七年级数学试题卷
七年级人教版数学期末考试卷及参考答案

七年级期末考试卷班级:姓名:成绩:一、选择题(每题2分,共28分)1.如果零上5℃记作+5℃,那么零下3℃记作()A .-5℃B .-3℃C .+3℃D .+5℃2.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2-13当北京6月15日23时,悉尼、纽约的时间分别是()A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时3.人工智能AlphaGo 因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了20000000局的训练(等同于一个人近千年的训练量).数字20000000用科学记数法表示为()A .70.210´B .7210´C .80.210´D .8210´4.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.如图,则下列判断正确()A .a+b >0B .a <-1C .a-b >0D .ab >06.设x 、y 、m 都是有理数,下列说法一定正确的是()A .若x =y ,则x +m =y -mB .若x =y ,则xm =ymC .若x =y ,则x ym m=D .若x ym m=,则x =-y 7.化简2a 2-a 2的结果是()A .2a 4B .3a 4C .a 2D .4a28.下列方程的解法中,错误的个数是()①方程211x x -=+移项,得30x =②方程2(1)3(2)5x x ---=去括号得,22635x x --+=③方程21142x x ---=去分母,得422(1)x x --=-④方程32x =-系数化为1得,32x =-A .1B .2C .3D .49.如图所示的图形经过折叠可以得到一个正方体,则与“我”字一面相对的面上的字是()A .爱B .庆C .学D .中10.如果35x =是关于x 的方程50x m -=的解,那么m 的值为()A .3B .13C .3-D .13-11.已知3,2a b c d -=+=,则()()a c b d +--的值是()A .-1B .1C .-5D .512.已知数列1b ,2b ,3b ,···满足121n n nb b b +++=,其中1n ³,若12b =且25b =,则2019b 的值为()A .2B .5C .45D .3513.对于两个不相等的有理数a b 、,我们规定Max {a b 、}表示a b 、中的较大值,如:Max {2、4}=4,按照这个规定,方程Max {x x -、}=3x +2的解为()A .1-B .12-C .-1或-12D .1或1214.如图,数轴上O 、A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点1A 处,第2次从1A 点跳动到1A O 的中点2A 处,第3次从2A 点跳动到2A O 的中点3A 处,按照这样的规律继续跳动到点456,,,...,n A A A A (3n ³,n 是整数)处,问经过这样2020次跳动后的点与O 点的距离是()A .201812B .201912C .202012D .202112二、填空题(每个小题3分,共12分,)15.甲、乙、丙三地的海拔高度分别为20,10m m -和5m -,那么最高的地方比最低的地方高__________m16.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为____.17.甲、乙两站相距480公里,一列慢车从甲站开往乙站,每小时行80公里,一列快车从乙站开往甲站,每小时行120公里.慢车从甲站开出1小时后,快车从乙站开出,那么快车开出__________小时后快车与慢车相距200公里.18.已知∠AOB =45°,∠BOC =30°,则∠AOC =.三、解答题(19-21每题6分,22-25每题8分,26题10分,满分60分)(1)()()()12838--++--+(2)()157362912æö-+´-ç÷èø(3)()322524-´--¸20.解下列方程:(1)532(5)x x +=-(2)2523136x x -+=-21.有三个有理数x ,y ,z ,若x =()211n --,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,求出x ,y ,z 这三个数.(2)根据(1)的结果计算:xy ﹣y n ﹣(y ﹣z)2019的值.22.已知如图,数轴上有A ,B ,C ,D 四个点,点A 对应的数为-1,且AB=a+b ,BC=2a-b ,BD=3a+2b(1)求点B ,C ,D 所对应的数(用含a 和b 的代数式表示);(2)若a=3,C 为AD 的中点,求b 的值,并确定点B ,C ,D 对应的数.23.对,a b 定义一种新运算T :规定2(,)2T a b ab ab a =-+,(其中,a b 均为有理数),这里等式右边是通常的四则运算.如:2(1,3)1321314T =´-´´+=;(1)求(2,3)T -的值;(2)计算1,32a T +æöç÷èø;(3)若(2,)m T x =,(,3)n T x =-(其中x 为有理数),比较m 与n 的大小.24.如图,OD 是∠AOB 的平分线,OE 是∠BOC 的平分线.(1)若∠BOC =50°,∠BOA =80°,求∠DOE 的度数;(2)若∠AOC =150°,求∠DOE 的度数;(3)你发现∠DOE 与∠AOC 有什么等量关系?给出结论并说明.25.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(20x >).(1)若该客户按方案一购买,需付款______元.(用含x 的代数式表示)若该客户按方案二购买,需付款______元.(用含x 的代数式表示)(2)若40x =,通过计算说明此时按哪种方案购买较为合算?