长江大学物理练习册答案4
长江大学物理习题集下学期答案

答案练习1 库伦定律 电场强度 一、选择题 C B A C D二、填空题 1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元 d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θd E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2RR R πεθθθπσ =σsin θcos θd θ/(2ε0)()()0/204/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元d q=λd l =[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2)=Q d θ/(4π2ε0R 2)d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0方向沿x 轴正向.练习2 电场强度(续)一、选择题 D C D B A 二、填空题1. 2p/(4πε0x 3), -p/(4πε0y 3).2. λ/(πε0a ), 03. 5.14⨯105.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为 d E=λ'/(2πε0r )=λd x/(2πε0a 22xb +)d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)]d E y =d E sin α=λb d x/[2πε0a (b 2+x2)]E x =()⎰⎰-+=2/2/2202a a x xb a xdxdE πελ=()04ln 2/2/022=+-a a a x b πελ E y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελbaa bx b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=-2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b c x c ac -⋅=πελ =λa arctan[b /(2c )]/(πε0)练习3 高斯定理 一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2),-Q r 0/(2πε0R 2).3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题 1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S 以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε0左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE (1) 板内|x |<aQ=()[]⎰-∆xx Sdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S sin[πx /(2a )] 得E={2ρ0a sin[πx /(2a )]}/(πε0) (2)板外|x |>aQ=()[]⎰-∆aa Sdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE ==E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224επQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3E 2=-πa 3/(3ε0r 22)负号表示方向指向球心.对于O 点 E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0(因r 2=0)得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D二、填空题 1.)222(812310q q q R++πε.2 Ed cos α.3 .-q/(6πε0R )三、计算题1.解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R23-R 13)]球内,球层中,球外电场为 E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2) 故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2) =ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)] 2.(1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r r dr rπελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 静电场中的导体 一、选择题 A A C D B二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题 1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x轴上点(y =0)E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y轴上点(x =0)E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U ABU A =(-Q+Q B )/(4πε0R 3)U AB=[Q B/(4πε0)](1/R2-1/R1) 得Q B=QR1R2/(R1R2+R2R3-R1R3)U A=[Q/(4πε0R3)][-1+R1R2/(R1R2+R2R3-R1R3)]=-Q(R2-R1)/[4πε0(R1R2+R2R3-R1R3)]练习6 静电场中的电介质一、选择题 D D B A C二、填空题1.非极性, 极性.2.取向, 取向; 位移, 位移.3.-Q/(2S), -Q/(S)三、计算题1. 在A板体内取一点A, B板体内取一点B,它们的电场强度是四个表面的电荷产生的,应为零,有E A=σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A=σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而S(σ1+σ2)=Q1 S(σ3+σ4)=Q2有σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0σ1+σ2=Q1/Sσ3+σ4=Q2/S解得σ1=σ4=(Q1+Q2)/(2S)=2.66⨯10-8C/ m2σ2=-σ3=(Q1-Q2)/(2S)=0.89⨯10-8C/m2两板间的场强E=σ2/ε0=(Q1-Q2)/(2ε0S)V=U A -U B ⎰⋅=BA l E d =Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题 1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠与静电场的环路定理=⋅⎰l E d l 0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场习题课 一、选择题 D B A C A二、填空题1. 9.42×103N/C, 5×10-9C .2. 25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/dW 0=Q 2/(2C 0)= Q 2d /(2ε0S ) 拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S ) ∆W=W -W 0= Q 2d /(2ε0S ) (2)外力所作功A=-A e =-(W 0-W )= W -W 0=Q 2d /(2ε0S )外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d = Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内的电场为E =(ρ4πr 3/3)/(4πε0r 2)(r /r ) =ρr /(3ε0)=Q r /(4πε0R 3)F =-q E =-qQ r /(4πε0R 3) F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2 ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=练习8 磁感应强度 毕奥—萨伐尔定律一、选择题 A A B C D二、填空题1. 