单边拉普拉斯变换的性质
5.3 拉普拉斯变换的性质及应用

F (s s0 )的ROC : Re[ s s0 ] 1 即 Re[ s] 1 Re[ s0 ]
5.3 拉普拉斯变换的性质及应用
4. 复频移特性 例5.3-3 求 e 解: 因为
- at
sin wt 和 e-at coswt 的拉氏变换。
s 例5.3-2: 已知因果函数f(t)的象函数 F ( s) = 2 ,求f(2t)的象 s +1 函数。
解:
s f (t ) « 2 s +1
Re[ s] > 0
f (at ) 1 s F Re[ s] a 0 a a
由尺度变换性质有:
s 1 s 2 f (2t ) « × = 2 2 2 æsö s +4 ç ÷ +1 è2ø
f (t )
0
s f (t )e st dt
0
sF (s) f (0 )
f
(2)
Re[ s] 0
d (1) (t ) f (t ) dt
LT [ f ( 2) (t )] s[sF (s) f (0 )] f (1) (0 ) s 2 F (s) sf (0 ) f (1) (0 )
Re[ s] 0
LT [ f (3) (t )] s[s 2 F (s) sf (0 ) f (1) (0 )] f ( 2) (0 ) s 3 F (s) s 2 f (0 ) sf (1) (0 ) f ( 2) (0 )
Re[ s] 0
a 0, b 0, 求f1(t)的象函数。
解:
L f t f t u t F s
信号与系统4.3拉氏变换的性质

T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E
…
0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
拉普拉斯变换

拉普拉斯变换定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω是复参变量,称为复频率。
左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。
以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。
如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。
z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。
作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。
拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。
FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。
拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。
但随着CAD的兴起,这一作用已不怎么受重视了,但关于其收敛域的分析(零极点图)依然常用。
Fourier 变换则随着FFT算法(快速傅立叶变换)的发展已经成为最重要的数学工具应用于数字信号处理领域。
[理学]第五章2拉普拉斯变换的性质_OK
![[理学]第五章2拉普拉斯变换的性质_OK](https://img.taocdn.com/s3/m/356c9bfd76c66137ef061994.png)
0
2
t
解: 令
f t
f
2
t
2
则
f t 2 t 4 t 2 t
2
f
t
2
1
F
s
2
4
e
s 2
2 es
0
2
f ' t
2
2
1
2e
s 2
es
2
2
2 1
e
s 2
2
L
f
t
2
1 s2
Fs
2
1
e
2
s
. s2
2
0 2
f "
t
2
2
2
0
4
t
t
2
2
这是由于位于收敛边界的极点被抵消的缘故。
例5.2-1 求单边正弦函数 sin t t 和单边余 弦函数 cos t t 的象函数。
解:因为 sin t e jt e jt 2j
而es0t t 1
s s0
e jt e jt 2j
t
1 .
1
1.
1
2 j s j 2 j s j
s2 2
sin
t
t
s2
2
Res 0
3
同理因为
cos t e j t e j t
2
e j t e j t 2
t
s
1. 1
2 s j
1. 1
2 s j
s2
2
cos
t
t
s2
2
Res 0
sin t t
s2
2
单边拉普拉斯变换的性质

时
域
s域注释
线性叠加可以用积分的基本规则证明。
s
域一阶微分F′是F 的一阶导数。
s 域一般微分更一般的形式是F(s)的n阶导数。
时域一阶微分f是一个可微函数,并且其导数为指数类型。
这条性质可以通过分部积分得
时域二阶微分f为二阶可微且二阶导数是指数型的。
通过对f′(t)应用微分性质可得。
时域一般微分f为n阶可微,其n阶导数是指数型的。
通过数学归纳法证明。
s 域积分这是由s域微分和条件收敛推导出来的。
时域积分u(t)是阶跃函数,注意到(uf)(t) 是u(t)
的卷
积。
时
间
标
度
s
域
平
移
时域平移u(t)表示阶跃函数
乘法积分沿完全处在F收敛域内的竖直线
Re(σ) =c。
[3]
卷积
复共轭
互相关
周期函数f(t)是
一个周期为T 的周期函数,于是对所有t≥ 0,有'f(t)
=f(t+T)。
这条性质是时域平移和几何级数的结果。
拉普拉斯变换的基本性质

