03高一数学命题练习题

合集下载

高一数学命题与四种命题练习题

高一数学命题与四种命题练习题

高一数学命题与四种命题练习题题型一:判断命题的真假【例1】 判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由.(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交;⑵垂直于同一个平面的两个平面互相垂直;⑶每一个周期函数都有最小正周期;⑷两个无理数的乘积一定是无理数;⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根.⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+;⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例5】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个典例分析【例6】 命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( ) A .p 真q 真 B . p 真q 假 C . p 假q 真 D . p 假q 假【例7】 给出下列三个命题:①若1≥a b >-,则11≥a b a b++;②若正整数m 和n 满足≤m n 2n ; ③设11(),P x y 为圆221:9O x y +=上任一点,圆2O 以(),Q a b 为圆心且半径为1.当2211()()1a x b y -+-=时,圆1O 与圆2O 相切;其中假命题的个数为( )A .0B .1C .2D .3【例8】 已知三个不等式:000,,c d ab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( )A .0B .1C .2D .3【例9】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m n αα∥,∥,则m n ∥B .若αγβγ⊥⊥,,则αβ∥C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例10】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥. 其中真命题的个数是( )A .0B .1C .2D .3【例11】 已知三个不等式:0,0,0c d ab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是 ()A. 0B. 1C. 2D. 3【例12】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π.②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象. ⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例13】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面;④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例14】 设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是___________.【例16】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题:①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换;w .w .w .k .s .5.u .c .o .m ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线. 其中真命题是 (写出所有真命题的序号)【例17】 设有两个命题::p 不等式|||1|x x a ++>的解集为R ,命题:q ()(73)xf x a =--在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是 .【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根;其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”:1212AB x x y y =-+-.给出下列三个命题: ①若点C 在线段AB 上,则AC CB AB +=;②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=;③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个 【例20】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).题型二:四种命题之间的关系【例21】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例22】 写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例23】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”;⑶“当0c >时,若a b >,则ac bc >”;⑷“若5x y +=,则3x =且2y =”;【例24】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”;⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”;⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”;⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例25】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ②如果两个三角形不全等,那么它们的面积不相等; ③如果两个三角形的面积不相等,那么它们不全等; ④命题②、③、④与命题①有何关系?【例26】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例27】 命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠C .若0(),a b a b =≠∈R ,则220a b +≠D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠【例28】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21≥x ,则1≥x 或1≤x -B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1≥x 或1≤x -,则21≥x【例29】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例30】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题;④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( )A .1B .2C .3D .4【例31】 下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为()A .0个B .1个C .2个D .3个【例32】 有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题. 其中真命题为 ( )A .①②B .②③C .①③D .③④【例33】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例34】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例35】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例36】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例37】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例38】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例39】 “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为 ;【例40】 有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例41】 命题“若,x y 是奇数,则x y +是偶数”的逆否命题是 ;它是 命题.【例42】 写出命题“若0m >,则方程20x x m +-=有实数根”的逆否命题,判断其真假,并加以证明.【例43】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列;⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例44】 在平面直角坐标系xOy 中,直线l 与抛物线x y 22=相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.。

高一数学命题及其关系试题

高一数学命题及其关系试题

高一数学命题及其关系试题1.下列有关命题的说法正确的是A.命题“若,则”的否命题为:“若,则”.B.“”是“”的必要不充分条件.C.命题“使得”的否定是:“均有”.D.命题“若,则”的逆否命题为真命题.【答案】D【解析】对于 A.命题“若,则”的否命题为:“若,则”.因此错误。

对于B.“”是“”的必要不充分条件,应该是充分不必要条件,错误。

对于C.命题“使得”的否定是:“均有”.C错误,因为结论没有变为其否定。

对于D.命题“若,则”的逆否命题为真命题,成立,故选D.【考点】命题真假判断点评:本题考察命题真假判断,该类型题目考察知识范围较广,一个命题一个知识点,所以是比较容易出错的题目类型.2.已知三个命题:①方程x2-x+2=0的判别式小于或等于零;②若|x|≥0,则x≥0;③5>2且3<7.其中真命题是A.①和②B.①和③C.②和③D.只有①【答案】B【解析】对于命题①方程x2-x+2=0的判别式小于或等于零,正确;②若|x|≥0,则x≥0或x≤0,错误;③5>2且3<7,正确,∴真命题是①和③,故选B【考点】本题考查了命题真假的判断点评:判断一个“若p则q”形式的复合命题的真假,不能用真值表时,可用下列方法:若“p q”,则“若p则q”为真;而要确定“若p则q”为假,只需举出一个反例说明即可3.下列命题中:①∥存在唯一的实数,使得;②为单位向量,且∥,则=±||·;③;④与共线,与共线,则与共线;⑤若其中正确命题的序号是 ( )A.①⑤B.②③④C.②③D.①④⑤【答案】C【解析】过举反例可得①④⑤不正确,根据两个向量数量积公式、向量的模的定义可得②③正确.对于①∥存在唯一的实数,使得;当,则实数不唯一,有无数个。