所围面积,电流,法线(n ).2. μ0I/(4R 1)+ μ0I/(4R 2),垂直向外; (μ0I/4)(1/R 12+1/R 22)1/2,π+arctan(R 1/R 2). 3. 0.三、计算题 1.取宽为d x 的无限长电流元 d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)=μ0I d x/[4π(x 2+a 2)]d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==a ax x ax xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B =μ0NI/(4R )练习9 毕—萨定律(续) 一、选择题 D B C A D二、填空题 1. 0.16T.2. μ0Qv /(8πl 2), z 轴负向. 3. μ0nI πR 2. 三、计算题1.取窄条面元d S =b d r ,面元上磁场的大小为B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabIbdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 在圆盘上取细圆环电荷元d Q =σ2πr d r ,[σ=Q /(πR 2) ],等效电流元为 d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r (1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx r x r x r232222220d 4σωμ-()()⎰++Rx r x r x 02322222d 4σωμ =⎪⎪⎭⎫⎝⎛+++RR x r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ(2)求磁距. 电流元的磁矩d P m=d IS=σωr d rπr2=πσωr2d r⎰=R mdr rP3πσω=πσωR4/4=ωQR2/4练习10 安培环路定理一、选择题 B C C D A二、填空题1.环路L所包围的电流, 环路L上的磁感应强度,内外.2.μ0I, 0,2μ0I.3.-μ0IS1/(S1+S2),三、计算题1. 此电流可认为是由半径为R的无限长圆柱电流I1和一个同电流密度的反方向的半径为R'的无限长圆柱电流I2组成.I1=JπR2 I2=-JπR '2 J=I/[π(R2-R '2)]它们在空腔内产生的磁感强度分别为B1=μ0r1J/2 B2=μ0r2J/2方向如图.有B x=B2sinθ2-B1sinθ1=(μ0J/2)(r2sinθ2-r1sinθ1)=0B y =B2cosθ2+B1cosθ1=(μ0J/2)(r2cosθ2+r1cosθ1)=(μ0J/2)d所以 B = B y= μ0dI/[2π(R2-R '2)]方向沿y轴正向2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为B1=μ0J/2 在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为B2=μ0J/2在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=μ0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1-B2=0练习11 安培力洛仑兹力一、选择题 D B C A B二、填空题1 IBR .2 10-2, π/23 0.157N·m ; 7.85×10-2J . 三、计算题1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(π/2)=Ia2B=9.4×10-4m⋅N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(π/2-θ)=Ia2B cosθM G= M G1 + M G2 + M G3=mg(a/2)sinθ+mga sinθ+ mg(a/2)sinθ=2(ρSa)ga sinθ=2ρSa2g sinθIa2B cosθ=2ρSa2g sinθtanθ=IB/(2ρSg)=0.2694θ=15︒2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为 B =μ0I 1/(2πR cos θ) I 2d l 与B 垂直,有 d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ)d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=222102πππθμd I I F x =μ0I 1I 2/2 因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习12 物质的磁性 一、选择题 D B D A C二、填空题1. 7.96×105A/m,2.42×102A/m. 2. 见图3.矫顽力H c 大, 永久磁铁.三、计算题1. 设场点距中心面为x ,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l l H d =ΣI 0 2∆LH=ΣI 0 (1) 介质内,0<x <b/2.ΣI 0=2x ∆lJ =2x ∆l γE ,有 H =x γE B =μ0μr 1H=μ0μr 1x γE (2) 介质外,|x |>b/2.ΣI 0=b ∆lJ =b ∆l γE ,有 H =b γE/2 B =μ0μr 2H=μ0μr 2b γE/22. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅l l H d =ΣI 0 在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr)介质内的磁化强度 M =χm H =χm I /(2πr ) 介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向)介质外表面的磁化电流 J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习13 静磁场习题课 一、选择题 D C A A A 二、填空题1. 6.67×10-6T ; 7.20×10-21A ·m 2.2. Rih πμ20.3. -πR 2c (Wb).三、计算题1.(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有 ⎰⋅l l B d =2πrB=μ0∑I i =μ0NI B=μ0NI/(2πr ) (2)取面积微元h d r 平行与环中心轴,有 d Φm =|B ⋅d S |=[μ0NI/(2πr )]h d r =μ0NIh d r /(2πr )Φm =⎰=22120021ln 22D D D D NIh dr r NIh πμπμ 2. 因电流为径向,得径向电阻为⎰=2112ln 22R RR R d rd dr πρπρ I=ε/[ρln(R 2/R 1)/(2πd )]=2πd ε/[ρln(R 2/R 1)]取微元电流 d I d l=J d S d r =[I/(2πrd )]r d θd d r=d εd θd r /[ρln(R 2/R 1)] 受磁力为 d F=|d I d l ×B |=Bd εd θd r /[ρln(R 2/R 1)]d M=|r ×d F |=Bd εd θr d r /[ρln(R 2/R 1)] 练习练习14 电磁感应定律 动生电动势一、选择题 D B D A C二、填空题 1.t I r r ωωπμcos 202210,22102Rr I r πμ .2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.三、计算题 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ εi =-d Φm /d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-5.18×10-8V负号表示逆时针2. (1) 导线ab 的动生电动势为εi = ⎰lv×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/R F 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t lB e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习15 感生电动势 自感 一、选择题 A D C B B二、填空题 1.er 1(d B /d t )/(2m ),向右;eR 2(d B /d t )/(2r 2m ),向下. 2. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt . 3.ε=πR 2k/4,从c 流至b .三、计算题1.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ),该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/Rεi =⎰⋅N M l E i d =⎰NM i x E θcos d=()⎰-⋅RR r R r x t B R 22d d d =⎰-+⋅RRR x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4 因εi =>0,故N 点的电势高.(2) 用法拉第电磁感应定律εi =-d Φ/d t 解:沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅N M l E i d =⎰⋅-MN l E i d=-⎢⎣⎡⋅⎰M N l E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰N O l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅S d S B =πR 2B/4 故 εi =πR 2(d B/d t )/4 N 点的电势高.2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω/d t=μ0ω 0Q a2 /(2 L t0)I i=εi /R=μ0ω 0Q a2 /(2 LR t0) 方向与旋转方向一致.练习16 互感(续)磁场的能量一、选择题 D C B C A二、填空题1. 0.2. ΦAB=ΦBA.3. μ0I2L/(16π.)三、计算题1. 取如图所示的坐标,设回路有电流为I,则两导线间磁场方向向里,大小为0≤r≤a B1=μ0Ir/(2πa2)+μ0I/[2π(d-r)]a≤r≤d-a B2=μ0I/(2πr)+μ0I/[2π(d-r)]d-a≤r≤d B3=μ0I/(2πr)+μ0I(d-r)/(2πa2)取窄条微元d S=l d r,由Φm=⎰⋅SSB d 得Φml =⎰aarIrl22dπμ+()⎰-ardrIl2dπμ+⎰-a darrIlπμ2d0+()⎰--adardrIlπμ2d+⎰-a darrIlπμ2d0+()⎰-a daarl r-dI22dπμ=μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d-a)] +[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[d/(d-a)]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a) 由L l=Φl /I,L0= L l/l=Φl /(Il).得单位长度导线自感L0==μ0l/(2π)+(μ0l/π)ln(d/a)2. 设环形螺旋管电流为I, 则管内磁场大小为B=μ0NI/(2πρ) r≤ρ≤R 方向垂直于截面; 管外磁场为零.取窄条微元d S=h dρ,由Φm=⎰⋅S SB d得Φm =⎰RrNIhπρρμ2d0=μ0NIh ln(R/r)/(2π)M=Φm/I==μ0Nh ln(R/r)/(2π)练习17 麦克斯韦方程组一、选择题 C A D B C二、填空题1. 1.2. ②, ③, ①.3. 1.33×102 W/m2 ,2.51×10-6J/m3.三、计算题1. 设极板电荷为Q, 因I=d Q/d t, Q=CU,有(1) I=d(CU)/d t=C d U/d td U/d t=I/C= I0e-kt/CU= I0(1-e-kt)/(kC)(2)I d=dΦd/d t=d(DS)/d t=d(εES)/d t =d[ε(U/d)S]/d t=(εS/d)d U/d t =C d U/d t=I=I0e-kt(3)在极板间以电容器轴线为心,以r为半径作环面垂直于轴的环路,方向与I d成右手螺旋.有⎰⋅llH d=2πrH=∑I d当r<R时∑I d=[I d/(πR2)]πr2 H=I d r/(2πR2)B=μH=μI d r/(2πR2)=μI0e-kt r/(2πR2)当r>R时∑I d=I d H=Ir/(2πr)B=μI0e-k t/(2πr)方向与回路方向相同.O 点,r =0: B =0A 点,r =R 1<R :B =μI 0e -kt R 1/(2πR 2) 方向向里C 点,r =R 2>R : B =μI 0e -k t /(2πR 2) 方向向外.2.(1)坡印廷矢量平均值S =I =P /(2πr 2) r =10km S =P /(2πr 2)=1.59×10-5W/m 2(2) 电场强度和磁场强度振幅.εE =μHS =|S |=|E ×H |=2E με=εμH 2 E=εμS H=μεS E m =E 2=002εμS =1.09⨯10-1V /m H m =H 2=002μεS =2.91×10-4A/m练习18 电磁感应习题课一、选择题 A B B C D二、填空题1 0, 2μ0I 2/(9π2a 2).2 700Wb/s.3 vBl sin α, A 点.三、计算题1. 任意时刻金属杆角速度为ω,取微元长度d rd εi =v ×B ⋅d l=ωrBdr εi =⎰d εi =r r B ad 0⎰ω=ω Ba 2/2I =εi /R =ω Ba 2/(2R ) 方向由O 向A .微元d r 受安培力为|d F |=|I d l ×B |= IB d r d M =|d M |=|r ×d F |= IBr d r M=⎰d M =r r IB ad 0⎰=I Ba 2/2=ωB 2a 4/(4R )方向与ω相反.依转动定律,有-ω B 2a 4/(4R )=J α=(ma 2/3)d ω /d td t=-[4Rm/(3ω B 2a 2)]d ω =-[4Rm/(3 B 2a 2)]d ω/ωt =()[]()ωωωωd 34022⎰a B mR=-[4Rm/(3 B 2a 2)]ln(ω/ω0)t mRa B e43022-=ωω2. 因b >>a ,可认为小金属环上的磁场是均匀.Φm =⎰⋅S d S B =BS cos θ=[μ0I/(2b )]πa 2cos θ=μ0I πa 2cos θ/(2b )(1) I 恒定,θ=ω1t : εi =-d Φm /d t =(-d Φm /d θ)(d θ/d t )=μ0I πa 2ω1sin(ω1t )/(2b )(2) I =I 0sin ω2t ,θ=0:εi =-d Φm /d t =(-d Φm /d I )(d I/d t )=-μ0πa 2I 0ω2cos ω2t/(2b ) (3) I =I 0sin ω2t ,θ= ω1t :εi =-d Φm /d t=-[(∂Φm /∂θ)(∂θ/∂t )+(∂Φm /∂I )(∂I/∂t)]=[μ0I 0πa 2/(2b )][ω1sin(ω1t )sin(ω2t )-ω2cos ω2t ]练习19 义相对论的基本原理及其时空观一、选择题 C D B A A二、填空题 1. c , c . 2. c c 97.017/16=. 3. ()c l a 201-三、计算题1 (1)设K '相对于K 的运动速度为v ,运动方向为x 正向.因x 1=x 2,有∆t '=(∆t -v ∆x /c 2)/(1-v 2/c 2)1/2=∆t /(1-v 2/c 2)1/2v=[1-(∆t )2/(∆t ')2]1/2c =3c /5=1.8×108m/s(2)∆x'=(∆x-v∆t)/(1-v2/c2)1/2=-v∆t/(1 -v2/c2)1/2=-v∆t'=3c(m)=9×108m2. 设地球和飞船分别为K和K'系,有(1)飞船上观察者测飞船长度为固有长度,又因光速不变,有∆x'=90m∆t'=∆x'/c=3×10-7s(2)地球上观察者∆x=(∆x'+v∆t')/(1-v2/c2)1/2=27 0m∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=9×10-7s{或∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=(∆x'/c+v∆x'/c2)/(1-v2/c2)1/2=[(∆x'+v∆t')/(1-v2/c2)1/2]/c=∆x/c=9×10-7s }练习20 相对论力学基础一、选择题 A C A B C二、填空题1.1.49MeV.2.2/3c, 2/3c.3.5.81×10-13, 8.04×10-2.