t0
1 s t0 s2
F2
(s)
L
(t
t0
)u
(t
)
F1
(s)
1
s s2
t0
F4 (s)
L (t
t0 )u(t
t0)
1 s2
e s t0
F3(s) Ltu(t t0 ) L(t t0 )u(t t0 ) t0u(t t0 )
F4 (s)
t0 s
e s t0
s t0 1 est0 s2
dt2
ssF (s)
f
(0 )
f
(0 )
s2F (s) sf (0 ) f (0 )
L
d
f d
n (t) tn
sn
F
(s)
n1 r0
s n r 1
f
(r
)
(0
)
六.时域积分定理
若
L f (t) F(s)
则
L
t
f
(τ) d
τ
F (s) s
1 s
0
f ( ) d τ
t
(t
)
f (t) 的拉普拉斯变换 2Fra bibliotekF(s)
解:F(s)
F1 (s)
F2 (s)
s
1 1
(s
1 1)(s
2)
(s
s 1 1)(s
2)
s
1
2
说明:前面求正余弦信号的拉普拉斯变换时已经用到了线性性。
二.延时(时域平移)
若 L f (t) F (s)
则
L f (t t0 )u(t t0 ) F (s) est0
(3)表达式
信号与系统(第四版)第四章课后答案

第5-10页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0
1 s s0
s0t
(t 2)
f1(t) 1 0 1 f2(t) 1 t
例1:e (t 2) e
-t
2
e
(t 2)
e
2
1 s 1
e
2s
-1 0
第5-17页
■
1
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.2 拉普拉斯变换性质
1 1e sT
例2: 单边冲激 T(t ) 1 e sT e s 2T 例3: 单边周期信号 fT(t ) (t ) f1(t ) f1(t T ) f1(t 2T ) F1(s )(1 e sT e s 2T )
8 e 2 s
s
f(t ) 1 0 1 y(t ) 2 4 t
二、尺度变换
2s
2
(1 e 2 s 2s e 2 s )
2 e 2 s 2 (1 e 2 s 2s e 2 s ) s
第5-16页
■
0
2
4
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
拉氏逆变换的物理意义
f (t )
2 j 1
j
j
F (s)est ds
4-2单边拉普拉斯变换的性质

推广: 推广 f'' ( t ) ↔ s[ sF ( s ) − f ( 0 − )] − f' ( 0 − )
= s 2 F ( s ) − sf ( 0 − ) − f' ( 0 − )
f''' (t ) ↔ s[ s F ( s ) − sf (0− ) − f' (0− )] − f" (0− )
3.复频移特性(s域平移特性) 3.复频移特性(s域平移特性) 傅立叶变换域 复频移特性(s域平移特性
若
f (t )e ± jω 0t ↔ F [ j (ω m ω 0 )]
f (t) ↔ F(s)
则 f (t )e
± s0t
Re[s] > σ1
Re[ s] > σ 1 ± Re[ s0 ]
↔ F (s m s0 )
= F1 ( s)
双边拉氏变换则不同! 双边拉氏变换则不同!
F3 ( s ) = L[ f 3 (t )] = L[tε (t − t0 )]
= L[(t − t0 )ε (t − t0 )] + L[t0ε (t − t0 )]
= L[tε (t )] ⋅ e− st0 + t0 L[ε (t − t0 )] 1 − st0 t0 − st0 Re[ s ] > 0 = 2e + e s s
s 2Y ( s ) + 3 sY ( s ) + 2Y ( s ) = sF ( s ) + 2 F ( s )
Y ( s )( s 2 + 3 s + 2) = F ( s )( s + 2)
Y (s) s+2 1 = 2 = = H (s) F ( s ) s + 3s + 2 s + 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时
域
s域注释
线性叠加可以用积分的基本规则证明。
s
域一阶微分F′是F的一阶导数。
s 域一般微分更一般的形式是F(s)的n阶导数。
时域一阶微分f是一个可微函数,并且其导数为指数类型。
这条性质可以通过分部积分得到。
时域二阶微分f为二阶可微且二阶导数是指数型的。
通过对f′(t)应用微分性质可得。
时域一般微分f为n阶可微,其n阶导数是指数型的。
通过数学归纳法证明。
s 域积分这是由s 域微分和条件收敛推导出来的。
时域积分u(t)是阶跃函数,注意到(u∗f)(t) 是u(t)和f(t)的卷积。
时间标度
s 域平移
时域平移u(t)表示阶跃函数
乘法积分沿完全处在F收敛域内的竖直线Re(σ)
= c。
[3]
卷积
复共轭
互相关
周期函数f(t)是一个周期为T的周期函数,于是对所有t≥ 0,有'f(t) = f(t + T)。
这条性质是时域平移和几何级数的结果。