区原创试题命题竞赛初中数学学科中考试题
初中中数学竞赛试题及答案

初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。
12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。
14. 一个数的立方根等于它本身,这个数是________。
15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。
数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
初三竞赛数学试题及答案

初三竞赛数学试题及答案一、选择题(每题4分,共40分)1. 若a、b、c是三角形的三边长,且满足a²+b²+c²=ab+ac+bc,则该三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知a、b、c是实数,且a+b+c=0,那么下列式子中一定成立的是()A. ab+bc+ca=0B. (a+b)(b+c)(c+a)=0C. a²+b²+c²=ab+bc+caD. a³+b³+c³=3abc3. 一个等腰三角形的两边长分别为6和8,那么这个三角形的周长是()A. 16B. 20C. 22D. 244. 已知x²-3x+1=0,那么x³-5x+1的值为()A. 0B. 1C. -4D. -85. 一个数的平方根是2和-2,那么这个数是()A. 4B. -4C. 0D. 26. 已知一个二次函数y=ax²+bx+c(a≠0),其图像开口向上,且与x轴有两个交点,那么下列说法正确的是()A. a>0,b²-4ac>0B. a<0,b²-4ac>0C. a>0,b²-4ac<0D. a<0,b²-4ac<07. 一个圆的半径为r,那么这个圆的面积是()A. πrB. πr²C. 2πrD. 2πr²8. 已知一个等差数列的首项为a,公差为d,那么这个数列的第n项是()A. a+(n-1)dB. a-(n-1)dC. a+ndD. a-nd9. 已知一个等比数列的首项为a,公比为q,那么这个数列的第n项是()A. aq^(n-1)B. aq^nC. a/q^(n-1)D. a/q^n10. 已知一个函数y=f(x),那么下列说法正确的是()A. f(a)=f(b) 则a=bB. f(a)≠f(b) 则a≠bC. f(a)=f(b) 则a≠bD. f(a)≠f(b) 则a=b二、填空题(每题4分,共20分)11. 已知一个三角形的三边长分别为3、4、5,那么这个三角形的面积是_________。
初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333...D. -12. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是4. 某工厂生产的产品数量y与时间x(小时)成正比,已知2小时生产了40个产品,那么4小时生产的产品数量是:A. 80B. 100B. 120D. 1605. 一个圆的半径是5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π6. 下列哪个是二次根式的化简结果?A. \(\sqrt{48}\)B. \(\sqrt{64}\)C. \(\sqrt{81}\)D. \(\sqrt{144}\)二、填空题(每题4分,共20分)1. 一个数的立方根是2,这个数是________。
2. 若一个等差数列的第3项是10,第5项是14,那么这个等差数列的公差是________。
3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是________cm³。
4. 一个多项式\(ax^2 + bx + c\)的系数a、b、c满足\(a + b + c = 6\),且\(a - b + c = 0\),那么\(2a - 2b + 2c\)的值是________。
5. 若一个二次方程\(x^2 - 4x + 4 = 0\),那么这个方程的判别式Δ是________。
三、解答题(每题15分,共50分)1. 已知一个直角三角形的两条直角边分别为3和4,求这个直角三角形的斜边长。
2. 一个水池的底部有一个排水口,水池的容积是100立方米。
如果打开排水口,水池的水在2小时内可以排完。
现在同时打开排水口和进水口,进水口每小时可以注入20立方米的水。
初中数学命题比赛试卷

一、选择题(每题5分,共50分)1. 下列数中,哪个数是负数?A. -3B. 0C. 2D. -5/22. 已知等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是多少cm?A. 16B. 20C. 22D. 243. 如果一个长方体的长、宽、高分别为a、b、c,那么它的体积V是多少?A. abcB. abC. acD. bc4. 在下列图形中,哪个图形的面积最大?A. 正方形B. 长方形C. 平行四边形D. 矩形5. 下列函数中,哪个函数是反比例函数?A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^36. 已知等差数列的首项为2,公差为3,那么第10项是多少?A. 29B. 30C. 31D. 327. 在直角坐标系中,点A(2,3)关于y轴的对称点是哪个?A. A'(-2,3)B. A'(2,-3)C. A'(-2,-3)D. A'(2,3)8. 下列哪个数是质数?A. 15B. 17C. 18D. 209. 如果一个圆的半径是r,那么它的周长C是多少?A. 2πrB. πrC. 4πrD. πr^210. 下列哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 4 = 5C. 4x + 2 = 8D. 5x - 1 = 9二、填空题(每题5分,共25分)11. 若a > b,那么a - b的符号是_________。