三、计算题1. E k=mc2-m0c2m=m0+E k/c2回旋周期T=2πm/(qB)=2π( m0+E k/c2)/(qB) E k=104MeV=1.6×10-9Jm0=1.67×10-27kg q=1.6⨯10-19C T=2π( m0+E k/c2)/(qB)=7.65×10-7s212.E =m 0c 2/221c v -=E 0/221c v -γ= 1/221c v -=E /E 0v=c ()201E E -=2.998×108m/s运动的距离∆l =v ∆t =v τ0γ= c ()201E E -τ0 E /E 0 =c τ0()1/20-E E =1.799×104m练习21 热辐射 光电效应一、选择题 A D C D B二、填空题1. 0.64 .2. 2.4×103K.3. 在一定温度下,单位时间内从绝对黑体表面单位面积上所辐射的各波长的总能量.三、计算题1. (1)T=b/λm =5.794×103K . (2)P =M (T )S =σT 44πR S 2=3.67×1026W(3)P'=P/S'=σT 44πR S 2/(4πL 2)=1.30×103W/m 22. λm = b/T =9.66×10-4mνm =c /λm =c /(b/T )=cT/b =3.11×1011Hz P =M (T )S =σT 44πR E 2=2.34×109W练习22 康普顿效应 氢原子的玻尔理论一、选择题 D B A C A二、填空题1. hc/λ;h/λ;h/(λc ).2. 1.45V ;7.14×105m/s .3. π;0.三、计算题1.hν=hc/λ=mv2/2+A=eU c+AU c=(hc/λ-A)/e=(hc/(λe)-A/emv=[2m( hc/λ-A)]1/2R=mv/(qB)=[2m( hc/λ-A)]1/2/(eB)2.(1) ∆λ=h(1-cosϕ)/(m0c) λ=λ0+∆λ=λ0+h(1-cosϕ)/(m0c)=1.024×10-10m(2)hν0+m0c2=hν+mc2=hν+m0c2+E khν0= hν+E kE k=hν0- hν= hc/λ0- hc/λ=hc(λ-λ0)/(λ0λ)=hc∆λ/[λ0(λ0+∆λ)]=4.71×10-17J=294eV练习23 德布罗意波不确定关系一、选择题 D C D A B二、填空题1. 1.46Å; 6.63×10-31m.2.3/3.3. 6.63×10-24. (或1.06×10-24,3.32×10-24,0.53×10-24)三、计算题1. (1)由带电粒子在均匀磁场中作圆运动运动的知识知,R=mv/(qB).于是有pα=mαvα=qBR=2eBRλα=h/pα=h/(2eBR)=9.98×10-12m =9.98×10-3nm(2) 设小球与α粒子速率相同v=vα=2eBR/mαλ= h/p= h/(mv)= h/[m(2eBR/mα)] =[h/(2eBR)](mα/m)=(mα/m)λα=6.62×10-34m2. (1)考虑相对论效应E k=eU=mc2-m0c2=E-E0p2c2=E2-E02=(E+E0)(E-E0)=(E k+2E0)E k22=(eU +2 m0c2) eUp=[(eU +2 m0c2) eU]1/2/cλ=h/p=hc/[(eU +2 m0c2)eU]1/2=8.74×10-13m(2)不考虑相对论效应E k=eU=mv2/2=p2/(2m)p=(2meU)1/2λ=h/p=h/(2meU)1/2= h/(2m0eU)1/2=1.23×10-12m(λ-λ0)/λ0=40.7%﹪﹪练习24 薛定谔方程氢原子的量子力学描述一、选择题 A C A D B二、填空题1.ν3=ν1+ν2;1/λ3=1/λ1+1/λ2.2. 粒子t时刻出现在r处的概率密度;单值,有限,连续;⎰=ψ1ddd2zyx.3. a/6, a/2, 5a/6.三、计算题1所发射光子的能量ε=hν=hc/λ=2.56eV激发能为∆E=10.19eV能级的能量为E k,有∆E=E k- E1E k=E1+∆E=-13.6+10.19=-3.41eV 初态能量E n=E k+ε=-0.85eV初态主量子数n=(E1/E n)1/2=42. 由归一化⎰∞∞-=VΨd2⎰l x c022(l-x)d x=1得c=530l0~l/3区间发现粒子的概率P=⎰l xΨ2d=⎰l30x2(l-x)2d x/l5=17/81=21%练习25 近代物理习题课一、选择题 D D D C B二、填空题231 13.6eV, 5.2 >, >, <.3. 459W/s三、计算题1. (1)ε=hν=hc/λ=2.86eV(2) 巴耳末系k=2,E2=E1/22=-13.6/4=-3.4eVE n=E1/n2=E2+ε=-0.54eVn=(E1/E n)1/2=5(3) 可发射四个线系, 共10条谱线;波长最短的谱线是从n=5的能态跃迁到n=1的能态而发射的光譜线2 ∆p∆x≧ћ/2 ∆p≧ћ/(2∆x)取p≈∆p≧ћ/(2∆x)=7.3⨯10-21kgm/sE k= p2/(2m)≈[ћ/(2∆x)]2/(2m)=ћ2/[8 m (∆x)2]=2.5⨯102425。
大学物理练习册答案

振动的相位差为 –1 = /6。若第一个简谐振动的振幅为10 3 cm = 17.3 cm,则 第二个简谐振动的振幅为__ __ cm,第一、二两个简谐振动的相位差1 2
为
。
三、计算题
1、由一个电容 C=4.0μF 的电容器和一个自感为 L=10mH 的线圈组成的 LC 电
路,当电容器上电荷的最大值 Q0=6.0×10-5C 时开始作无阻尼自由振荡,试求:
x1
0.05cos(t
1 4
)
(SI),
x2
0.05cos(t
9 ) 12
(SI)
其合成运动的运动方程为 x =
。
8
3、已知一物体同时参与两个同方向同频率的简谐振动,这两个简谐振动的振
动曲线如下图所示,其中 A1 >A 2 ,则该物体振动的初相为__ __。
x
A2
x2
t
A1
x1
4、两个同方向同频率的简谐振动,其合振动的振幅为 20 cm,与第一个简谐
(C)x=6m 的质点向右运动
10
(D)x=6m 的质点向下运动
4、如右图所示,一平面简谐波以波速 u 沿 x 轴正方向传播,O 为坐标原
点.已知 P 点的振动方程为 y Acost ,则( )
(A)O 点的振动方程为 y Acos(t l / u) ; (B)波的表达式为 y Acos[t (l / u) (x / u)] ; (C)波的表达式为 y Acos[t (l / u) (x / u)] ; (D)C 点的振动方程为 y Acos(t 3l / u) 。
(A) A 2
(B) A 4
(C) A 2
(D) A
二、填空题
1、已知简谐振动
长江大学大一公共课大学物理试卷及答案

长江大学XX 级大学物理考试卷一、选择题(每题2分,共20分)1、下列说法中正确的是 ( D ) (A )加速度恒定不变时,物体的运动方向也不变; (B )平均速率等于平均速度的大小; (C )当物体的速度为零时,加速度必定为零;(D )质点作曲线运动时,质点速度大小变化产生切向加速度,速度方向的变化产生法向加速度。
2、对功的概念有以下几种说法:(1)保守力作功时,系统内相应的势能增加。
(2)质点运动经一闭合路径,保守力对质点作的功为零。
(3)作用力和反作用力大小相等、方向相反,所以两者作功的代数和必为零。
在上述说法中正确的是 ( C ) (A )(1)(2) (B )(2)(3) (C )只有(2) (D )只有(3) 3、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ。
若B A ρρ>,但两圆盘质量和厚度相同,若两盘对通过盘心垂直于盘面的轴的转动惯量分别为A J 和B J ,则 ( B ) (A )B J J >A ; (B )B J J <A ; (C )B J J =A ; (D )不能确定哪个大。
4、一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 ( C ) (A )4T ; (B )12T ; (C )6T ; (D )8T 5、机械波在弹性媒质中传播时,若媒质中媒质元刚好经过平衡位置,则它的能量为: ( A ) (A )动能最大,势能也最大; (B )动能最小,势能也最小; (C )动能最大,势能最小; (D )动能最小,势能最大。
6、两种不同的理想气体,若它们的最可几速率相等,则它们的 ( A )(A )平均速率相等,方均根速率相等; (B )平均速率相等,方均根速率不相等; (C )平均速率不相等,方均根速率相等; (D )平均速率不相等,方均根速率不相等。
7、若理想气体的体积为V ,压强为p ,温度为T ,其单个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: ( B )(A )m pV ; (B )kT pV ; (C )RT pV ; (D )mTpV 8、关于热力学过程,下列说法正确的是: ( C ) (A )准静态过程一定是可逆过程; (B )非准静态过程不一定是不可逆过程; (C )可逆过程一定是准静态过程;(D )不可逆过程一定是非准静态过程。