对于②为单位向量,且∥,则=±||·;正确。

对于③;正确对于④与共线,与共线,则与共线;当不成立对于⑤若,不正确,因为向量没有除法运算,错误故选C.【考点】向量数量积公式,向量垂直和共线点评:本题主要考查两个向量数量积公式的应用,两个向量垂直和共线的性质,向量的模的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中档题.4.给出下列命题:①;②函数y =sin(2x +)的图像关于点对称;③将函数y =cos(2x -)的图像向左平移 个单位,可得到函数y =cos2x 的图像; ④函数的最小正周期是.其中正确的命题的序号是 . 【答案】② 【解析】①,错误,-10是第二象限的角,所以为正; ②当时,函数y =sin(2x +)=0,所以函数的图像关于点对称,正确;③将函数y =cos(2x -)的图像向左平移 个单位,可得到函数的图像;④函数的最小正周期是,错误,周期为。

高一数学新教材知识讲学 数学 必修1专题03 第一章 复习与检测(核心素养练习)(原卷版)

高一数学新教材知识讲学 数学 必修1专题03 第一章  复习与检测(核心素养练习)(原卷版)

专题三第一章复习与检测核心素养练习一、核心素养聚焦考点一逻辑推理-充要条件例题8.已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件. .考点二数学抽象-子(真子)集个数例题9.满足{1}⊆X{1,2,3,4}的集合X有()A.4个B.5个C.6个D.7个考点三数学运算-集合运算例题10、设集合A={1,4,x},B={1,x2}且A∪B={1,4,x},则满足条件的实数x的个数是() A.1个B.2个C.3个D.4个考点四直观想象-元素个数例题11.某校高一某班共有45人,摸底测验数学20人得优,语文15人得优,两门都不得优20人,则两门都得优的人数为________人.二、学业质量测评一、选择题1.(2017·全国高一单元测试)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .3B .6C .8D .102.(2019·全国高一单元测试)已知M ={x ∈R|x },a =π,有下列四个式子:(1)a ∈M ;(2){a }⊆M ;(3)a ⊆M ;(4){a }∩M =π.其中正确的是( )A.(1)(2)B.(1)(4)C.(2)(3)D.(1)(2)(4)3.(2019·北京市十一学校高一单元测试)已知ABC △的三边长分别为,,a b c ,则“ABC △不是直角三角形”是“222a b c +≠”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要4.(2019·全国高一单元测试)全称命题“21x R,x x 04∀∈-+≥”的否定是( ) A .21,04x R x x ∀∉-+< B .21,04x R x x ∃∈-+< C .21,04x R x x ∃∈-+≥ D .21,04x R x x ∀∈-+< 5.(2017·全国高一单元测试)已知集合M 满足{1,2}⊆M ⫋{1,2,3,4,5},那么这样的集合M 的个数为( )A .5B .6C .7D .86.(2019·全国高一单元测试)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R 7.(2019·全国高一单元测试)设M ,P 是两个非空集合,定义M 与P 的差集M -P ={x |x ∈M 且x ∉P },则M -(M -P )等于( )A .PB .MC .M ∩PD .M ∪P8.(2019·全国高一单元测试)三个数a b c ,,不全为零的充要条件是( )A .a b c ,,都不是零B .a b c ,,中至多一个是零C .a b c ,,中只有一个为零D .a b c ,,中至少一个不是零9.(2019·全国高一单元测试)设集合{}=2m x x >,{}=3p x x <,那么“x m ∈或x p ∈”是“x p m ∈⋂”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.(2017·全国高一单元测试)已知全集U =R ,集合P ={x ∈N *|x<7},Q ={x|x -3>0},那么图中阴影部分表示的集合是( )A .{1,2,3,4,5,6}B .{x|x>3}C .{4,5,6}D .{x|3<x<7}11.(2016·全国高一单元测试)若{{}|0,|12A x x B x x =<<=≤<,则A B =;A.{}|0x x ≤B.{}|2x x ≥C.{0x ≤≤D.{}|02x x <<12.(2019·北京市十一学校高一单元测试)如图所示的韦恩图中,,A B 是非空集合,定义集合A B *为阴影部分表示的集合,则A B *=( )A .()u C AB ⋃B .()u AC B ⋃C .()()u u C A C B ⋃D .()()u A B C A B ⋃⋂⋂二、填空题13.(2019·北京市十一学校高一单元测试)设集合{1,2,3,4,5,6},{4,5,6,7,8}A B ==,则满足S A ⊆且S B φ⋂≠的集合S 的个数是__________个14.(2019·北京市十一学校高一单元测试)已知全集{}{}2{2,3,23},1,2,3U U a a A a C A a =+-=+=+,则a 的值为__________15.(2019·北京市十一学校高一单元测试)已知集合2{2},{|210}A B x x x a =-=++-=,且A B B =,则满足条件的实数a 组成的集合为__________16.(2017·全国高一单元测试)已知集合A ={x|ax +1=0},B ={x|x 2-x -56=0}.若A ⊆B ,则由实数a 组成的集合C =________.三、解答题17.(2017·全国高一单元测试) 已知A ={x |a -4<x <a +4},B ={x |x <-1或x >5}.(1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.18.(2017·全国高一单元测试)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R.(1)求A ∪B ,(∁U A )∩B ; (2)若A ∩C ≠∅,求a 的取值范围.19.(2018·全国高一单元测试)已知集合{|36}A x x =-≤≤,{|4}B x x =<,{|523}C x m x m =-<<+.(1)求A B ;(2)若A C ⊆,求实数m 的取值范围.20.(2017·全国高一单元测试)设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a ∈R},若B⊆A,求实数a的值.21.(2019·全国高一单元测试)求2210++=至少有一个负实根的充要条件。