(3)当40x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.26.如图,已知A 、B 、C 是数轴上三点,点C 表示的数为3,2BC =,6AB =.(1)数轴上点A 表示的数为______,点B 表示的数为______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向右匀速运动,t 何值时,P 、Q 两点到B 点的距离相等.(3)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,M 为AP 的中点,点N 在线段CQ 上,且23CN CQ =,设运动时间为t ()0t >秒.①求数轴上M 、N 表示的数(用含t 的式子表示);②在运动过程中,点P 到点B 的距离、点Q 到点B 的距离以及点P 到点Q 的距离,是否存在两段相等,若存在,求出此时t 的值;若不存在,请说明理由.答案:一、选择题1、B 2、A 3、B 4、B 5、A 6、B 7、C 8、C 9、C 10、A 11、D 12、C 13、B 14、A 二、填空题15、3016、-517、1或318、15或75度三、解答题19、(1)1(2)8(3)8--++--1283=++--8=0(2)()157362912æö-+´-ç÷èø157(36)(36)(36)2912=´--´-+´-=-18+20-21=-19(3)2325(2)4-´--¸20(2)=---=-1820、解:(1)()5325x x +=-53102x x +=-,55=x ,1x =;(2)2523136x x -+=-()()225623x x -=-+,613x =,136x =.21、解:()1当n 为奇数时,1,1,1x y z =-==,()2当1,1,1x y z =-==时,原式–1102=--=-.22、(1)因为A 对应数-1,且AB=a+b所以点B 对应数轴上点的数值是1()1a b a b -++=+-又2,(2)3BC a b AC a b a b a =-=++-= 所以点C 对应的数值是13a -+;32,(32)43BD a b AD a b a b a b=+=+++=+ 所以点D 对应的数值是143a b -++;(2)因为点C 为AD 的中点所以AC=CD ,33a a b=+23b a =因为a=3,所以b=2所以B 对应数轴上的数值是:3+2-1=4;点C 对应数轴上的点的数值是:1338-+´=;点D 对应数轴上的数值是:1433217-+´+´=.23、(1)T(-2,3)()()2232232=-´-´-´+-181228=-+-=-;(2)2111133232222a a a a T ++++æö=´-´´+ç÷èø,9(1)3(1)1222a a a +++=-+7(1)2a +=;(3)2(2)2222m T x x x ==-´+,2242x x =-+,2(3)32()3n T x x x x=-=-×--×-,96x x x =-+-4x =-,所以2220m n x =+>﹣.所以m n >.24、(1)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOA ,∵∠BOC=50°,∠BOA=80°,∴∠BOD=25°,∠BOE=40°,∴∠DOE=25°+40°=65°;(2)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOC ,∵∠AOC=150°,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC=75°;(3)∠DOE=12∠AOC ;理由是:∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOA ,∠BOE=∠COE=12∠BOC ,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC .25、(1)按方案一购买:201000200(20)20016000x x ´+´-=+,按方案二购买:(100020200)0.918018000x x ´+´=+;(2)当40x =时,方案一:200401600024000´+=(元)方案二:180401800025200´+=(元)所以,按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带.则200002002090%23600+´´=(元)26、(1) 点C 表示的数为3,2BC =,6AB =,且A ,B ,C 位置如数轴上所示,\点B 表示的数为321-=点A 表示的数为165-=-.故答案为:5-,1.(2)点P 表示的数为52t -+,点Q 表示的数为3+t ,则|521||26|PB t t =-+-=-,312QB t t =+-=+,|26|2t t \-=+,当03t ££时,622t t -=+,43t =,当3t >时,262t t -=+,8t =,综上,43t =或8.故答案为:43t =或8.(3)①Q 表示的数为3t -,M表示的数为5(52)52t t -+-+=-+,N Q 在线段CQ 上,2233CN CQ t ==,N \表示的数为233t -;故答案为:M 表示的数为5t -+,N 表示的数为233t -.②|26|PB t =-,|52(3)||38|PQ t t t =-+--=-,|31||2|QB t t =--=-;(1)若PB PQ =,则|26||38|t t -=-,2638t t -=-或26380t t -+-=,则2t =或145t =;(2)若PB QB =,则|26||2|t t -=-,262t t -=-或2620t t -+-=,则83t =或4t =;(3)若PQ QB =,则|38||2|t t -=-,382t t -=-或3820t t -+-=,52t =或3t =;综上,存在,且2t =或3或4或52或85或145.。
成都七中数学七年级试题(含答案)