大学物理练习册参考答案

大学物理练习册参考答案大学物理练习册是大学物理的重要教材之一,它的主要作用是为大学物理课程提供题目和习题,使学生能够更好地掌握和理解物理知识。
本文将为大家提供几个大学物理练习册的参考答案,供大家参考。
第一题:有一块长度为20cm,宽度为10cm,厚度为2cm的矩形金属板,重量为3N。
请问这块金属板的密度是多少?答案:首先我们需要知道密度的定义,密度是单位体积内物质的质量。
因此,我们可以根据这个公式计算出这块金属板的密度:密度=质量/体积其中,这块金属板的质量为3N,体积为20cm × 10cm × 2cm = 400cm³。
把质量和体积带入公式中,可以得到这块金属板的密度为:密度=3N/400cm³=0.0075N/cm³因此,这块金属板的密度为0.0075N/cm³。
第二题:有一个长度为4m的绳子,一个人沿着绳子向上爬,绳子的质量是忽略不计的。
如果人的体重为600N,他在绳子上爬行的过程中,绳子的张力是多少?答案:在求解这个问题之前,我们需要知道牛顿第二定律的公式:力=质量× 加速度根据牛顿第二定律,可以得到人在绳子上爬行时绳子所受的力等于绳子的张力减去重力。
因此,我们可以得到以下公式:绳子的张力=人的重力+绳子的重力其中,人的重力为600N,绳子的重力可以根据绳子的长度和重力加速度计算得出。
在地球上,物体的重力加速度大约为9.8m/s²。
因此,绳子的重力可以用下面的公式计算:绳子的重力=绳子的质量× 重力加速度因为绳子的质量可以根据绳子的长度和线密度计算得出,我们可以得到以下公式:绳子的质量=绳子的长度× 线密度假设绳子的线密度为ρ,绳子的质量可以表示为:绳子的质量=ρ × 面积× 长度根据绳子的面积和长度,可以得到:面积=长度× 直径/4因此,绳子的质量可以通过以下公式计算得出:绳子的质量=ρ × 直径² × 长度/16把绳子的质量和重力加速度带入公式中,可以得到绳子的重力为:绳子的重力=ρ × 直径² × 长度/16 × 重力加速度把人的重力和绳子的重力带入公式中,可以得到绳子的张力为:绳子的张力=人的重力+绳子的重力=600N+ρ × 直径² × 长度/16 × 重力加速度因此,如果已知绳子的线密度、直径、长度和重力加速度,就可以计算出绳子在负责人上爬行时所受的张力。
答案长江大学物理习题集(上册)

一、运动学 1.基本物理量 (1).位置矢量(运动方程) r = r (t) = x (t)i + y (t)j + z (t)k, 速度v = dr/dt = (dx/dt)i+(dy/dt)j + (dz/dt)k, 加速度 a=dv/dt=(dvx/dt)i+(dvy/dt)j +(dvz/dt)k =d2r/dt2=(d2x/dt2)i+(d2y/dt2)j + (d2z/dt2)k, 切向加速度 at= dv/dt, 法向加速度 an= v2/ . (2).圆周运动及刚体定轴转动的角量描述 =(t), =d/dt, = d/dt =d2/dt2, 角量与线量的关系 △l=r△, v=r (v= ×r), at=r, an=r2。 2.相对运动 v20=v21+v10, a20=a21+a10. 二、质点动力学 1.牛顿三定律(略); 惯性系(略);非惯性系(略); 惯性力:平动加速参照系 F惯= ma (a为非惯性系相对惯性系的加速度). 匀速转动参照系的惯性离心力 F惯= m2r 2.动量 P=mv, 冲量 , 质点及质点系的动量定理 =P2-P1, 动量守恒定律: (1) F外=0, p=恒量, (2) (F外)某方向=0,p某方向=恒量, (3) F外f内,p≈恒量 (F外) 某方向( f内) 某方向,p某方向≈恒量 3.功 功率 P=F·v,
2. 阻力作功 A= 依动能定理,有
第一次x1=0,x2=1; 第二次x1=1,x2待求 k(x22-12)= k(12-02) 得 x=,所以第二次击铁钉的深度为 x=-1=0.414cm
Ⅳ 课堂例题 一. 选择题 1.一质点在几个外力同时作用下运动时,下述哪种说法正确? (A) 质点的动量改变时,质点的动能一定改变. (B) 质点的动能不变时,质点的动量也一定不变. (C) 外力的冲量是零,外力的功一定为零. (D) 外力的功为零,外力的冲量一定为零. 2.有一劲度系数为k的轻弹簧,原长为l0,将它吊在天花板上.当它 下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长 度变为l2,则由l1伸长至l2的过程中,弹性力所作的功为 (A) . (B) . (C) . (D) . 3.某物体的运动规律为dv/dt=-kv2t,式中的k为大于零的常量. 当t=0时,初速为v0,则速度v与时间t的函数关系是 (A) (B) (C) (D) 4.一根细绳跨过一光滑的定滑轮,一端挂一质量为M的物体,另一 端被人用双手拉着,人的质量m=M/2.若人相对于绳以加速度a0向上 爬,则人相对于地面的加速度(以竖直向上为正)是 (A) (2 a0 + g)/3. (B) -(3g-a0). (C) -(2 a0 + g)/3. (D) a0. 5.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地 球中心的 (A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒. (C) 角动量不守恒,动能守恒. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 6.如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质
大学物理习题册答案

练习 十三知识点:理想气体状态方程、温度、压强公式、能量均分原理、理想气体内能一、选择题1. 容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为 (根据理想气体分子模型和统计假设讨论) ( )(A )x υ=(B )x υ= (C )m kT x 23=υ; (D )0=x υ。
解:(D)平衡状态下,气体分子在空间的密度分布均匀,沿各个方向运动的平均分子数相等,分子速度在各个方向的分量的各种平均值相等,分子数目愈多,这种假设的准确度愈高.2. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( )(A )pV /m ; (B )pV /(kT ); (C )pV /(RT ); (D )pV /(mT )。
解: (B)理想气体状态方程NkT T N R N RT m N Nm RT M M pV AA mol ====3.根据气体动理论,单原子理想气体的温度正比于 ( )(A )气体的体积; (B )气体的压强;(C )气体分子的平均动量;(D )气体分子的平均平动动能。
解: (D)kT v m k 23212==ε (分子的质量为m )4.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 ( )(A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。
解:(A) kT v m k 23212==ε,2222H O H O T T m m =(分子的质量为m ) 5.如果在一固定容器内,理想气体分子速率都提高为原来的2倍,那么 ( )(A )温度和压强都升高为原来的2倍;(B )温度升高为原来的2倍,压强升高为原来的4倍; (C )温度升高为原来的4倍,压强升高为原来的2倍; (D )温度与压强都升高为原来的4倍。
长江大学《大学物理》习题课215页PPT

5、关于稳恒电流磁场的磁场强度H,下列几种说法 中哪个是正确的?
(A) H仅与传导电流有关 (B) 若闭合曲线内没有包围传导电流,则曲线上各点
H的必为零 (C) 若闭合曲线上各点H均为零,则该曲线所包围传
I 的某点处的磁场强度的大小H =___2 _ __r ___,磁感强
I
度的大小B =___2___r____.
三、计算题
1、如图示,由一根细绝缘导线按ACEBDA折成一
个正五角星形,并按以上流向通电流I = 1 A,星形
之外接圆半径为R = 1 m,求五角星任一个顶点处
磁感强度的大小.
(真空磁导率 04 10 7Tm A 1)
(sin72°=0.9511,
A
sin36°=0.5878, cos72°=0.3090,
R
B
E
O
cos36°=0.8090)
C
D
2、如图所示,一无限长直导线通有电流I =10 A,在 一处折成夹角θ =60°的折线,求角平分线上与导线 的垂直距离均为r =0.1 cm的P点处的磁感强度.
( 04 10 7Tm A 1 )
向为_垂__直__纸__面__向__里___.
R O
I
P
3、有很大的剩余磁化强度的软磁材料不能做成
永磁体,这是因为软磁材料 矫顽力小 ,
如果做成永磁体 容易退磁
.
