模电总结复习课.

合集下载

模拟电路复习总结PPT课件

模拟电路复习总结PPT课件

ri Rb1 // Rb2 // rbe 0.946K
r0 RC 2.5K
第29页/共61页
差分电路
1. 主要特点:放大差模信号,抑制共模信号(克服零点漂移) 2. 四种输入、输出方式比较:
输入输 出方式
双入 双出
单入 双出
双入 单出
单入 单出
差模信号
uid共模信 号uic
uid = ui uic = 0 uid = ui uic = 0 uid = ui uic = ui / 2 uid = ui u =u/2
iD
理想模型 (大信号状态采用)
正偏导通 电压降为零 相当于理想开关闭合 反偏截止 电流为零 相当于理想开关断开
UD(on)
u
D
恒压降模型
正偏电压 UD(on) 时导通 等效为恒压源UD(on)
否则截止,相当于二极管支路断开
硅管: UD(on) = (0.6 0.8) V 估算时取 0.7 V
锗管:
= 3.3V
1.65 40
= 12-1.65×(2+2.5)
= 41μA
= 4.575 V
第28页/共61页
ib
ui Rb2 Rb1 rbe
ic β ib
uO RC RL
26
rbe
300
(1
40) 1.65
=0.946KΩ

Au
RC // RL
rbe
40 2.5 // 5 0.9 4 6
70.18
晶体三极管
1. 形式与结构 NPN PNP
三区、三极、两结
2. 特点 基极电流控制集电极电流并实现放大
放大 内因:发射区载流子浓度高、基区薄、集电区面积大 条件 外因:发射结正偏、集电结反偏

模电各章重点内容及总复习.

模电各章重点内容及总复习.

《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。

2、半导体奇妙特性:热敏性、光敏性、掺杂性。

3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。

4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。

它们在外电场作用下均能移动而形成电流,所以称载流子。

5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。

6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。

7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。

所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。

8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。

9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。

其死区电压:S i管约0。

5V,G e管约为0。

1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。

其导通压降:S i管约0.7V,G e管约为0.2 V 。

这两组数也是判材料的依据。

10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。

(压降为0.7V,)②加反向电压时截止,相当断开。

③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。

11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。

二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。

三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。

是硅管。

b 、二极管反偏截止。

f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。

模电复习ppt课件

模电复习ppt课件
3.互补输出级——由PNP和NPN两种极性的三极管或复合管组
成,以获得正负两个极性的输出电压或电流 具体电路参阅功率放大器。
4.偏置电流源——可提供稳定的几乎不随温度而变 化的偏置电流,以稳定工作点。
F007所具有的高性能
• Ad较大:放大差模信号的能力较强 • Ac较小:抑制共模信号的能力较强 • rid较大:从信号源索取的电流小 • ro小:带负载能力强 • Uom大:其峰值接近电源电压 • 输入端耐压高:使输入端不至于击穿的
一、复习什么
• 以基本概念、基本电路、基本分析方法为主线 • 概念和性能指标:每个术语的物理意义,如何应用。 • 基本电路:电路结构特征、性能特点、基本功能、
适用场合,这是读图的基础。见表11.2.1
– 基本放大电路 – 集成运放 – 运算电路 – 有源滤波电路 – 正弦波振荡电路 – 电压比较器 – 非正弦波振荡电路 – 信号变换电路 – 功率放大电路 – 直流电源
UCE
UCE ECICRC
(3) 交流计算 对交流信号(输入信号ui)
RB
RC
C1
短路
+EC 置零
C2
短路
交流通道
ui
RB
RC RL uo
简单(固定, 放大电路的微变等效电路为:
ii
ib
ic
ui RB rbe
ib
RL
rce
uo
RC
a、电压放大倍数的计算:
虚短、虚断
运算电路
引入负反馈
集成运放
模拟乘法器
比例
反相