成都七中数学七试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.经过平面上的四个点,可以画出来的直线条数为()A.1B.4C.6D.前三项都有可能2、-(-3)的倒数是()A.3 B.-3 C.13D.-13 3....-3.+.-9.......A.-12B.-6C.+6D.124..3.......................“E”.................5.若|a|=7,|b|=5,a+b>0,那么a-b的值是( ) A.2或12 B.2或-12 C.-2或-12 D.-2或126.在代数式13ab、3xy、a+1、3ax2y2、1-y、4x、x2+xy+y2中,单项式有……()A.3个B.4个C.5个D.6个7.若|a|=7,|b|=5,a+b>0,那么a-b的值是( ) A.2或12 B.2或-12 C.-2或-12 D.-2或12…………………A70°15°︶︵8.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是……………………………………………………………( )A.85°B.160°C.125°D.105°9...................60%...........8..80%......................A..12.8%B..12.8%C..40%D..28%10、下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,已知O是直线AB上一点,∠1=20°,OD平分∠BOC,则∠2的度数是__度.12. “早穿皮袄午穿纱”这句民谣形象地描绘了新疆奇妙的气温变化现象.乌鲁木齐五月的某天,最高气温17℃,最低气温-2℃,则当天的最大温差是℃.13、一个两位数,十位上的数字是a,个位上的数字比十位上的数字的2倍大3,则这个两位数是_______.14.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“明”相对的面上的汉字是()15.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16..1......+..×|.24|21CD.2.....13..1.0.5.××[2...3.2].17. 解方程(1) 3x+3=2x+7 (2)18.如图,在平面内有A、B、C三点.(1)、画直线AC,线段BC,射线AB;(2)、在线段BC上任取一点D(不同于B、C),连接线段AD。
七年级数学有理数单元测试题

七年级数学有理数单元测试题一、选择题(每题2分,共20分)1. 下列哪个选项不是有理数?A. -3B. 0C. πD. 1/22. 如果a是有理数,那么下列哪个表达式的结果不是有理数?A. a + 2B. a - 2C. a × 2D. a / 23. 两个负有理数相加,结果是什么?A. 正数B. 负数C. 零D. 无法确定4. 以下哪个数是绝对值最小的有理数?A. 5B. -5C. 0D. 1/35. 有理数的乘法运算中,下列哪个说法是错误的?A. 正数乘以正数等于正数B. 负数乘以负数等于正数C. 正数乘以负数等于负数D. 任何数乘以零等于零二、填空题(每题2分,共20分)6. 有理数的加法运算中,两个相反数相加的结果是______。
7. 如果a是有理数,那么-a的绝对值是______。
8. 有理数的除法运算中,零除以任何非零有理数的结果是______。
9. 两个有理数相乘,如果其中一个数为零,则结果一定是______。
10. 有理数的乘方运算中,任何数的零次方等于______。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(1) (-3) × (-2)(2) (-2) + 412. 计算下列表达式的值:(1) |-5| - 3(2) 1/3 + 1/413. 计算下列表达式的值:(1) (-1)^2(2) (-2)^314. 计算下列表达式的值:(1) (-3) × 0(2) 0 - (-5)四、解答题(每题10分,共30分)15. 某商店在一天内卖出了三种商品,其中A商品卖出了10件,单价为20元;B商品卖出了15件,单价为15元;C商品卖出了5件,单价为30元。
请计算商店这一天的总收入。
16. 某工厂生产了100个零件,其中95个是合格的,5个是次品。
如果合格品的单价为10元,次品的单价为0元,计算工厂这批零件的总收入。
17. 一个数的平方是25,这个数是什么?五、附加题(10分)18. 假设你有一个数列:1, 2, 3, ..., n。
七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
七年级上册数学测试题及答案

学习情况检测时间90分钟,满分120分 姓名__________ 得分___________一、选择题本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中 题号 123456789101112答案 1.2-等于A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是 A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y4.下列各组数中,互为相反数的是 A .)1(--与1 B .-12与1 C .1-与1 D .-12与15.下列各组单项式中,为同类项的是 A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于A .70° B.90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折标价的80%出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是 A .1+50%x×80%=x -28 B .1+50%x×80%=x +28 C .1+50%x×80%=x -28 D .1+50%x×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是A .110B .158C .168 D.178 二、填空题本大题共8个小题;每小题3分,共24分.