高中高一数学必修三练习试题.docx

高中高一数学必修三练习试题.docx

高一数学必修三练习题一、选择题1. 下面一段程序执行后输出结果是( )程序:A=2A=A*2A=A+6PRINT AA. 2B. 8C. 10D. 182. 从学号为0~ 50的高一某班 50 名学生中随机选取5 名同学参加数学测试, 采用系统抽样的方法 ,则所选 5名学生的学号可能是()A. 1,2,3,4,5B.5,16,27,38,49 C.2,4,6,8,10D.4,13,22,31,403. 给出下列四个命题: ①“三个球全部放入两个盒子 , 其中必有一个盒子有一个以上的球”是必然事件②“当 x 为某一实数时可使x 20 ”是不可能事件③“明天福安要下雨”是必然事件④“从 100个灯泡中取出 5 个 ,5 个都是次品”是随机事件 . 其中正确命题的个数是( )A. 0B. 1C.2D.34. 下列各组事 件 中 , 不 是 互 斥 事 件 的 是( )A. 一个射手进行一次射击, 命中环数大于 8 与命中环数小于6B. 统计一个班数学期中考试成绩 , 平均分数低于 90分与平均分数不高于80 分C.播种菜籽100 粒 , 发芽 90 粒与发芽80 粒D. 检查某种产品, 合格率高于 70% 与合格率为 70%5. 某住宅小区有居民 2 万户 , 从中随机抽取200户, 调查是否安装电话, 调查的结果如表所示 ,则该小区已安装电话的户数估计有()电话动迁户原住户A. 6500 户B. 300户C. 19000户D. 9500已安装6530户4065未安装6.在样本的频率分布直方图中, 共有 11 个小长方形 , 若中间一个小长立形的面积等于其他110 个小长方形的面积的和的, 且样本容量为160, 则中间一组有频数为4( )A. 32B. 0.2C. 40D. 0.257. 袋中装有 6 个白球 ,5只黄球,4个红球,从中任取 1 球 , 抽到的不是白球的概率为()第 1 页共 12 页A.2B.4C.3D.非以上答案51558. x1, x2,..., x n的平均数是x, 方差是s 2, 则另一组数3x12, 3x 22,..., 3x n2的平均数和方差分别是()A.3x, s 2B.3x 2, s2C.3x2,3 s2D.3x2,3 s 2 2 6s 29.如下图所示 ,程序执行后的输出结果为了( )开始n 5s 0n n1nos 15?s s nyes输出 n第 9 题图结束A. -1B. 0C. 1D. 210.从 1,2,3,4,5中任取两个不同的数字, 构成一个两位数, 则这个数字大于40 的概率是()2413A. B. C. D.555511. 小强和小华两位同学约定下午在福安二中门口见面, 约定谁先到后必须等10 分钟 , 这时若另一人还没有来就可以离开. 如果小强是1: 40 分到达的 , 假设小华在 1 点到 2 点内到达, 且小华在1点到 2 点之间何时到达是等可能的, 则他们会面的概率是( )1B.1C.11A. D.624312.在两个袋内, 分别写着装有1,2,3,4,5,6六个数字的 6张卡片 , 今从每个袋中各取一张卡片,则两数之和等于9的概率为第 2 页共 12 页1111 ()A. B. C. D.36912二、填空题:13. 口袋内装有100 个大小相同的红球、白球和黑球, 其中有45 个红球 , 从中摸出 1 个球 , 摸出白球的概率为0.23, 则摸出黑球的概率为_______.14.用辗转相除法求出153 和 119 的最大公约数是______________.15.设有以下两个程序:程序 (1) A=-6程序 (2) x=1/3B=2i=1If A<0 then while i<3A=-A x=1/(1+x)END if i=i+1B=B^2wendA=A+B print xC=A-2*B endA=A/CB=B*C+1Print A,B,C程序( 1 )的输出结果是______,________,_________.程序( 2 )的输出结果是__________.16. 有 5 条长度分别为1,3,5,7,9的线段, 从中任意取出 3 条 , 则所取 3 条线段可构成三角形的概率是 ___________.三、解答题17.从一箱产品中随机地抽取一件产品 , 设事件 A= “抽到的一等品” , 事件 B= “抽到的二等品” ,事件 C= “抽到的三等品”, 且已知P A 0.7 , P B0.1, P C 0.05 ,求下列事件的概率:⑴事件 D= “抽到的是一等品或二等品”;⑵事件E=“抽到的是二等品或三等品”第 3 页共 12 页18. 