同相
加减

积分

微分
对数

指数

模电知识点总结讲义

模电知识点总结讲义

模电知识点总结讲义第一部分:基本概念1. 电子元件电子元件是指能处理信息的基本部件,包括电阻、电容、电感、二极管、晶体管等。

- 电阻:用于限制电流或降低电压的元件。

- 电容:用于储存电荷或储存能量的元件。

- 电感:用于储存磁场能量或阻碍电流变化的元件。

- 二极管:用于整流、开关、放大等功能的元件。

- 晶体管:用于放大、开关、稳压等功能的元件。

2. 电路电路是由电子元件连接而成的路径,用于传输电流或信号。

- 直流电路:电流方向不变的电路。

- 交流电路:电流方向时而正时而负的电路。

- 数字电路:用于处理数字信号的电路。

- 模拟电路:用于处理模拟信号的电路。

3. 电路分析电路分析是指根据电路中元件的特性和连接关系,计算电压、电流等参数的过程。

- 基尔霍夫定律:电路中各节点的电流代数和为零。

- 欧姆定律:电流与电压成正比,电阻是电压和电流的比值。

- 诺顿定理:任意线性电路均可用一个等效的电压源和串联电阻来替代。

- 戴维南定理:任意线性电路均可用一个等效的电流源和并联电阻来替代。

4. 信号处理信号是指传输信息的载体,信号处理是对信号进行增强、滤波、调制等操作的过程。

- 放大器:用于增强信号幅度的电路。

- 滤波器:用于去除或增强特定频率的电路。

- 调制器:用于将低频信号调制到高频载波上的电路。

第二部分:放大器1. 放大器类型- 基本放大器:包括共射、共集、共底极等类型。

- 差分放大器:用于抑制共模信号的放大器。

- 电压跟随器:用于输出跟随输入信号的放大器。

2. 放大器设计- 选型:根据放大器的功率、频率、噪声等性能要求选择适当的器件。

- 偏置:通过电阻、电容等元件来设置放大器工作点。

- 反馈:通过串联或并联的电阻、电容等元件来控制放大器的增益、带宽等性能。

3. 放大器应用- 信号放大:用于将传感器输出的微弱信号放大到可测量范围。

- 信号传输:用于增强信号以便传输到远处或驱动加载。

第三部分:滤波器1. 滤波器类型- 低通滤波器:允许低频信号通过,阻断高频信号。

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。

2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。

3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。

三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。

2.共集电极放大电路---具有电压跟随和电流跟随的作用。

3.共基极放大电路---具有电压放大的作用,输入电阻较低。

4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。

四.三极管的应用1.放大器---将弱信号放大为较强的信号。

2.开关---控制大电流的通断。

3.振荡器---产生高频信号。

4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。

模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。

2.半导体具有光敏、热敏和掺杂特性。

3.本征半导体是纯净的具有单晶体结构的半导体。

4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。

5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。

根据掺杂元素的不同,可分为P型半导体和N型半导体。

6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。

7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。

8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。

二.半导体二极管半导体二极管是由PN结组成的单向导电器件。

1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。

2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。

3.分析半导体二极管的方法包括图解分析法和等效电路法等。

三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。

(完整版)模拟电子技术基础_知识点总结分析

(完整版)模拟电子技术基础_知识点总结分析

第一章半导体二极管1.本征半导体❑单质半导体材料是具有4价共价键晶体结构的硅Si和锗Ge。

❑导电能力介于导体和绝缘体之间。

❑特性:光敏、热敏和掺杂特性。

❑本征半导体:纯净的、具有完整晶体结构的半导体。

在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发),产生两种带电性质相反的载流子(空穴和自由电子对),温度越高,本征激发越强。