把答案写在题中横线上A B C D 62224 20 4 884446 m10…… ABC第8题图北OAB第8题图13.-3的倒数是________. 14.单项式12-xy 2的系数是_________. 15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题本大题共8个小题;共60分21.本小题满分6分计算:-13-14×2--32. 22.本小题满分6分一个角的余角比这个角的21少30°,请你计算出这个角的大小. 23.本小题满分7分 先化简,再求值:41-4x 2+2x -8-21x -1,其中x =21. 24.本小题满分7分 解方程:513x +-216x -=1.25.本小题满分7分一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……1写出第一次移动后这个点在数轴上表示的数为 ; 2写出第二次移动结果这个点在数轴上表示的数为 ; 3写出第五次移动后这个点在数轴上表示的数为 ; 4写出第n 次移动结果这个点在数轴上表示的数为 ; 5如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.本小题满分8分如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.本小题满分8分如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、的中点E 、F 之间距离是10cm,求AB 、CD 的长.共43元共94元 O ACB EDE DBFC28.本小题满分11分某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.1求钢笔和毛笔的单价各为多少元2①学校仍需要购买上面的两种笔共105支每种笔的单价不变.陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元. 数学试题参考答案及评分说明一、选择题每小题3分,共36分1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B. 二、填空题每题3分,共24分 13.31-;14.21-;15.2;16.58°28′;17.×106;18.9;19.2;20.8. 三、解答题共60分21.解:原式= -1-14×2-9 ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x………………………………………………3分 =12--x ………………………………………………………………4分把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分25.解:1第一次移动后这个点在数轴上表示的数是3; ……………………………1分2第二次移动后这个点在数轴上表示的数是4; ……………………………2分 3第五次移动后这个点在数轴上表示的数是7; ……………………………3分 4第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分554. ………………………………………………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15,……………………………………………………………………7分∴∠COE =∠COD -∠DOE =90°-15°=75°…………………………………8分 27.解:设BD =x cm,则AB =3x cm,CD =4x cm,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点, ∴AE =12AB =,CF =12CD =2x cm . ……………………………………………3分 ∴EF =AC -AE -CF =. ………………………………………………………4分 ∵EF =10cm,∴=10,解得:x =4. ………………………………………………………………6分∴AB =12cm,CD =16cm . ……………………………………………………………8分 28.解:1设钢笔的单价为x 元,则毛笔的单价为x +4元. ………………………1分由题意得:30x +45x +4=1755 ……………………………………………3分解得:x =21则x +4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 2设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为105-y 支. …6分根据题意,得21y +25105-y =2447.………………………………………………7分 解之得:y = 不符合题意 . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 32或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.3解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元则根据题意,得21z+25105-z=2447-a.即:4z=178+a,因为 a 、z 都是整数,且178+a 应被4整除,所以 a 为偶数,又因为a 为小于10元的整数,所以 a 可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意; 当a=4时,4z=182,z=,不符合题意; 当a=6时,4z=184,z=46,符合题意; 当a=8时,4z=186,z=,不符合题意. 所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