4、长直电缆由一个圆柱导体和一共轴圆筒状导体组 成,两导体中有等值反向均匀电流I通过,其间充满
磁导率为 的均匀磁介质.介质中离中心轴距离为r
ቤተ መጻሕፍቲ ባይዱ
(B) 将导线的bc部分长度.减小
04第四章 功与能作业答案

一.选择题 [ B ]1、(基础训练1)一质点在如图4-5所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为(A) 20R F . (B) 202R F .(C) 203R F . (D) 204R F .【提示】020220000d 2RRx y A F r F dx F dy F xdx F ydy F R =⋅=+=+=⎰⎰⎰⎰⎰[ C ]2、(基础训练3)如图4-6,一质量为m 的物体,位于质量可以忽略的直立弹簧正上方高度为h 处,该物体从静止开始落向弹簧,若弹簧的劲度系数为k ,不考虑空气阻力,则物体下降过程中可能获得的最大动能是(A) mgh . (B) kg m mgh 222-.(C) k g m mgh 222+. (D) kg m mgh 22+.【提示】 当合力为零时,动能最大,记为km E ,此时00, mgmg kx x k==;以弹簧原长处作为重力势能和弹性势能的零点,根据机械能守恒,有:20012km mgh E kx mgx =+-,求解即得答案。
[ B ]3、(基础训练6)一质点由原点从静止出发沿x 轴运动,它在运动过程中受到指向原点的力作用,此力的大小正比于它与原点的距离,比例系数为k .那么当质点离开原点为x 时,它相对原点的势能值是(A) 221kx -. (B) 221kx . (C) 2kx -. (D) 2kx . 【提示】依题意,F kx =-,x = 0处为势能零点,则021()2p xE kx dx kx =-=⎰[ B ]4、(自测提高2)质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ),从t = 2 s 到t = 4 s 这段时间内,外力对质点作的功为(A) 1.5 J . (B) 3 J . (C) 4.5 J .(D) -1.5 J .【提示】用动能定理求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1近 代 物 理 习 题 课2003.12.1壹.内容提要一、狭义相对论 1. 基本原理(1)爱因斯坦相对性原理; (2)光速不变原理. 2.洛伦兹坐标变换式⎪⎪⎩⎪⎪⎨⎧='='='='2222211/c v -vx/c -t t z z y y /c v -vt-x x ⎪⎪⎩⎪⎪⎨⎧'+'='='='+'=2222211/c v -/c x v t t z z y y /c v -t v x x 3. 时空观(1).同时的相对性∆t=()2221/c v -/c x v t '∆+'∆(2). 长度收缩 l=2201/c v -l (3). 时间延缓 ∆t=2201Δ/c v -t4. 相对论力学(1).相对论质量 2201/c v -m m = (2).相对论动量 2201/c v -m m v v p ==(3).质能关系式①静能 E 0=m 0c 2 ②运动的能量 E=mc 2=22201/c v -c m③动能 E k =E -E 0=22201/c v -c m -m 0c 2④ E k =∆mc 2 ∆E =∆mc 2 (4). 动量能量关系式E 2=E 02+p 2c 2 . 二.光的粒子性1.普朗克黑体辐射公式 (1).普朗克的量子假设(略) (2).普朗克黑体辐射公式M ν(T )d ν=()1e d 223-kT h c h νννπ M λ(T )d λ =()1ed 252-λλλπkT c h hc(3)斯特藩-玻耳兹曼定律 M (T )=σT 4(4)维恩位移定律 λm T = b 2. 光子 能量ε=h ν 动量p=h/λ 3.光电效应(1)爱因斯坦方程 h ν=mv 2/2+A (2)红限频率 ν0=A /h(3)遏止电势差 U c =( h ν-A )/e 4.康普顿效应 ∆λ=()[]()2sin 220θc m h 三、量子物理1.氢原子的玻尔理论 (1)三条假设 ①定态假设,②量子化条件 L=nħ=nh /(2π) ③频率条件 h ν=E i -E f(2)氢原子中电子轨道半径 r n =n 2r 1 (玻尔半径r 1为电子第一轨道半径n=1) (3)氢原子能级公式 E n =E 1/n 2氢原子的基态能量( n=1) E 1=-13.6eV (3)能级跃迁时辐射光子的频率和波长公式 ν=Rc (1/n f 2-1/n i 2) 1/λ= R (1/n f 2-1/n i 2) 2.德布罗意波 能量E=h ν 动量p=h/λ 德布罗意波长 λ=h/p=h/ (mv )3.不确定关系 ∆x ∆p x ≥h ∆y ∆p y ≥h2∆z ∆p z ≥h ∆E ∆t ≥h4.量子力学简介 (1)波函数自由粒子的波函数 ()()px -Et h t x Ψπψ2i-0e,=找到粒子的概率密度为⎪ψ⎪2=ψψ*;波函数必须是单值、有界、连续并满足归一化条件:⎰∞∞-=1d 2V Ψ(1) 薛定谔方程①一维含时薛定谔方程t Ψh U Ψx Ψm h ∂∂=+∂∂-ππ2i 82222②一维定态薛定谔方程()()()08d d 2222=+x ψU -E hmx x ψπ ③三维定态薛定谔方程()08222=+∇ΨU -E hmΨπ (3)一维无限深势阱 08d d 2222=+ψh mE x ψπ 一维方垒势的隧道效应。
(4)对应原理:新理论的极限与旧理论一致. (5)原子状态的四个量子数:①主量子数n 决定量子化的能量 E n =E 1/n 2 ②角量子数l=0,1,2,…,(n -1). 决定量子化的角动量 L=()π21h l l +③磁量子数m l =0,±1, ±2,…,±l.决定角动量量子化的空间取向 L z =m l h /(2π) ④自旋磁量子数m s =±1/2说明自旋角动量在特定方向只能取两个值 S z = m s h /(2π) (6)多电子原子中电子的壳层分布 ①泡利不相容原理;量子数为n 时,电子的量子态数(或第n 壳层最 多能容纳的电子数)为z n =()∑==+122122-n l nl②能量最小原理贰、练习二十二至练习二十八答案及简短解答练习22狭义相对论的基本原理及其时空观一、选择题 C D B A A 二、填空题1. c , c .2. c c 97.017/16=.3.()c l a 201-三、计算题1 (1)设K '相对于K 的运动速度为v ,运动方向为x 正向.因x 1=x 2,有∆t '=(∆t -v ∆x /c 2)/(1-v 2/c 2)1/2=∆t /(1-v 2/c 2)1/2 v=[1-(∆t )2/(∆t ')2]1/2c =3c /5=1.8×108m/s (2) ∆x '=(∆x -v ∆t )/(1-v 2/c 2)1/2=-v ∆t /(1-v 2/c 2)1/2=-v ∆t '=3c (m)=9×108m2. 设地球和飞船分别为S 和S '系,有(1)飞船上观察者测飞船长度为固有长度,又因光速不变,有∆x '=90m ∆t '=∆x '/c =3×10-7s (2)地球上观察者∆x =(∆x '+v ∆t ')/(1-v 2/c 2)1/2=270m ∆t =(∆t '+v ∆x '/c 2)/(1-v 2/c 2)1/2=9×10-7s {或 ∆t =(∆t '+v ∆x '/c 2)/(1-v 2/c 2)1/2=(∆x '/c+v ∆x '/c 2)/(1-v 2/c 2)1/2 =[(∆x '+v ∆t ')/(1-v 2/c 2)1/2]/c=∆x /c =9×10-7s }3练习23 相对论力学基础一、选择题 A C A B C 二、填空题1. 1.49×106.2.2/3c , 2/3c . 3. 5.81×10-13, 8.05×10-2.