◆空穴是半导体中的一种等效+q的载流子。

空穴导电的本质是价电子依次填补本征晶体中空位,使局部显示+q电荷的空位宏观定向运动。

◆在一定的温度下,自由电子和空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为复合。

当热激发和复合相等时,称为载流子处于动态平衡状态。

2.杂质半导体❑在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

◆P型半导体:在本征半导体中掺入微量的3价元素(多子是空穴,少子是电子)。

◆N型半导体:在本征半导体中掺入微量的5价元素(多子是电子,少子是空穴)。

❑杂质半导体的特性◆载流子的浓度:多子浓度决定于杂质浓度,几乎与温度无关;少子浓度是温度的敏感函数。

◆体电阻:通常把杂质半导体自身的电阻称为体电阻。

◆在半导体中,存在因电场作用产生的载流子漂移电流(与金属导电一致),还才能在因载流子浓度差而产生的扩散电流。

3.PN结❑在具有完整晶格的P型和N型半导体的物理界面附近,形成一个特殊的薄层(PN结)。

❑PN结中存在由N区指向P区的内建电场,阻止结外两区的多子的扩散,有利于少子的漂移。

❑PN结具有单向导电性:正偏导通,反偏截止,是构成半导体器件的核心元件。

◆正偏PN结(P+,N-):具有随电压指数增大的电流,硅材料约为0.6-0.8V,锗材料约为0.2-0.3V。

◆反偏PN结(P-,N+):在击穿前,只有很小的反向饱和电流Is。

◆PN结的伏安(曲线)方程:4.半导体二极管❑普通的二极管内芯片就是一个PN结,P区引出正电极,N区引出负电极。

模电知识点复习总结

模电知识点复习总结

共射极连接
4.1.3 BJT的V-I 特性曲线
2. 输出特性曲线 iC=f(vCE) iB=const
输出特性曲线的三个区域:
饱和区:iC明显受vCE控制的区域, 该区域内,一般vCE<0.7V (硅管)。 此时,发射结正偏,集电结正偏或 反偏电压很小。 截止区:iC接近零的区域,相当iB=0 的曲线的下方。此时, vBE小于死区 电压。 放大区:iC平行于vCE轴的区域,曲 线基本平行等距。此时,发射结正 偏,集电结反偏。
(2)虚断
由于运放的差模输入电阻很大,一般都在1 M 以上。因此流入运放输入端的电流往往不足1 A, 远小于输入端外电路的电流。故通常可把运放的两 输入端视为开路,且输入电阻越大,两输入端越接 近开路。 “虚断”是指在分析运放处于线性状态时, 可以把两输入端视为等效开路,这一特性称为虚假 开路,简称虚断。显然不能将两输入端真正断路。 下面举两个例子说明虚短和虚断的运用。
(1)内部条件:发射区杂质浓度远大于基区
杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反
向偏置。
4.1.3 BJT的V-I 特性曲线
1. 输入特性曲线 (以共射极放大电路为例) iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。
(2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收 集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
最后,多子的扩散和少子的漂移达到动态平衡。
3.2.3 PN结的单向导电性 PN结加正向电压时,呈现低电阻, 具有较大的正向扩散电流; PN结加反向电压时,呈现高电阻, 具有很小的反向漂移电流。 由此可以得出结论:PN结具有单

模电期末复习重点讲解

模电期末复习重点讲解
R
VD1
VD3
~220V 50Hz
U21=15V U22=15V
VD2
VD4
U I1 C1 U I2 C2
VDZ1 UZ1 =8V
VDZ2 UZ2 =8V
R
RL1
UO1
RL2
UO2
第3章 半导体二极管
什么是半导体,本征半导体,杂质半导体 杂质半导体的导电机理; PN结的形成及其单向导电性; 半导体二极管的伏安特性; 要注意基本概念与实验的结合。
R4
R5
+VCC
R1
VT2
uO VT 1
uI R2
R3
R6
解:1) ICQ1 ICQ2 1mA
U BQ1
VCC
R2 R1 R2
2.7V
R3
U BQ1 U BE1 I CQ1
2k
2)
U BQ2
VCC
R6 R5 R6
4V
UCQ1 U BQ2 U BE2 3.3V U BQ1 2.7V
3.在如图所示电路中,已知输入电压vi为正弦波,其最大有效值 Vi=0.5,此时负载上得到最大输出功率;运算放大电路为理想运 放;三极管导通时|VBE|均为0.7V,VT3和VT4的饱和管压降 |VCES|=2V;电路的交越失真可忽略不计。试问: 1)电路的最大输出功率;2)在输出功率最大时,输出级的效率; 3)为使输出功率达到最大,电阻R3至少应取多少千欧?
•可变电阻区 vDS≤(vGS-VT)
iD 2Kn (vGS VT ) vDS
外围电路补充完整); 第四步:根据模型图求Av,Ri,Ro
例2:NMOS放大电路的分析计算
第一步:直流电源单独工作(交流信号为0),分析直流通路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Io
Байду номын сангаасUo RL
0.45
U RL
平均电流 ID 与最高反向电压 UDRM 是选择整流二
极管的主要依据。
选管时应满足:
IF 1.1IO, URM 1.1 2U
2、 单相桥式整流电路
(1) 电路结构
四只管子如何接?
(2) 工作波形
u
2U
t
uo
2U
t
uD
t
(3)估算
1
UO(AV) π
π 0
2U2 sin td( t)
➢ 空穴为多数载流子,自由电子为少子
PN结的形成
PN结的形成
PN结的单向导电性
➢外加正向电压或正向偏置时(P 区加正、N 区加负电压)
内电场被削弱, 多子的 扩散加强, 能够形成较 大的扩散电流
➢ 外加反向电压或反向偏置时(N 区加正、P 区加负电压)
内电场被加强,多子 的扩散受抑制,少子 漂移加强。但少子数 量有限,只能形成较 小的反向电流
考虑变压器和整流电路的内阻
内阻使 uO u2
C 越大,RL越大,τ放电 将越大,曲线越平滑,脉动越小。
(2)二极管的导通角
无滤波电容时θ=π。 有滤波电容时θ < π,且 二极管平均电流增大,故 其峰值很大!
导通角
脉动
C RL
放电
U O(AV)
iD的峰值
θ小到一定程度,难于选择二极管!
一、 单相整流电路
1、半波整流
(1) 电路结构 Tr a
D io
+
+
u
RL uo