12. 一个长方形的长是8cm,宽是5cm,那么它的面积是_________cm²。
13. 若x + y = 7,且x - y = 3,那么x的值是_________。
14. 一个等边三角形的边长是10cm,那么它的面积是_________cm²。
15. 下列数中,有理数是_________。
16. 一个圆的直径是12cm,那么它的半径是_________cm。
初中数学竞赛试题及答案pdf
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。
答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。
答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。
答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。
竞赛初中数学试题及答案
竞赛初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. ±93. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个分数是最接近1的?A. 1/2B. 3/4C. 4/3D. 5/45. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 125π6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -4D. 47. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 都不是8. 以下哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 6x^2 + 11x - 6 = 0D. x^4 - 1 = 09. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 1410. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1/2D. 4/1二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。
12. 一个数的立方根是2,这个数是______。
13. 一个数的倒数是2,这个数是______。
14. 一个数的绝对值是8,这个数可以是______。
15. 如果一个数的平方是16,那么这个数是______。
16. 一个圆的直径是10,它的半径是______。
17. 一个直角三角形的斜边长度是13,一条直角边是5,另一条直角边是______。
18. 一个数的平方是25,这个数是______。
19. 一个数的立方是-125,这个数是______。
20. 如果一个数的绝对值是-5的相反数,这个数是______。
三、解答题(每题10分,共50分)21. 解方程:2x + 5 = 13。
初中竞赛数学试卷及答案
一、选择题(每题5分,共20分)1. 若实数x满足方程x^2 - 4x + 3 = 0,则x的值为:A. 1B. 3C. 1或3D. 22. 在等腰三角形ABC中,AB=AC,AD是BC边上的高,且AD=4cm,AB=8cm,则BC 的长度为:A. 8cmB. 10cmC. 6cmD. 12cm3. 下列函数中,是反比例函数的是:A. y = x^2B. y = 2x + 1C. y = 1/xD. y = 3x^34. 若一个数的平方根是±2,则这个数是:A. 4B. -4C. 16D. -165. 下列等式中,正确的是:A. (a+b)^2 = a^2 + 2ab + b^2 + 2abB. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^2 = a^2 + 2ab - b^2D. (a-b)^2 = a^2 - 2ab - b^2二、填空题(每题5分,共20分)6. 若一个数的倒数是1/5,则这个数是______。
7. 若x=2,则2x-3的值为______。
8. 下列数中,是偶数的是______。
9. 在直角坐标系中,点A(3,4)关于x轴的对称点是______。
10. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是______cm。
三、解答题(每题10分,共30分)11. 解方程:3x - 5 = 2x + 1。
12. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,且AD=6cm,AB=10cm,求BC的长度。
13. 已知函数y = 2x - 3,求x的值,使得y=5。
四、应用题(15分)14. 小明从家出发去图书馆,先向东走了1000米,然后向北走了800米,最后向西走了500米到达图书馆。
请计算小明从家到图书馆的总路程。
