZ11( SWZ 为支护桩水平位移监测点) 的布设。

监测点布设原则如下: (1)基坑围护桩顶面布设水平位移监测点,周边中部、阳角处应布置监测点;
(2)监测点水平间距为15 m 左右,每边监测点数目根据现场实际情况确定,一般不宜少于3 个;
(3)均采用20ф 以上球形顶端的钢质标芯,上面刻有孔槽,便于插入瞄准标志固定,控制对中误差。

基坑监测采用任意设站极坐标法对基坑支护结构顶部水平位移监测点进行观测,观测方法参照《建筑变形测量规范》二级精度要求进行。

根据现场实际情况架设仪器,通过观测在基坑四周稳定区域布设3 个以上工作基点,通过后方交会确定基准点坐标。

水平角观测采用按照两个测回测定,距离4 测回测定,初始观测时如不稳定可适当增加观测的测回数,平差后基准点点位坐标中误差满足规范要求。

通过极坐标法对埋设于支护结构顶部的水平位移标志进行观测,每次观测所得的各个监测点坐标与前一期监测点坐标之差,得出期坐标增量。

再通过期坐标增量计算出各水平位移监测点垂直于基坑方向的期位移变化值,即为本观测周期内的水平位移监测点期位移变化值。

每次观测所得的各个监测点坐标与基坑开挖前各个监测点坐标的初始观测相比较,并通过计算得到各个监测点垂直于基坑方向的累计位移变化值。

三、实例
该综合楼基坑由于地层中主要为卵石层和强风化层,使得施工进度滞后,拟建场地地下水系丰富,基坑长时间暴露造成裂隙水不断从基坑壁渗漏。

虽经施工方的封堵,但不能确定地下水走向和受水泵房长时间抽水影响,基坑支护桩桩顶部分水平位移监测点在第61 期监测开始出现较大的位移量,且不同程度地超出预警值。

基坑工程经过冬春交季的冻融影响,基坑支护结构部分存在失稳隐患。

针对上述突发情况,建设单位组织基坑设计单位、基坑支护设计单位、勘察单位和监测单位等开展专家座谈,采取在支护四周注浆止水和注浆加固的方案。

通过在基坑四周钢管桩外1 ~ 2 m 区域进行整体钻孔,注入超细水泥水玻璃双液浆。

一方面,通过浆体凝固止水,封堵地下水,防止其继续流入基坑,减小因地下水冻融对支护结构稳定性造成影响; 另一方面,对支护结构外部土体进行凝固,填充支护结构外部土体空隙,避免应土体空洞而造成支护体失稳。

但在注浆施工期间,通过监测,发现基坑支护桩桩顶水平位移监测点仍然出现突发性的变大,且变化量严重超出预警值。

由于基坑支护桩桩顶部分水平位移监测点在注浆期间仍然出现较大的位移量,而SWZ10 号水平位移监测点离邻近6 层建筑仅2 m,为保证建筑和支护体安全,选取即将注浆施工的SWZ10 号监测点以及邻近的SWZ9 号监测点进行动态监测,一方面反映基坑四周钻孔注浆施工对支护桩影响情况,另一方面保证建筑和支护体在注浆施工期间的安全。

通过对周围没有注浆施工的SWZ9 号水平位移监测点和周围正在注浆施工的SWZ10 号水平位移监测点进行观测,并对观测数据进行计算、分析。

SWZ9 号监测点在整个观测过程中位移量较小,几乎没有变化; SWZ10 号监测点从注浆开始一段时间内位移量较小,随着注浆的进行位移量逐步变大,注浆结束后位移量变小至基本稳定。

从整个监测期间监测数据分析,基坑四周进行转孔注浆止水加固施工作业,使得基坑4 周水平位移监测点出现很大的位移量,严重超出预警值。

但在注浆加固周期结束后,各水平位移监测点变化趋势立即停止,整个基坑支护在趋于稳定。

通过定期对基坑支护结构顶部水平位移监测点进行观测,准确掌握基坑支护结构的变化情况,为施工单位的施工提供可靠地监测数据以判断前步施工是否符合预期要求,确定和优化下一步施工工艺和参数,使得观测成果成为施工工程技术人员做出正确判断的依据,根据监测结果分析对施工方案及时加以调整和补充,随时掌握基坑支护结构及周围建筑的状态,对支护结构出现的各种情况及时采取相应的技术措施,有效地保证基坑及周围建筑
的安全。

四、结论
1、基坑支护结构是临时性的设施,且基坑暴露时间越长,危险性相对增加,施工单位应从地勘开始,严格分析地质条件,制订切实可行的施工计划,并保证严格按照施工进度安排有序施工;
2、实时、准确基坑监测,能有效掌握基坑支护结构的变形特征,指导施工作业。

在面对基坑过冬而发生的地下水冻融等突发情况,通过监测数据信息化指导施工作业,有效保证基坑工程的安全;
3、在处理深大基坑时,由于施工期长,施工单位应注意排水,降低地下水位; 对于地下水较活跃的深基坑,更需做好良好的止水帷幕工作;
4、虽然基坑施工期间大部分水平位移监测点位移值超过设计值及规范规定的报警值,但通过严密的监测,采取合理有效的加固等措施,不仅确保了基坑支护结构自身稳定,且对周边环境造成较小影响,保证了周边建筑的安全。

参考文献:
[1]陈清标. 深基坑施工中的变形监测[J]. 四川建材. 2007(02)
[2]黄秋林,邱冬炜. 深基坑变形监测及数据处理[J]. 山西建筑. 2005(01)
[3]孙凯,许振刚,刘庭金,方宗新. 深基坑的施工监测及其数值模拟分析[J]. 岩石力学与工程学报. 2004(02)
[4]李明峰,蒋辉. 基坑支护结构变形监测据的联合处理[J]. 测绘通报. 2003(09)。

相关文档
最新文档