三、计算题1. E k =mc 2-m 0c 2 m =m 0+E k /c 2回旋周期T =2πm /(qB )=2π( m 0+E k /c 2)/(qB ) E k =104MeV=1.6×10-9J m 0=1.67×10-27kg q =1.6⨯10-19C T =2π( m 0+E k /c 2)/(qB )=7.65×10-7s2. E = m 0c 2/221c v - =E 0/221c v -γ= 1/221c v -=E /E 0v=c ()201E E -=2.998×108m/s运动的距离∆l =v ∆t =v τ0γ= c ()201E E -τ0 E /E 0=c τ0()1/20-E E =1.799×104m练习24 热辐射一、选择题 A D C D B 二、填空题1. 0.64 .2. 2.4×103K.3. 在一定温度下,单位时间内从绝对黑体表面单位面积上所辐射的各波长的总能量.三、计算题1. (1)T=b/λm =5.794×103K . (2) P =M (T )S =σT 44πR S 2=3.67×1026W (3) P '= P/S '=σT 44πR S 2/(4πL 2)=1.30×103W/m 22. λm = b/T =9.66×10-4mνm =c /λm = c /(b/T )=cT/b =3.11×1011HzP =M (T )S =σT 44πR E 2=2.34×109W练习25 光电效应 康普顿效应一、选择题 D B A C A二、填空题1. hc/λ;h/λ;h/(λc ).2. 1.45V ;7.14×105m/s .3. π;0.三、计算题1. h ν=hc /λ=mv 2/2+A =eU c +AU c =(hc /λ-A )/e =(hc /(λe )-A /emv =[2m ( hc /λ-A )]1/2R =mv /(qB )=[2m ( hc /λ-A )]1/2/(eB )2.(1) ∆λ=h (1-cos ϕ)/(m 0c ) λ=λ0+∆λ=λ0+h (1-cos ϕ)/(m 0c )=1.024×10-10m (2) h ν0+m 0c 2= h ν+mc 2= h ν+m 0c 2+E kh ν0= h ν+E k E k =h ν0- h ν= hc/λ0- hc/λ= hc (λ-λ0)/(λ0λ) = hc ∆λ/[λ0(λ0+∆λ)]=4.71×10-17J=294eV练习26 德布罗意波 不确定关系一、选择题 D C D A B 二、填空题1. 0.146nm; 6.63×10-31m.2.3/3. 3. 6.63×10-24. (或1.06×10-24,3.32×10-24, 0.53×10-24)三、计算题1. (1)由带电粒子在均匀磁场中作圆运动运动的知识知,R =mv /(qB ).于是有p α=m αv α=qBR =2eBRλα=h/p α=h/(2eBR )=9.98×10-12m=9.98×10-3nm(2) 设小球与α粒子速率相同v =v α=2eBR/m αλ= h/p = h/(mv )= h/[m (2eBR/m α)] =[h/(2eBR )](m α/m )=(m α/m )λα=6.62×10-34m2. (1)考虑相对论效应4E k =eU =mc 2-m 0c 2=E -E 0p 2c 2=E 2-E 02= (E+E 0)(E -E 0)= (E k +2E 0)E k= (eU +2 m 0c 2) eU p =[(eU +2 m 0c 2) eU ]1/2/cλ=h /p =hc/[(eU +2 m 0c 2) eU ]1/2=8.74×10-13m(2)不考虑相对论效应E k =eU=mv 2/2=p 2/(2m ) p =(2meU )1/2λ=h /p = h /(2meU )1/2 =h /(2m 0eU )1/2=1.23×10-12m (λ-λ0)/λ0=40.7%﹪﹪练习27 薛定格方程 氢原子一、选择题 A C A D B 二、填空题1. ν3=ν1+ν2;1/λ3=1/λ1+1/λ2. 2. 粒子t 时刻出现在r 处的概率密度; 单值,有限,连续;⎰=ψ1d d d 2z y x . 3. a /6, a /2, 5a /6.三、计算题1所发射光子的能量ε=h ν=hc /λ=2.56eV 激发能为∆E =10.19eV 能级的能量为E k ,有∆E =E k - E 1E k =E 1+∆E =-13.6+10.19=-3.41eV 初态能量 E n =E k +ε=-0.85eV 初态主量子数 n =(E 1/E n )1/2=42. 由归一化⎰∞∞-=V Ψd 2⎰lx c22(l -x )d x =1得 c =530l 0~l /3区间发现粒子的概率 P =⎰lx Ψ02d =⎰l30x 2(l -x )2d x /l 5=17/81=21%练习28 近代物理习题课一、选择题 D D D C B 二、填空题1 13.6eV , 5.2 >, >, <. 3. 459W/s三、计算题1. (1)ε =h ν=hc/λ=2.86eV(2) 巴耳末系k =2,E 2=E 1/22=-13.6/4=-3.4eVE n =E 1/n 2=E 2+ε =-0.54eVn =(E 1/E n )1/2=5(3) 可发射四个线系, 共10条谱线;波长最短的谱线是从n =5的能态跃迁到n =1的能态而发射的光譜线2 ∆p ∆x ≧ћ/2 ∆p ≧ћ/(2∆x ) 取 p ≈∆p ≧ћ/(2∆x )=7.3⨯10-21kgm/sE k = p 2/(2m )≈[ћ/(2∆x )]2/(2m )=ћ2/[8 m (∆x )2]=2.5⨯104eV叁、近代物理部分测试题一.选择题(每题3分,共30分)1.关于同时性有人提出以下一些结论,其中哪个是正确的?(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生 ;(B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生 ;EE 4 E 3 E 2E 1E55(C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生 ; (D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生 .2.金属产生光电效应的红限波长为λ0,今以波长为λ(λ<λ0)的单色光照射该金属,金属释放出的电子(质量为m e )的动量大小为 (A) h / λ .(B) h / λ 0.(C) [2m e hc (λ0+λ)/(λλ0)]1/2. (D) (2m e hc /λ0)1/2. (E) [2m e hc (λ0-λ)/(λλ0)]1/2.3.令电子的速率为v ,则电子的动能E k 对于比值v /c 的图线可用图28.1中哪一个图表示?(c 表示真空中光速)4.若外来单色光把氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱线的条数是:(A) 1. (B) 2. (C) 3. (D) 6.5.若α粒子(电量为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是(A) h /(2eRB ) . (B) h /(eRB ) . (C) 1/(2eRBh ) . (D) 1/ (eRB ) .6. 一尺子沿长度方向运动,S '系随尺子一起运动,S 系静止,在不同参照系中测量尺子的长度时必须注意(A) S '与S 中的观察者可以不同时地去测量尺子两端的坐标.(B) S '中的观察者可以不同时,但S 中的观察者必须同时去测量尺子两端的坐标. (C) S '中的观察者必须同时,但S 中的观察者可以不同时去测量尺子两端的坐标. (D) S '与S 中的观察者都必须同时去测量尺子两端的坐标 .7.把一个静止质量为m 0的粒子由静止加速到0.6c ,需要做的功是 (A) 0.225m 0c 2. (B) 0.25m 0c 2.