一组数据按从小到大顺序排列, 得到 -1,0,4,x,7,14中位数为5, 求这组数据的平均数和方差 .19. 五个学生的数学与物理成绩如下表:⑴作出散点图;⑵求出回归方程 .学生A B C D E数学8075706560物理706668646220.铁路部门托运行李的收费方法如下: y 是收费额 ( 单位:元 ),x 是行李重量 ( 单位:㎏ ),当 0 x 20 时,按0.35/㎏收费,当 x20 ㎏时,20㎏的部分按0.35元/㎏,超出20㎏的部分 , 则按 0.65 元 / ㎏收费 . ⑴请根据上述收费方法求出Y 关于 X 的函数式;⑵画出流程图 .第 4 页共 12 页21. 某次数学考试中, 其中一个小组的成绩是:55, 89, 69, 73, 81, 56, 90, 74, 82.试画一个程序框图:程序中用S(i) 表示第i 个学生的成绩, 先逐个输入S(i)( i=1,2,,), 然后从这些成绩中搜索出小于75 的成绩 .( 注意:要求程序中必须含有循环结构)第 5 页共 12 页22 对某种电子元件的使用寿命进行调查, 抽样 200个检验结果如表:⑴列出频率分布表;⑵ 画出频率分布直方图以及频率分布折线图;⑶估计电子元件寿命在100h ~ 400h 以内的频率;⑷估计电子元件寿命在400h以上的频率 .寿命 (h)100,200200,300300,400400,500500,600个数20308040301. 下面一段程序执行后输出结果是( C )程序:A=2第 6 页共 12 页A=A*2A=A+6PRINT AA.2B.8C.10D.182. 从学号为0~ 50 的高一某班 50 名学生中随机选取5 名同学参加数学测试, 采用系统抽样的方 法 ,则所选5名学生的 学号可 能 是( B )A.1,2,3,4,5 B.5,16,27,38,49 C.2,4,6,8,10D.4,13,22,31,403. 给出下列四个命题: ①“三个球全部放入两个盒子 , 其中必有一个盒子有一个以上的球”是必然事件②“当 x 为某一实数时可使x 20 ”是不可能事件③“明天福安要下雨”是必然事件④“从 100个灯泡中取出 5 个 ,5 个都是次品”是随机事件 . 其中正确命题的个数是( D )A. 0B. 1C.2D.34.下列各组事 件 中 , 不 是 互 斥 事 件 的 是( B)A.一个射手进行一次射击, 命中环数大于 8 与命中环数小于6B.统计一个班数学期中考试成绩 , 平均分数低于 90分与平均分数不高于80 分C.播种菜籽100 粒 , 发芽 90 粒与发芽80 粒D. 检查某种产品, 合格率高于 70% 与合格率为 70%5. 某住宅小区有居民2 万户 , 从中随机抽取200 户 , 调查是否安装电话, 调查的结果如表所电话 动迁户示 , 则该小已安装 65区已安装电话的户数估计有( D )未安装40A. 6500 户B. 300户C. 19000户 D. 9500 户6.在样本的频率分布直方图中, 共有 11 个小长方形 , 若中间一个小长立形的面积等于其他110 个小长方形的面积的和的, 且样本容量为 160, 则中间一组有频数为4( A )A. 32B. 0.2C. 40D. 0.257.袋中装有 6 个白球 ,5只黄球 ,4 个红球 , 从中任取 1 球 , 抽到的不是白球的概率为( C )243A. B. C. D.非以上答案51558.x1 , x2 ,..., x n的平均数是x, 方差是s 2, 则另一组数3x12, 3x 22,..., 3x n2第7 页共 12 页的平均数和方差分别是( C )A.3x, s 2B.3x2, s2C.3x2,3 s2D.3x2,3 s 2 2 6s29.如下图所示,程序执行后的输出结果为了( B)开始n 5s 0n n1nos 15?s s nyes输出 n第 9 题图结束A.-1B.0C.1D.210.从 1,2,3,4,5中任取两个不同的数字, 构成一个两位数, 则这个数字大于40的概率是( A)A.2B.4C.1D.3555511. 小强和小华两位同学约定下午在福安二中门口见面, 约定谁先到后必须等10分钟 ,这时若另一人还没有来就可以离开. 