2023—2024 学年第一学期12月份调研考试七年级数学试卷

2023—2024 学年第一学期12月份调研考试七年级数学试卷注意事项:1. 你拿到的试卷满分为 150 分,考试时间为 120 分钟。
2. 试卷包括“试题卷”和“答题卡”两部分。
3. 请务必在“答题卡”上答题,在“试题卷”上答题是无效的。
一、选择题(本大题共 10 小题,每小题4 分,满分40分)1. 汽车的雨刷把玻璃上的雨水刷干净,用数学语言解释为( )A. 点动成线B. 线动成面C. 面动成体D. 以上答案都不对2.下列说法正确的是( )A. 如果x=y,那么x+m=y+nB. 如果mx²=nx²,那么m=nC. 如果x=y,那么xn =ynD. 如果xn=yn,那么x=y3.下列变形正确的是( )A.3(a+4)=3a+4B. -(a-6) = -a-6C. -a+b-c= -a+(b-c)D. a-b-c=a-(b-c)4.第三届国际新材料产业大会于2023年11 月23 日-26 日在蚌埠市举办. 大会期间,全省共签约项目8个,总投资额达到 880.22 亿元. 其中“880.22 亿”用科学计数法(精确到亿位)表示为( )A.8.8022×10¹⁰B.8.80×10¹⁰C.8.80×10⁹D.8.8×10¹⁰5. 下列说法正确的个数为( )①直线上有三个点A,B,C,若线段AB=2BC,则点C 是线段AB的中点;②两点之间线段的长度叫做两点间的距离;③两点之间的所有连线中,线段最短;④射线AB 和射线BA 表示同一条射线.A.1B.2C.3D.46.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安. 问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发. 问多久后甲乙相逢? 设乙出发x日,甲乙相逢,则可列方程( )A.x+27+x5=1B.x−27+x5=1C.x7+x+25=1D.x7+x−25=17. 下面等式成立的是( )A.83.5°=83°50′B.37°12′36′′=37.48°C.24°24′24′′=24.44°D.41.25°=41°15′8.10:10 时钟面上的时针与分针夹角是( )A.115°B.110°C.105°D.100°9. 如图所示,在A ,B ,C 三个小区中分别住有某厂职工 30人,15 人,14人,且这三个小区在一条大道上(A,B,C 三点在同一直线上),已知 AB=200 米,BC=500 米.若该厂接送职工上下班的厂车打算在此路段只设一个停靠点,为使这三个小区所有职工步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A. 点 AB. 点 BC. AB 之间D. BC 之间10. 如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按左图方式放置,再按右图方式放置,测量的数据如图中所示,则长方体物品的高度是( )A.73cmB.74cmC.75cmD.76cm二、填空题(本大题共4小题,每小题5分,满分20分)11.−18的相反数是 .12. 如图,数轴上有两点表示的数分别为a ,b ,则|a b| |b 1|= .13.若关于x 的方程2x+a+5b=0的解是x=1,则 a 5b 的值为 .14.如图,已知点 C 为线段AB 上一点,AB=20,AC:CB=3:2,D,E 分别为AC,AB 的中点.(1)图中共有 条线段; (2)线段 DE 的长为 .三、解答题(本大题共2题,每题8分,满分 16 分)15. 计算: (1)(34+16−38)×(−24); (2)−14+|5−8|+27÷(−3)×13.16. 解方程(组): (1)x−35−x+42=−2; (2){2x −3y =2,2x−3y+57+2y =9.①四、解答题(本大题共2小题,每小题8分,满分16分)17. 某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆,某天停车场内共有45 辆中小型汽车,其中小型汽车有a辆.(1)单项式4a 表示的实际意义为;(2)这一天停车场共可收缴停车费多少元?(用含 a的代数式表示)18. 先化简,再求值:2(3a²−ab+1)−(−a²+2ab+1),其中|a+1|+(b−2)²=0.五、解答题(本大题共2 小题,每小题10 分,满分20分)19. 下表是2023 年12月的日历,用如图所示的L形框去框其中的4个数.(1)设被框住的最小的数为x,用含x的代数式表示出被框住的这4个数的和为;(2)被框住的4个数的和能等于100 吗? 如果能,求出这4个数;如果不能,说明理由.20. 已知线段 AB=12cm,直线AB 上有一点 C,且BC=6cm,M 是线段 AC 的中点,求线段AM的长.六、解答题(本题满分12分)21. 已知n≥2,且n为自然数,对n²进行如下“分裂”,可分裂成n个连续奇数的和,如图:即如下规律:22=1+3,32=1+3+5,42=1+3+5+7,⋯(1)按上述分裂要求,5²=;(2)按上述分裂要求,2023²可以分裂成个奇数的和,其中最大的奇数是 .(3)用上面的分列规律求:(n+1)²−n².七、解答题(本题满分 12 分)22.某花店分别以22元/盆和30元/盆的价格两次购进甲、乙两种绿植. 花店第一次购进两种绿植共花费4600元,其中甲种绿植盆数的2倍比乙种绿植盆数的3倍少40盆.(1)请计算该花店第一次分别购进甲、乙两种绿植各多少盆.(2)该花店将第一次购进的甲、乙两种绿植分别以28 元/盆和40 元/盆的价格全部售出,则卖出后一共可获得利润元.(3)该花店第二次购买这两种绿植时进价不变,其中甲种绿植盆数是第一次的2倍,乙种绿植盆数不变. 甲种绿植仍按原售价销售,乙种绿植打折销售. 第二次甲、乙两种绿植销售完以后获得的利润比第一次获得的利润多280元,则第二次乙种绿植是按原售价打几折销售的?八、解答题(本题满分 14 分)23.已知数轴上点 A 表示的数为6,点 B 是数轴上点 A 左侧的一点,且A,B两点间的距离为12.动点P从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t⟩0)秒.(1)数轴上点 B 表示的数是 .(2)某一时刻,点P 运动到与点A,B的距离之和等于14 个单位长度,则此时点 P 表示的数是.(3)动点 Q从点 B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,点P,Q同时出发.①当点 P 运动多少秒时,点 P 追上点 Q?②当点 P 运动多少秒时,点 P 与点Q间的距离为4个单位长度?。