b
(2)工作波形
u u= 2Usint
2U
O
t
uo
2U
O
uD
t
O
t
2U
(3)参数计算
(1) 整流电压平均值 Uo
Uo
1 2π
π
ο
2Usin td( t) 0.45U
(2) 整流电流平均值 Io (4)整流二极管的选择
UO(AV) 2
2U 2 π
0.9U 2
I L(AV)
U O(AV) RL
0.9U 2 RL
(4)二极管的选择
URmax
2U2
I D(AV)
I L(AV) 2
0.45U2 RL
考虑到电网电压波动范围为±10%,
二极管的极限参数应满足:
I F
1.1
0.45U 2 RL
UR 1.1 2U2
4. 倍压整流电路
2U 2 P
2 2U 2
分析时的两个要点:设①负载开路,②电路进入稳态。
u2正半周C1充电:A→D1→C1→B,最终
UC1 2U2 u2负半周,u2加C1上电压对C2充电:P→D2→C2→A,最终
UC2 2 2U2
讨论
已知变压器副边电压有效值为10V,电容足够大, 判断下列情况下输出电压平均值UO(AV)≈?
(5) 参数计算
1) 整流电压平均值 Uo
Uo
1 2π
π
ο
2) 整流电流平均值 Io
2Usin td( t) 2 0.9U
Io
UO RL
0 .9 UO RL
3) 流过每管电流平均值 ID
ID
1 2
I0
4) 每管承受的最高反向电压 UDRM
UDRM 2U
(6) 简化画法
+
~
u2
io
+ RL uo
流子导电。掺入杂质越多,
多子浓度越高,导电性越强,
实现导电性可控。
磷(P) ➢ N型中,自由电子为多子,空穴为少子
2. P型半导体
多数载流子
硼(B)
➢ 三价元素价电子与半导体原子形成共价 键时, 产生一个空位(呈电中性)
3 ➢ 该空位可吸引邻近价电子来填补,使杂 质原子成为带负电的离子
➢ 杂质原子吸收电子,称为受主原子
第十章 直流电流源
小功率直流稳压电源的组成
变压 交流电源
整流
滤波
稳压 负载
u1
u2
u3
u4
uo
功能:把交流电压变成稳定的大小合适的直流电压
整流电路的作用: 将交流电压转变为脉动的直流电压
整流原理: 利用二极管的单向导电性
常见的整流电路: 半波、全波、桥式和倍压整流;单相和三相整流等
分析时可把二极管当作理想元件处理: 二极管的正向导通电阻为零,反向电阻为无穷大
如果D2或D4因击穿烧坏而短路 则正半周时,情况与D2或D4接反类似,电源及D1或D3也将 因电流过大而烧坏。
三、滤波电路 1. 电容滤波电路
(1)工作原理
当 u2 uC 时,有一对二极管导通,对电容充电,充电非常小。 当 u2 uC 时,所有二极管均截止,电容通过RL放电,放电 RLC。
滤波后,输出电压平均值增大,脉动变小。
(7)整流桥
把四只二极管封装 在一起称为整流桥
~~
例1:
试分析图示桥式整流电路中的二极管D2 或D4 断开时负载 电压的波形。如果D2 或D4 接反,后果如何?如果D2 或D4因击 穿或烧坏而短路,后果又如何?
u
~
+D2 u_
D3
D1
+ RL _uo
o
π
D4
uo
t
2π 3π 4π
t
解:当D2或D4断开后
1. 正常工作; 2. C开路; 3. RL开路; 4. D1和C同时开路。
第一章 常用半导体器件
1.1 半导体基础知识
一、本征半导体 二、杂质半导体 三、PN结的形成及其单向导电性 四、PN结的电容效应
1. N型半导体
多数载流子
空穴比未加杂质时的数目
多了?少了?为什么?
5
杂质半导体主要靠多数载
(3)电容的选择及UO(AV)的估算
当RLC
(3~5)
T 2
时,U O(AV)
1.2U

2
C的耐压值应大于1.1
2U

2
若负载开路 UO(AV)=?
(4)优缺点
简单易行,UO(AV)高,C 足够大时交流分量较小; 不适于大电流负载。
2. 电感滤波电路 适合大电流负载!
3. 复式滤波电路
为获得更好的滤波效果,可采用复式滤波电路。 电感应与负载串联,电容应与负载并联。
o π 2π 3π 4π
电路为单相半波整流电路。正半周时,D1和D3导通,负载
中有电流过,负载电压uo=u;负半周时,D1和D3截止,负载
中无电流通过,负载两端无电压, uo =0。
~
+D2 u_
D3
D1 +
RL _uo D4
如果D2或D4接反 则正半周时,二极管D1、D4或D2、D3导通,电流经D1、D4 或D2、D3而造成电源短路,电流很大,因此变压器及D1、D4 或D2、D3将被烧坏。
PN结的伏安特性曲线
1.2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
二极管的微变等效
整流电路 (交流变直流)
ui

V

0
t
ui
RL
uo
uo


0
t
(a) a. 电路;
(b) b. 输入/输出波形关系
限幅电路 (削波电路,一种能把输入电压的变化范围加以 限制的电路,常用于波形变换和整形)
相关文档
最新文档