如果小强是1:40分到达的 , 假设小华在 1 点到 2 点内到达,且小华在 1点到 2点之间何时到达是等可能的 , 则他们会面的概率是( D)A.1B.1C.1D.1 624312.在两个袋内 , 分别写着装有1,2,3,4,5,6六个数字的 6 张卡片 , 今从每个袋中各取一张卡片,则两数之和等于9的概率为1111(C) A. B. C. D.36912二、填空题:0.32第8 页共 12 页13. 口袋内装有100 个大小相同的红球、白球和黑球, 其中有45 个红球 , 从中摸出 1 个球 , 摸出白球的概率为0.23,则摸出黑球的概率为_______.14.用辗转相除法求出 153 和 119 的最大公约数是 ______________. 1715.设有以下两个程序:程序 (1) A=-6程序 (2)x=1/3B=2i=1If A<0 then while i<3A=-A x=1/(1+x)END if i=i+1B=B^2wendA=A+B print xC=A-2*B endA=A/CB=B*C+1Print A,B,C程序( 1)的输出结果是______,________,_________.程序( 2 )的输出结果是4__________.( 1) 5、9、 2;( 2 )716. 有 5 条长度分别为1,3,5,7,9的线段,从中任意取出 3 条 , 则所取 3 条线段可构成三角形的概率是 ___________.310三、解答题17.从一箱产品中随机地抽取一件产品 , 设事件 A= “抽到的一等品” , 事件 B= “抽到的二等品” ,事件 C= “抽到的三等品”, 且已知P A0.7 , P B0.1 , P C0.05 ,求下列事件的概率:⑴事件 D= “抽到的是一等品或二等品”;⑵事件 E= “抽到的是二等品或三等品”解:⑴ P D P A B P A P B =0.7+0.1=0.8⑵P E = P B C P B P C=0.1+0.05=0.1518. 一组数据按从小到大顺序排列, 得到 -1,0,4,x,7,14中位数为5, 求这组数据的平均数和方差 .解:排列式:-1,0,4,x,7,14第9 页共 12 页∵中位数是5, 且有偶数个数∴4 x5∴ x6 2∴这组数为-1,0,4,6,7,14∴x 519.五个学生的数学与物理成绩如下表:学生A B C D E数学8075706560物理7066686462⑴ 作出散点图;⑵求出回归方程 .解:1物理2()70()y0.36 x 40.8?60607080数学20.铁路部门托运行李的收费方法如下: y 是收费额 ( 单位:元 ),x 是行李重量 ( 单位:㎏ ),当 0 x 20 时,按0.35/㎏收费,当 x20 ㎏时,20㎏的部分按0.35元/㎏,超出20㎏的部分 , 则按 0.65 元 / ㎏收费 . ⑴请根据上述收费方法求出Y 关于 X 的函数式;⑵画出流程图 .0.35x0 x 20解: y0.35*20 0.65 x20x 20程序如下 :INPUT “请输入行李的重量”;xIF x>20 THENy= 0.35*20 0.65* x20ELSEy= 0.35* xEND IFPRINT “金额为”;yEND21. 某次数学考试中, 其中一个小组的成绩是:55, 89, 69, 73, 81, 56, 90, 74, 82.试画一个程序框图:程序中用S(i)表示第i 个学生的成绩, 先逐个输入S(i)( i=1,2,, ), 然第 10 页共 12 页后从这些成绩中搜索出小于75 的成绩 .( 注意:要求程序中必须含有循环结构)开始i 1Y i 9N输入 S ii i1i 1i9NS i75Y输出 S ii i1结束22 对某种电子元件的使用寿命进行调查, 抽样 200 个检验结果如表:寿命 (h)100,200200,300300,400400,500500,600个数2030804030⑴列出频率分布表;⑵画出频率分布直方图以及频率分布折线图;⑶估计电子元件寿命在 100h ~400h 以内的频率;⑷估计电子元件寿命在 400h以上的频率 .解 : (1)( 2)略第 11 页共 12 页区间频数频率频率 / 组距100,200200.10.001 200,300300.150.0015 300,400800.40.004 400,500400.20.002 500,600300.150.0015(3)P100 h ,400h=0.65( 4)P400 h ,600h=0.35第 12 页共 12 页。