答案:一、选择题1. C2. B3. C4. A5. B二、填空题6. 57. 18. 29. (-3,4)10. 24三、解答题11. 解:3x - 5 = 2x + 13x - 2x = 1 + 5x = 612. 解:由等腰三角形的性质知,AD=BD,因此BD=6cm。
初中数学命题大赛试卷
1. 下列各数中,不是有理数的是()A. 0.6B. -3.14C. √9D. π2. 若a=2,b=-3,则下列各式中正确的是()A. a+b=5B. a-b=5C. ab=-6D. a/b=-3/23. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 平行四边形D. 梯形4. 下列各式中,正确的是()A. 3x+2y=7,x=2,y=1B. 2x-3y=8,x=2,y=3C. 4x+5y=9,x=1,y=2D. 5x-2y=6,x=3,y=15. 若一个等腰三角形的底边长为4cm,腰长为6cm,则这个三角形的周长为()A. 14cmB. 16cmC. 18cmD. 20cm6. 下列各数中,是质数的是()A. 29B. 32C. 36D. 387. 若一个数的平方根是±2,则这个数是()A. 4B. -4C. ±4D. 08. 下列图形中,面积最大的是()A. 圆B. 正方形C. 长方形D. 平行四边形9. 若a=2,b=-3,则下列各式中正确的是()A. a+b=5B. a-b=5C. ab=-6D. a/b=-3/210. 下列各式中,正确的是()A. 3x+2y=7,x=2,y=1B. 2x-3y=8,x=2,y=3C. 4x+5y=9,x=1,y=2D. 5x-2y=6,x=3,y=11. 若a=3,b=5,则a²+b²=__________。
2. 若一个数的平方根是±2,则这个数是__________。
3. 一个等腰三角形的底边长为4cm,腰长为6cm,则这个三角形的周长为__________。
4. 下列各数中,是质数的是__________。
5. 若a=2,b=-3,则下列各式中正确的是__________。
6. 若一个数的平方根是±2,则这个数是__________。
7. 下列图形中,面积最大的是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
区原创试题命题竞赛初中数学学科中考试题
一、选择题(每题3分,共36分) 1、若
23a b b -=,则a
b
= A.1
3
B.23
C.43
D.
5
3
2、世界最长的跨海大桥—舟山跨海大桥总造价为131.1亿元,131.1亿用科学计数法可表示为 元。
A.110.131110⨯ B.101.31110⨯ C.100.131110⨯ D.11
1.31110⨯ 3、下列运算正确的是
A.2222a a a +=
B.2
2
()()a b a b a b -+--=- C.()
3
2
528a
a =
4=±.
4、圆锥的底面半径为3cm ,母线为9cm ,则圆锥的表面积为 A.36π2
cm
B.9π2
cm
C.12 π2
cm
D.27π2
cm
5、下列美丽的图案,既是轴对称图形又是中心对称图形的个数是
A.1个
B.2个
C.3
个 D.4个
6、已知⊙O 1和⊙O 2的半径分别为1
和4,如果两圆的位置关系为相交,
那么圆心距O 1O 2的取值范围在数轴上表示正确的是
7、在坡比为1:3的斜坡上有两棵树AC 、BD ,已知两树间的坡面距离AB=,那么两树间的水平距离为
m
A.
8、把一张长为60厘米,宽为40厘米的矩行纸张对折8次,所得的小矩形面积的大小约同
A.一元硬币
B.书包
C.单人课桌
D.火柴盒 9、已知关于x 的不等式组0
10
x a x ->⎧⎨
->⎩的整数解共有3个,则a 的取值范围是
A. 3a >-
B.32a -<≤-
C.32a -≤<-
D. 2a <-
10、如图,点E 、F 是以线段BC 为公共弦的两条圆弧的中点,BC =6.点A 、D 分别为线段EF 、BC 上的动点.连结
AB 、AD ,设BD =x ,AB 2-AD 2=y ,下列图像中,能表示y 与x 的函数关系的图象是
B .
D .
A .
C .
11、如图所示,在梯形ABCD 中,90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是线段BC 上
一定点,且MC =8.动点P 从C 点出发沿C D A B →→→的路线运动,运动到点B 停止.在点P 的运动过程中,使PMC △为等腰三角形的点P 有 个。
A.1
B.2
C. 3
D.4
12、Rt ABC ∆的三个顶点A,B,C 均在抛物线2
y x =上,并且斜边平行于x 轴。
若斜边上的高为h,则
A.01h <<
B.1h =
C.12h ≤<
D.2h ≥ 二、填空题(每题3分,共18分) 13、函数1
2
-+=
x x y 中自变量x 的取值范围是 。
14、方程2
3x x =的解为
15、如图,在数轴上有两点A,B,在线段AB 上任取一点P,则点P 表示到2的点的距离不大于1的概率
是 。
16、2011年3月11日,日本发生了里氏9.0级大地震。
日本政府12号晚将核电站周边的避难半径扩大到20
公里。
在1:10000的地图上,避难半径应为 cm 。
17、已知线段AB=2cm,P 是AB 的黄金分割点,则AP= cm 。
18、已知:定点(5,4),动点P 在函数y x =的图像上运动,动点Q 在x 轴上运动,则APQ ∆的周长的最小
值为 。
三、解答题(第19-20题各6分,第21-24各8分,第25题10分,第26题12分,共66分) 19、解方程:
21
133
x x x ---=
-- O
2 4 6 8 2 4 6 8
y x 10 O
2 4 6 8 2 4 6 8
y x 10 O
2 4 6 8 2 4 6 8
y x 10 O
2 4 6 8 2 4 6 8
y x
10 A. B. C. D.
(第10题)
D P
(第11题)
O
E
D
B
A
C
·
20、已知反比例函数y =
8
m x
-(m 为常数)的图象经过点A (-1,6). (1)求m 的值;
(2)如图,过点A 作直线AC 与函数y =
8
m x
-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标。
21、为了了解初中生减负的实施情况,在我区几所学校中随机抽取了50名初三学生进行问卷调查,发现被调
查的学生中,每天完成课外作业时间最长为120分钟,没有低于40分钟的,并将抽查结果绘制成一个不完整的频数分布直方图,如图所示:
(1)补全频数分布直方图,并指出众数、中位数分别在哪一组 (2)若我区共有1万名初三学生,请估计我区大约有多少名初三学 生每天完成课外作业时间在80分钟以上?
(3)教育行政部门规定初三学生的课外作业时间不得超过90分钟。
请估计我区初三学生课外作业时间的平均值有没有超过教育行政部 门规定的时间
22、周末有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km 的滨海博
物馆参观,10分钟后到达距离学校12km 处甲组的汽车出现故障,只好步行一段路。
而正常行驶的另一辆车先把第乙组学生送到博物馆,再原路加速返回接甲组学生,同时甲组学生步行12km 后停下休息10分钟恰好与返回接他们的汽车相遇,当甲组学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度不变,学生步行速度不变,汽车离开学校的路程s (千米)与汽车行驶时间t (分钟)之间的函数关系如图,假设学生上下车时间忽略不计.
(1)正常行驶的一辆汽车第一次去博物馆时,求汽车离开学校的 路程s (千米)与汽车行驶时间t (分钟)之间的函数关系 (2) 求汽车在返回接甲组学生途中的速度; (3)求 原计划从学校出发到达博物馆的时间。
23、如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D
在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD . (1)求证:DC =BC ;
(2)若AB =5,AC =4,求tan∠DCE 的值.
24、如图,AB BC DC BC ⊥⊥,垂足分别为B,C,
(1)当AB=4,DC=1,BC=4时,在线段BC 上是否存在点P,使AP PD ⊥? 若存在,求线段BP 的长;若不存在,请说明理由。
(2)设,,AB a DC b BC c ===,那么当,,a b c 之间满足
什么关系时, 线段BC 上存在点P,使AP PD ⊥
25、如图,在边长为8厘米的正方形ABCD 内,贴上一个边长为4厘米的正方形AEFG ,正方形ABCD 未被盖住
的部分为多边形EBCDGF .动点P 从点B 出发,沿B→C→D 方向以1厘米/秒速度运动,到点D 停止,连结PA ,PE .设点P 运动x 秒后,△APE 与多边形EBCDGF 重叠部分的面积为y 厘米2。
(1) 当x = 4时,求y 的值; (2) 当x = 11时,求y 的值; (3) 求y 与x 之间的函数关系式;
(4) 在给出的直角坐标系中画出y 与x 之间的函数图象.
26.如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).
(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C ); (2)求出过A ,B ,C 三点的抛物线的表达式;
(3)截取CE =OF =AG =t ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形...BEFG 的面积S 与t 之间的函数关系式,并写出自变量t 的取值范围;
(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接..
写出此时t 的值,并指出相等的邻边;若不存在,说明理由.
x
y
O
M
N(-6,-4)
H(-8,0)。