(A)(B)(D)图28.16(C) 0.36m 0c 2. (D) 0.18m 0c 2 .8.一黑体在1600K 时辐射的总能量为E 1,在1200K 时辐射的总能量为E 2,则E 1/ E 2为 (A) 4/3 . (B) 64/27 . (C) 256/81 . (D) 16/9 .9.不确定关系式∆x ⋅ ∆p x ≥h 表示在x 方向上 (A) 粒子的位置和动量不能同时确定. (B) 粒子的位置和动量都不能确定. (C) 粒子的动量不能确定. (D) 粒子的位置不能确定.10.一束一定强度的紫外线入射到装在一个不带电的验电器的锌板上,如图25.1所示,将会发生的现象是:(A) 锌板吸收空气中的阳离子,金属箔张开,且带正电; (B) 锌板吸收空气中的阴离子,金属箔张开,且带负电;(C) 锌板发射电子,金属箔张开,且带正电;(D) 和无光照射一样,金属箔不张开,也不带电 .二.填空题(每题3分,共30分)1.狭义相对论中,一质点的质量m 与速度v 的关系式为 ,其动能的表达式为 .2.已知某金属的逸出功为A ,用频率为ν1的光照射该金属能产生光电效应,则该金属的红限频率ν0 = ν1>ν0 ,且遏止电势差U a = .3.氢原子由定态l 跃迁到定态k 可发射一个光子,已知定态l 的电离能为0.85eV,又已知从基态使氢原子激发到定态k 所需能量为10.2eV ,则在上述跃迁中氢原子所发射的光子的能量为 eV .4.已知宽度为a 为一维无限深势阱中粒子的波函数为ψ=Asin(n πx /a ),则规一化常数A 应为 .5. 观察者测得运动棒的长度是它静止长度的一半,设棒沿其长度方向运动,则棒相对于观察者运动的速度是 .6.把一个静止质量为m 0的粒子,由静止加速到v =0.6c (c 为真空中光速), 需作的功等于 .7.用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 .8.汞的红限频率为1.09×1015Hz ,现用λ=2000Å的单色光照射,汞放出光电子的最大初速度v 0 = ,截止电压U a = .图25.19.动能为E质量为m0的电子(v<<c)的德布罗意波长是.10.氢原子基态电离能是eV,电离能为0.544 eV的激发态氢原子,其电子处在n=的轨道上运动三.计算题(每题10分,共40分)1.波长为3500Å的光子照射某种材料的表面,实验发规,从该表面发出的能量最大的光电子在B=1.5×10-5T的磁场中偏转而成的圆轨道半径R=18cm,求该材料的逸出功是多少电子伏特?2.实验发规基态氢原子可吸收能量为12.75eV的光子(1)试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?计算其波长.请定性地画出能级图,并将这些跃迁画在能级图上.3. 一短跑选手,在地球上以10s的时间跑完100m,在沿短跑选手跑动的方向上一宇宙飞船以0.6c的速度飞行, 飞船上的观察者看来,这选手跑的时间和距离各为多少?4.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103W/ m, 地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km.(1)求太阳辐射的总功率;(2)把太阳看作黑体,试计算太阳表面的温度.肆、近代物理部分测试题解答一.选择题 C E D C A B B C A C二.填空题1. m=m0/(1-v2/c2)1/2,E k=m0c2/(1-v2/c2)1/2-m0c2.2.A/h,( hν1-A)/e.3. 2.55eV4. (2/a)1/2.5. 23c6. 0.25m0c2.7. 1.416⨯103k8. 7.73⨯105m⋅s-1, 1.7eV.9. h/(2m0E)1/2.10. 13.6eV. 三.计算题1. evB=mv2/R v=eRB/m逸出功A= hν-mv2/2=hc/λ- e2R2B2/(2m)=4.66⨯10-19J=2.91eV2.根据E n=E1/n2E n-E1= hνE n=E1+ hν=E1/n2 n2= E1/(E1+ hν)n=[E1/(E1+ hν)]1/23E E4E3E2E15 67=[-13.6/(-13.6++12.75)]1/2=4即氢原子能激发到n=4的能态上,在向低能态跃迁的过程中可发射C42=6条谱线的光E4→E3 λ1=hc/(E4-E3)=1.88⨯10-6mE4→E2 λ2=hc/(E4-E2)=487.5n mE4→E1 λ3=hc/(E4-E1)= 97.5n mE3→E2 λ4=hc/(E3-E2)=658.1n mE3→E1 λ5=hc/(E3-E1)= 102.8n mE2→E1 λ6=hc/(E2-E1)= 121.9n 3. ∆t'=(∆t-v∆x/c2)/(1-v2/c2)1/2=12.5s∆x'=(∆x-v∆t)/(1-v2/c2)1/2=-2.25×109m4.(1)设太阳常数为C,太阳辐射功率为P,则P=CS=4πl2C=3.871026W(2) M(T)=P/(4πR2)=σT4T=[ P/(4πR2σ)]1/4=5873K89五、电磁感应部分测试题解答一.选择题 D B A C D C A B C D 二.填空题1. 洛仑兹力,涡旋电场力(变化磁场激发的电场的电场力) 2. 1 3. 0,()⎰⋅∂-S t S B d ,0 , ()⎰⋅∂∂S t S D d4.()S D d ⋅∂∂⎰St /, ()S B d ⋅∂∂-⎰St /.5. 0, 2μ0I 2/(9π2a 2)6. ΦAB =ΦBA .7. vbl sin θ , <, vbl sin θ /R , v 2b 2l 2sin 2θ /R . 8. (1)0d εq S=⋅⎰S E ,(2) ()S B l E Sd ⋅∂∂-=⋅⎰⎰lt d ,(3) 0d =⋅⎰SS B ,⎰=⋅ll B d I 0μ(4)0d 0=⋅⎰ll E.9. L 1+L 2+2M , L 1+L 2-2M . 10.1.26×10-3V, 6.3×10-4A, 1.26×10-3C.三.计算题1. ()[]⎰⎰=⋅=bam r l r I Φd πμ2d 0SS B=μ0Il ln(b/a )/(2π)=μ0I 0e -3t l ln(b/a )/(2π) ℰ=-d Φ/d t =3μ0I 0e -3t l ln(b/a )/(2π)M =Φ/I =μ0l ln(b/a )/(2π)2. ℰ=vBl =⋅⨯⎰ll B v dI =ℰ/R =vBl/(lr 0)()()⎰⎰⎰===tt t i t v r B t r vB t I q 00000d d d=Ba /r 0(⎰tt v 0d 是OD 的长度即半径a )3.用安培环路定律t Φd d -=⋅⎰l E d 可求出圆柱形磁场空间内的感生电场E i =(r/2)(d B/d t ),方向逆时针,所以 ℰ()()⎰⎰-=⋅=2200cos 2l l lx t B r θd d d d l E()()()[]⎰-=220002l l r y x t B r d d()()()()t B l y x y t B l l d d d d d 221002000==⎰-()t B l R l d d )4(212020-=B 点电势高.4.导线ab 受重力mg 及安培力. 下面求安培力.ℰ=vBl l=⋅⨯⎰l B v d方向向右,I =ℰ/R=vBl/R逆时针.由⎰⨯=lI B l F d 得安培力F=IlB =ℰ/R=vB 2l 2/R向上, 由牛顿定律有mg -vB 2l 2/R=ma=m d v/d td t=m d v/(mg -vB 2l 2/R ) =d v/[g -vB 2l 2/(mR )]()⎰-=vmR v l B g v t 022}][d {=-[mR/(B 2l 2)]ln{[g -vB 2l 2/(mR )]/g}]1)][([)()(2222mR t l B el B mgR v --=i10。