高一数学练习试题集

高一数学练习试题集

高一数学练习试题答案及解析1.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A.B.C.D.【答案】D【解析】过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,写出要求点的坐标.解:空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,∴Q(1,,0)故选D.点评:不同考查空间中点的坐标,是一个基础题,这种题目一般不会单独出现,它只是立体几何与空间向量中所出现的题目的一个小部分.2.下列各点不在曲线x2+y2+z2=12上的是()A.(2,﹣2,2)B.C.(﹣2,2,2)D.(1,3,4)【答案】D【解析】把选项中的点坐标代入曲线方程,结果不是12的即不在曲线上.解:把A项的点代入方程求得4+4+4=12符合题意,故A中的点在曲线上.把B项的点代入方程求得0+4+8=12符合题意,故B中的点在曲线上.把C项的点代入方程求得4+4+4=12符合题意,故C中的点在曲线上.把D项的点代入方程求得1+9+16=26不符合题意,故D中的点不在曲线上.故选D点评:本题主要考查了曲线与方程.属基础题.3.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.4.点P(﹣3,2,﹣1)关于平面xOy的对称点是,关于平面yOz的对称点是,关于平面zOx的对称点是,关于x轴的对称点是,关于y轴的对称点是,关于z轴的对称点是.【答案】(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).【解析】根据空间直角坐标系,点点对称性,直接求解对称点的坐标即可.解:根据点的对称性,空间直角坐标系的八卦限,分别求出点P(﹣3,2,﹣1)关于平面xOy的对称点是(﹣3,2,1);关于平面yOz的对称点是:(3,2,﹣1);关于平面zOx的对称点是:(﹣3,﹣2,﹣1);关于x轴的对称点是:(3,﹣2,1);关于y轴的对称点是(3,2,1);关于z轴的对称点是(3,﹣2,﹣1).故答案为:(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).点评:本题是基础题,考查空间直角坐标系,对称点的坐标的求法,考查空间想象能力,计算能力.5.点M(4,﹣3,5)到原点的距离d= ,到z轴的距离d= .【答案】;5【解析】直接利用空间两点间的距离公式,求出点M(4,﹣3,5)到原点的距离d,写出点M (4,﹣3,5)到z轴的距离d,即可.解:由空间两点的距离公式可得:点M(4,﹣3,5)到原点的距离d=到z轴的距离d==,点M(4,﹣3,5)到z轴的距离d==5故答案为:;5点评:本题是基础题,考查空间两点的距离公式的求法,考查计算能力.6.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.7.给定空间直角坐标系,在x轴上找一点P,使它与点P(4,1,2)的距离为.【答案】点P坐标为(9,0,0)或(﹣1,0,0).【解析】设出x轴上的点的坐标,根据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.解:设点P的坐标是(x,0,0),由题意,即,∴(x﹣4)2=25.解得x=9或x=﹣1.∴点P坐标为(9,0,0)或(﹣1,0,0).点评:本题考查空间两点之间的距离公式,是一个基础题,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.8.在空间,下列命题中正确的是()A.对边相等的四边形一定是平面图形B.有一组对边平行的四边形一定是平面图形C.四边相等的四边形一定是平面图形D.有一组对角相等的四边形一定是平面图形【答案】B【解析】根据平面的基本性质,由能够确定平面的四个条件,一个一个地进行分析,能够得到正确答案.解:对边相等的四边形不一定是平面图形,例如正四面体的对边相等,但不是平面图形.故A不正确;有一组对边平行的四边形一定是平面图形,因为平行线确定一个平面,故B正确;四边相等的四边形不一定是平面图形,例如正四面体的对边相等,但不是平面图形.故C不正确;有一组对角相等的四边形不一定是平面图形,例如正四面体的对角相等,但不是平面图形.故D不正确.故选B.点评:本题考查平面的基本性质和推论,解题时要认真审题,仔细解答,注意确定一个平面的条件.9.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.10.下列各点不在曲线x2+y2+z2=12上的是()A.(2,﹣2,2)B.C.(﹣2,2,2)D.(1,3,4)【答案】D【解析】把选项中的点坐标代入曲线方程,结果不是12的即不在曲线上.解:把A项的点代入方程求得4+4+4=12符合题意,故A中的点在曲线上.把B项的点代入方程求得0+4+8=12符合题意,故B中的点在曲线上.把C项的点代入方程求得4+4+4=12符合题意,故C中的点在曲线上.把D项的点代入方程求得1+9+16=26不符合题意,故D中的点不在曲线上.故选D点评:本题主要考查了曲线与方程.属基础题.11.已知两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为()A.B.C.19D.11【答案】A【解析】直接利用空间两点间的距离公式求出两点间的距离.解:两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为:=故选A.点评:本题是基础题,考查空间两点间的距离的求法,注意正确应用距离公式,考查计算能力.12.下列各点不在曲线x2+y2+z2=12上的是()A.(2,﹣2,2)B.C.(﹣2,2,2)D.(1,3,4)【答案】D【解析】把选项中的点坐标代入曲线方程,结果不是12的即不在曲线上.解:把A项的点代入方程求得4+4+4=12符合题意,故A中的点在曲线上.把B项的点代入方程求得0+4+8=12符合题意,故B中的点在曲线上.把C项的点代入方程求得4+4+4=12符合题意,故C中的点在曲线上.把D项的点代入方程求得1+9+16=26不符合题意,故D中的点不在曲线上.故选D点评:本题主要考查了曲线与方程.属基础题.13.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.14.在空间直角坐标系O﹣xyz中,z=1的所有点构成的图形是.点P(2,3,5)到平面xOy的距离为.【答案】过点(0,0,1)且与z轴垂直的平面;5.【解析】空间直角坐标系中,z=1表示一个平面,其与xoy平面平行且距离为1,点P(2,3,5)到平面xOy的距离与其横纵坐标无关,只与其竖坐标有关,由于平面xOy的方程为z=0,故可算出点到平面的距离.解:z=1表示一个平面,其与xoy平面平行且距离为1,故z=1的所有点构成的图形是过点(0,0,1)且与z轴垂直的平面P(2,3,5)到平面xOy的距离与其横纵坐标无关,只与其竖坐标有关,由于平面xOy的方程为z=0,故点P(2,3,5)到平面xOy的距离为|5﹣0|=5故答案应依次为过点(0,0,1)且与z轴垂直的平面;5.