西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
人教版七年级数学试题试卷
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 3.14B. -5C. 0D. π2. 若a和b是相反数,且|a|=5,则a+b等于()A. 5B. -5C. 0D. 103. 下列各组数中,成比例的是()A. 2和3B. 4和6C. 5和10D. 8和124. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(-2,-3)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 等边三角形6. 若x²=9,则x的值为()A. 3B. -3C. 3或-3D. 07. 下列代数式中,含有二次项的是()A. 2x+3B. x²+2x+1C. 3x²+5x-2D. x-18. 若一个数的平方根是-2,则这个数是()A. 4B. -4C. 16D. -169. 下列函数中,是反比例函数的是()A. y=x+2B. y=2xC. y=3/xD. y=x²10. 下列方程中,不是一元一次方程的是()A. 2x+3=7B. 3x-4=5C. 5x²-2x+1=0D. x+1=2二、填空题(每题3分,共30分)11. 若a=-3,则a²+2a的值为__________。
12. 下列数中,绝对值最小的是__________。
13. 在直角坐标系中,点P(-4,5)到原点的距离是__________。
14. 若x²-5x+6=0,则x的值为__________。
15. 下列函数中,y=3x²-4x+1的顶点坐标是__________。
16. 若a、b、c是等差数列,且a+b+c=18,则b的值为__________。
17. 下列图形中,是圆的是__________。
18. 若a、b、c是等比数列,且a+b+c=12,b=4,则c的值为__________。
七年级数学经典试题(必考类型)
二、线段垂直平分线的相关题型1.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5(1)求△ACE的周长.(2)若∠B=55°,∠C=75°,求∠EAC的度数.(3)若EC=2,求S△DBE:S△AEC 的比值是多少?2.如图,在△ABC中,DE是边BC的垂直平分线,∠A=90°,CD=8,AC=6,(1)则△BDC的面积为?(2)若CD为∠ACB的角平分线,求∠B的度数;(3)若BC=12,求DE的值是多少?△ACD的周长是多少?3.如图,在△ABC中,DF垂直平分AB,EG垂直平分AC且BC=12,(1)求△ADE的周长,(2)若∠BAC=105°,求∠DAE的度数.(3)BD:DE:EC=2:1:3,求S△ABD:S△ADE:S△AEC(4)若∠DAE=40°则∠BAC的度数是多少?4.如图,在△ABC中,AB的垂直平分线DE,分别与AB边和AC边交于点D和点E,BC的中垂线FG,分别与BC边和AC边交于点F和点G,△BEG的周长为17,且GE=1,则AC的边长是多少?5.如图,AB=AC,∠A=40°,AB的垂直平分线MNJ交AC于点D,连接BD,(1)则∠DBC度数是?(2)若AB=AC=6,BC=4,则△BDC的周长是多少?6.如图,在△ABC中,∠BAC=120°,BC=10,AB,AC的垂直平分线DE,DF相交于点D,垂足分别为E,F,DE,DF分别角BC于点M,N,连接AM,AN.(1)△AMN的周长为?(2)∠MAN的度数为?(3)求∠D的度数?(4)试说明:∠BAC=∠DMN+∠DNM7.如图、将Rt△ABC沿直线DE折叠,使斜边的两个端点A与B重合.(1)若AC=6cm,BC=8cm,试求△ACD的周长;(2)若∠CAD:∠BAD=1:2,求∠B的度数.8.如图,在△ABC中,AD是边BC的垂直平分线,点E为BC延长线上一点,连接AE,CF是AE的垂直平分线,若AB=5,BD=3,则DE的长为多少?9.如图,在△ABC中,AF平分∠CAB,AB的垂直平分线交BC于点E,∠C=60°,∠FAE=30°,则∠B的度数为?10.如图,在△ABC中,边AB,AC的垂直平分线相交于点D,垂足分别为E,F.已知∠BAC=100°,∠ACB=30°,求∠ABD的度数.三、角平分线问题1.如图、在△ABC中,已知∠B=90°,AD平分∠BAC,(1)CD=2BD,过点D作DE⊥AC,若DE=5,则CD的长为?(2)过点D作DE⊥AC,若AB:AC=2:3.则S△ABD:S△ACD=?(3)若AC=6,AB=4,BD=3,求△ABC的面积是多少?2.`如图,在△ABC中,∠B=90°,CD平分∠ACB,DE⊥AC于点E,(1)AE=3,AB=7,则△ADE的周长是多少.(2)若DB=2,AC-BC=2,求△ADE的面积?(3)若∠BDC=62°,求∠A的度数.3.如图,AD是△ABC的角平分线上一点,DE⊥AB,垂足为E,AF是△ABC的中线,AC=8,AB=6,DE=3,求△ADF的面积?4.如图,在△ABC中,若AD是∠BAC的角平分线,过D点分别作DE⊥AB,DF⊥AC,垂足分别为E、F.试说明:DE=DF.5.