点评:本题考点是空间直角坐标系,考查空间直角坐标系中点到面的距离的计算方法与空间中面的表示方法.15.点P(﹣3,2,﹣1)关于平面xOy的对称点是,关于平面yOz的对称点是,关于平面zOx的对称点是,关于x轴的对称点是,关于y轴的对称点是,关于z轴的对称点是.【答案】(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).【解析】根据空间直角坐标系,点点对称性,直接求解对称点的坐标即可.解:根据点的对称性,空间直角坐标系的八卦限,分别求出点P(﹣3,2,﹣1)关于平面xOy的对称点是(﹣3,2,1);关于平面yOz的对称点是:(3,2,﹣1);关于平面zOx的对称点是:(﹣3,﹣2,﹣1);关于x轴的对称点是:(3,﹣2,1);关于y轴的对称点是(3,2,1);关于z轴的对称点是(3,﹣2,﹣1).故答案为:(﹣3,2,1);(3,2,﹣1);(﹣3,﹣2,﹣1);(3,﹣2,1);(3,﹣2,﹣1).点评:本题是基础题,考查空间直角坐标系,对称点的坐标的求法,考查空间想象能力,计算能力.16.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.17.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.【答案】见解析【解析】先利用空间两点的距离公式分别求出AB,AC,BC的长,然后利用勾股定理进行判定是否为直角三角形,以及长度是否有相等,从而判定是否是等腰直角三角形.证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.点评:本题主要考查了两点的距离公式和勾股定理的应用,考查空间想象能力、运算能力和推理论证能力,属于基础题.18.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.19.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.20.与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选D.点评:本题主要考查合情推理的能力及空间中点到线的距离的求法.21.设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,a⊥β,则α⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β其中正确命题的个数为()A.1B.2C.3D.4【答案】D【解析】①若a⊥b,a⊥α,b⊄α,则b∥α,可由线面平行的条件进行证明;②若a∥α,a⊥β,则α⊥β可由面面垂直的判定定理进行判断;③若a⊥β,α⊥β,则a∥α或a⊂α,本题可由面面垂直的性质进行判断;④若a⊥b,a⊥α,b⊥β,则α⊥β,可由面面垂直的判定定理进行判断.解:①若a⊥b,a⊥α,b⊄α,则b∥α,a⊥b,a⊥α,可得出此b∥α或b⊂α,再b⊄α,可得b∥α由是真命题;②若a∥α,a⊥β,由线面平行的性质定理可以得出在α内存在一条线c⊥β,故可得出α⊥β,是真命题;③若a⊥β,α⊥β,由图形即可得出a∥α或a⊂α,是正确命题;④由a⊥b,a⊥α可推出b∥α或b⊂α,再有b⊥β,可得出α⊥β,故是真命题.故选D.点评:本题考查了线面平行,面面垂直的判定及性质,重点考查了空间立体感知能力及运用相关知识组织判断的能力.22.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点【答案】C【解析】不共线的三点确定一个平面,两条平行线确定一个平面,得到A,B,C两个选项的正误,根据两个平面如果相交一定有一条交线,确定D选项是错误的,得到结果.解:不共线的三点确定一个平面,故A不正确,四边形有时是指空间四边形,故B不正确,梯形的上底和下底平行,可以确定一个平面,故C正确,两个平面如果相交一定有一条交线,所有的两个平面的公共点都在这条交线上,故D不正确,故选C.点评:本题考查平面的基本性质即推论,考查确定平面的条件,考查两个平面相交的性质,是一个基础题,越是简单的题目,越是不容易说明白,同学们要注意这个题目.23.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.24.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.25.已知两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为()A.B.C.19D.11【答案】A【解析】直接利用空间两点间的距离公式求出两点间的距离.解:两点M1(﹣1,0,2),M2(0,3,﹣1),此两点间的距离为:=故选A.点评:本题是基础题,考查空间两点间的距离的求法,注意正确应用距离公式,考查计算能力.26.若向量在y轴上的坐标为0,其他坐标不为0,那么与向量平行的坐标平面是()A.xOy平面B.xOz平面C.yOz平面D.以上都有可能【答案】B【解析】根据向量在y轴上的坐标为0,其他坐标不为0,设出向量的坐标,并用与坐标轴平行的单位向量表示出来,即可找到答案.解:设=(a,0,b),(a≠0,b≠0)∴(分别是x,z轴上的单位向量)∴与向量平行的坐标平面是xoz平面.故选B.点评:此题是个基础题.考查空间点、线、面的位置关系.27.在z轴上与点A(﹣4,1,7)和点B(3,5,﹣2)等距离的点C的坐标为.【答案】(0,0,)【解析】根据C点是z轴上的点,设出C点的坐标(0,0,z),根据C点到A和B的距离相等,写出关于z的方程,解方程即可得到C的竖标,写出点C的坐标.解:由题意设C(0,0,z),∵C与点A(﹣4,1,7)和点B(3,5,﹣2)等距离,∴|AC|=|BC|,∴=,∴18z=28,∴z=,∴C点的坐标是(0,0,)故答案为:(0,0,)点评:本题考查两点之间的距离公式,不是求两点之间的距离,而是应用两点之间的距离相等,得到方程,应用方程的思想来解题,本题是一个基础题.28.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.29.求到两定点A(2,3,0),B(5,1,0)距离相等的点的坐标(x,y,z)满足的条件.【答案】6x﹣4y﹣13=0即为所求点所满足的条件.【解析】直接利用空间坐标系中两点间的距离公式得关于x,y的方程式,化简即可得所求的点的坐标(x,y,z)满足的条件.解:设P(x,y,z)为满足条件的任一点,则由题意,得,.∵|PA|=|PB|,平方后化简得:6x﹣4y﹣13=0.∴6x﹣4y﹣13=0即为所求点所满足的条件.点评:本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题.30.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.。