如图,在△ABC中,若AD是∠BAC的角平分线,点E、F分别在AB和AC上,若∠BAC +∠AFD=180°,则DE与DF是否任然相等?若相等,请说明理由;若不相等请举反例.6.如图,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F.△ABC面积是28cm²,AB =20cm,AC=8cm,求DE的长.`7.如图,在△ABC中,AD是角平分线,∠B=50°,∠C=62°,DE⊥AC.(1)求∠ADE的度数;(2)若DE=3,求点D到AB的距离.(3)若S△ABC=8,且AB-AC=2,求△ABD的面积.8.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,交AC于点D,∠B=70°,∠FAE=19°则∠C等于多少度?9.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB边的垂直平分线EF交BD 于点E,连接AE.(1)比较∠AED于∠ABC的大小关系,并说明理由;(2)若△ADE是等腰三角形,求∠CAB的度数.10.如图,点E在线段CD上,AE,BE分别平分∠DAB,∠CBA,点F在线段AB上运动,AD=4cm, BC=3cm,且AD∥BC.(1) AE和BE有什么位置关系?请说明理由(2) 当点运动到离点A多远时,△ADE≌△AFE?为什么?(3)在(2)的条件下,求出AB的长.四、压轴题1.如图1,已知在△ABC中,∠ACB=90°,AC=BC,点P是线段AB上一点,过点A作AE ⊥CP交CP延长线于点E,过点B作BF⊥CP于点F.(1)若BF=8,AE=3,则EF的长是多少?(2)如图1中,线段AE,BF,EF有怎样的数量关系?请说明理由;拓展应用(3)如图2,已知在△ABC中,∠ACB=90°,AC=BC,点P是△ABC内部一点,且BP⊥CP,连接AP,若CP=5,求△ACP的面积.2.(1)如图1,已知△ABC是直角三角形,∠BAC=90°,AB=AC,直线l作垂线,垂足分别为D,E.请写出图中全等的一对三角形并证明.(2)如图2,在△ABC中,AB=AC,直线L经过点A,点D,E分别在直线L上,如果∠CEA=∠ADB =∠BAC,猜想DE,BD,CE之间有何数量关系?请说明理由;(3)某学校学生小明在科技创新大赛上,创作了一副机器人图案,大致如图3△ABC的边AB,AC 为腰Rt△BAD和等腰Rt△CAE,∠BAD=∠CAE=90°,AB=AD,AC=AE,AG是BC边上的高,延长GA交DE于点H,经测量,DE=50cm,求HE的长.3.如图,①在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为射线AO上一动点,过点H作直线L⊥AO于点H,分别交直线AB,AC,BC于点N,E,M.(1)当直线L经过点C时(如图②),请说明:BN=CD;(2)当M是BC的中点时(如图③)请说明:CD=2CE;(3)请写出在点H运动过程中,BN,CE,CD三条线段之间的等量关系.一、计算题1.(-2x+y)(-2x-y)+2y(y-6x)-(2x+y)²2.x(x-2y)-(x+1)²+2x,2.(x+3)(x-1)+(x+2)(x-2)-2(x-1)²,其中x=1/2.3.[(a+2b)(a-2b)+(3a-2b)²]÷(-2a)+5a4.(a+3b)²-2(a+3b)(a-3b)+(a-3b)²5.-(x+2)(x-2)+x(x+6)6.[(3x+4y)²-3x(3x+4y)]÷(-4y).7.(4ab³-8a²b²)÷4ab+(2a+b)(2a-b).7.[(2x+y)(2x-y)+(x+y)²-2(2x²-xy)]÷(-2x) 9.(2a+3b)(2a-3b)-(a-3b)²11.a(-3a+b)-(a+b)(a-b)+(2a-b)²11.[(-a+b)(-a-b)+(2a-b)²-a(a+3b)]÷2a12.(x+2y)²-(x+y)(3x-y)-5y²13.[(2-2y)²+(x-2y)(x+2y)]÷2x作图题1.已知线段a,b,c求作△ABC,使得BC=a,AB=c,AC=b.2.已知,线段a,c∠α求作:△ABC,使得BC=a,AB=c,∠ABC=1/2∠α3.已知∠1和∠2,线段a,求作△ABC,使得AB=a,∠B=∠1,∠C=∠2.4.已知∠1和∠2,线段a,求作△ABC,使得BC=a,∠B=∠1,∠C=∠2.5如图,已知线段a,∠α.求作:△ABC,使得AB=2a,∠A=∠α∠B=2∠α6.已知△ABC,在BC边上求作一点P使得PA+PB=BC8.已知Rt△ABC,∠C=90°,在AC上求作一点P使得点P 到AB的距离等于PC.9.已知△ABC在三角形内部找一个点P使得点P到AB,AC,BC的距离相等.10.已知△ABC过点A作BC边上的高AD.11.已知等腰三角及圆,求作此轴对称图形的对称轴.12.已知两条公路L1和L2,及村庄A,B在某个地点建造一个超市,使得到两条公路的距离和A,B两个村庄的距离相等.13.已知△ABC在BC边上找一点P使得S△ABP=S△ACP14.已知村庄A,B和河流L在河流上建一个加水站P,使得PA+PB最短.。
七年级全册数学试题及答案
七年级全册数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 2D. -22. 计算下列哪个表达式的结果为负数?A. 3 + 4B. 5 - 2C. -3 × 2D. 6 ÷ 33. 下列哪个选项是质数?A. 4B. 9C. 11D. 124. 哪个选项是完全平方数?A. 16B. 14C. 18D. 205. 计算下列哪个表达式的结果为0?A. 3 × 0B. 0 + 5C. 2 - 2D. 1 - 16. 下列哪个选项是奇数?A. 2B. 4C. 5D. 67. 计算下列哪个表达式的结果为1?A. 2 ÷ 2B. 3 - 2C. 4 × 0D. 5 ÷ 58. 下列哪个选项是偶数?A. 1B. 3C. 4D. 59. 哪个选项是合数?A. 2B. 3C. 7D. 910. 计算下列哪个表达式的结果为负数?A. 3 × 2B. 4 - 1C. 5 + (-3)D. 6 ÷ 2二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
2. 一个数的立方是-8,这个数是______。
3. 一个数的倒数是2,这个数是______。
4. 一个数的绝对值是5,这个数可以是______。
5. 一个数的相反数是-3,这个数是______。
三、解答题(每题10分,共50分)1. 计算:(3x - 2) + (5x + 4)。
2. 计算:(-3) × 4 + 2 × 5。
3. 计算:(2x + 3) - (5x - 7)。
4. 计算:(-2) ÷ 4 + 3 × 2。
5. 如果一个数的三倍加上5等于20,求这个数。
四、答案一、选择题答案1. C2. C3. C4. A5. A6. C7. D8. C9. D10. C二、填空题答案1. ±52. -23. 0.54. ±55. 3三、解答题答案1. 3x - 2 + 5x + 4 = 8x + 22. (-3) × 4 + 2 × 5 = -12 + 10 = -23. 2x + 3 - 5x + 7 = -3x + 104. (-2) ÷ 4 + 3 × 2 = -0.5 + 6 =5.55. 3x + 5 = 20 → 3x = 15 → x = 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学试题卷第1页共2页
巍山县2016—2017学年度上学期期末测查
七年级数学 试题卷
(全卷共三个大题,23个小题。
考试时间:120分钟 满分:120分)
注意事项:1、本卷为试题卷,考生必须在答题卷上作答,答案应书写在答题卷相应的位置;在试题卷、
草稿纸上答题无效。
2、考试结束后,请将试题卷和答题卷一并交回。
3、考生不准将科学计算器、数学手册带入考场。
一、填空题。
(每小题3分,共18分) 1、-2的相反数是 。
2、单项式y x 23π-的系数是 。
3、如图,若点D 是AC 的中点,且DB=9cm 、CB=5cm ,则AC= cm 。
4、光的速度约是300000000米/秒,这个数字用科学计数法表示为 米/秒。
5、若m xy 2和213y x n +是同类项,则=+n m 。
6、某商品按原定价的八折出售,售价为40.14元,若设它的原定价为x ,则列方程为(不要求解方程): 。
二、选择题(每题只有一个正确选项,每小题4分,共32分) 7、下列方程中属于一元一次方程的是( )
A 、235x y +=
B 、2230x x -+=
C 、14x =
D 、2
435x x
+=-
8、若02)1(2=++-b a ,那么b a +的值是( ) A 、1 B 、2 C 、3 D 、1-
9、把一副三角板按照如图所示的位置摆放,则形成两个角, 设分别为∠α、∠β,若已知∠α=65°,则∠β=( )。
A 、15° B 、25° C 、35° D 、45°
10、下列计算错误的是( )
A 、-2-(-2)=0
B 、-2-3-4=-9
C 、-7+3=10
D 、-7+3=-4
11、在-(-2),-7-,(-3)2,-(+5
11
),-1中负数有( )
A 、2个
B 、3个
C 、4个
D 、5个 12、下列说法中正确的是( )
A 、整式就是多项式
B 、π是单项式
C 、4x +23x 是七次二项次
D 、
31
5
x -是单项式 13、已知数a 、b 在数轴上对应的点在原点两侧,并且到原点的距离相等,数x 、y 互为
倒数,则xy b a 22-+的值等于( )
A 、2
B 、–2
C 、1
D 、–1 14、如图,数轴上的点A 所表示的数为k ,
化简k
k --1的结果为( )。
A 、1
B 、12-k
C 、k
D 、1+k 三、解答题(共70分)
15、(6分)计算:()223)2(3-÷--⨯---
16、(6分)解方程:15
1
423=+--x x
17、(7分)先化简,再求值:
)21(4)3212(222+--+-
x x x x ,其中2
1
-=x A
D
C
B
(第9题)
α
A
七年级数学试题卷第2页共2页
18、(6分)一个角的余角比它的补角的3
2
还少40°,求这个角。
19、(8分)观察下列等式:
①1×3+1=22,②2×4+1=32,③3×5+1=42…… (1)请你按以上规律写出第四个式子;
(2)把以上规律用只含一个字母n (n 为正整数)的等式表示出来;
20、(8分)某房间窗户如图所示。
其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同):
(1)装饰物所占的面积是多少?
(2)窗户中能射进阳光(装饰物之外)的部分的面积是多少?
21、(8分)如图,O 是直线AB 上一点,OD 平分∠AOC 。
(1)若∠AOC =60°,请求出∠AOD 和∠BOC 的度数。
(2)若∠AOD 和∠DOE 互余,且∠AOD=1
3
∠AOE ,
请求出∠AOD 和∠COE 的度数。
22、(9分)A 、B 两站间的路程为448千米,一列慢车从A 站出发,每小时行驶60千米;
一列快车从B 站出发,每小时行驶80千米,问: (1)两车同时开出,相向而行,出发后多少小时相遇?
(2)两车相向而行,慢车先开出28分钟,快车开出后多少小时两车相遇?
23、(12分)某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3
种不同型号的电视机,出厂价分别为:A 种每台1500元,B 种每台2100元,C 种每台2500元。
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你设计一下商
场的进货方案。
(2)若商场销售一台A种电视机可获利150元,销售一台B 种电视机可获利200元,销
售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
E
A
B
C
D O
(第21题)。