【高一】高一数学命题练习题

【高一】高一数学命题练习题

【高一】高一数学命题练习题命题课前准备1、“凡直角均成正比“的否命题就是()(a)凡不是直角均不相等。

(b)凡相等的两角均为直角。

(c)不都就是直角的角不成正比。

(d)不成正比的角不是直角。

2、已知p:2x-3>1;q:;则?p是?q的()条件(a)充份不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件又非必要条件3、“”就是“或”的()(a)充分不必要条件(b)必要不充分条件(c)充要条件(d)既不充分也不必要条件4、命题甲:x+y≠3,命题乙:x≠1且y≠2.则甲就是乙的条件.5、有下列四个命题:①命题“若,则,互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若≤1,则存有实根”的逆否命题;④命题“若∩=,则”的逆否命题。

其中就是真命题的就是(填入你指出恰当的命题的序号).6、写出命题“若xy=0则x=0或y=0”的逆命题、否命题、逆否命题课后作业一、选择:1、≥()a充分而不必要条件b必要而不充分条件c充份必要条件d即为不充份也不必要条件2、给出如下的命题:①对角线互相垂直且相等的四边形是正方形;②00=1;③如果x+y是整数,那么x,y都是整数;④<3或>3.其中真命题的个数是……()(a)3(b)2(c)1(d)0.3、已知是的充分不必要条件,是的必要条件,是的必要条件.那么是成立的:()条件(a)充份不必要(b)必要不充份(c)充要(d)既不充份也不必要4、设集合,,那么“”是“”的()a.充份而不必要条件b.必要而不充分条件c.充要条件d.既不充份也不必要条件二、:5、写下“a,b均不为零”的(1)充分非必要条件是(2)必要非充分条件是:__(3)充要条件就是(4)非充份非必要条件就是6、在以下空格内填入“充分非必要”,“必要非充分”,“充要”,“非充分非必要”(1)“a>0且b>0”就是“a+b>0且ab>0”的条件(2)“a>2且b>2”是“a+b>4且ab>4”的条件(3)的______________条件7、的一个充分不必要条件是_______________8、表示以下各题中甲就是乙的什么条件?(1)甲:a、b、c成等比数列;乙:b2=ac________________.(2)甲:______________________(3)甲:直线l1∥l2,乙:直线l1与l2的斜率相等_______________________三、答疑9、已知命题p:方程x2+mx+1=0有两个不相等的负根;q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求m的取值范围.10、先行写下一元二次方程,①存有两个正根②两个大于的木③一个正根一个负根的一个充要条件。

高一数学上册《集合与命题、不等式》单元测试题沪教版

高一数学上册《集合与命题、不等式》单元测试题沪教版

每= .x x为 .是 .的条是集))是 .合A_____________.集合有个: .x的集xz14. 设a 、b 、c 是互不相等的正数,则下列不等式中不恒成立的是是互不相等的正数,则下列不等式中不恒成立的是 (( ))A .c b c a b a -+-£-B .a a a a 1122+³+C .a a a a -+<+-+213D .21³-+-ba b a三、解答题:(8+10++10+12=40分)15. 若集合{}{}2230,,0,A x x mx x R B x x x n x R =+-=Î=-+=Î, 且{}3,0,1A B =- ,求实数,m n 的值。

16.已知集合},03{},,032{22R x x ax x B R x x x x A Î>+-=Î<--=1)当a =2时,求B A Ç2)若A B A =Ç,求实数a 的取值范围 .17.求满足2x y k x y +£+对任意,x y R +Î恒成立的实数k 的最小值,并说明理由18.已知数集{}()1212,,1,2n n A a a a a a a n =£<<³ 具有性质P ;对任意的(),1i j i j n £££,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由;(Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++ ;(Ⅲ)当5n =时若 a 2=2,求集合A.一 、1.{2} 2.1.{2} 2.【【2,32,3))3. 若实数b a ,满足,7³+b a 则2¹a 或 3¹b ” 4.既不充分也不必要 5.x>4或 x<-3 6.)31,21(-- 7.)1,1()1,(-È--¥ 8.2± 9.{3,4,5,6,7,8} 9.{3,4,5,6,7,8} 10.7 10.7 {},,3,2,1n S Í若S a Î,则必有S a n Î-+1,则这样的S 有*212),12(12),2(12N k k n k n n n Î-=-=-+二 、11.D 12.D 13.C 14.D 三 、 15.}1,3{23}0,1{000},1,0,3{0-=Þ=ÞÎ-Þ=Þ=ÞÎÞÏ-=ÈÎA m A B n B A B A16.(1)A=(-1,3),a=2时B=R, B A Ç=A=(-1,3) (2) B A A B A ÍÛ=Ç①B=R 1210121>Þ<-=D Þa a ②{}B A x x B a a ÍÞ¹=Þ=Þ=-Þ=D 612101210③61009321<<Þïîïíì³>a a a④ÆÞïîïíì³-<09121a a ⑤a=0B={x|x<3} 综上可知:a ≥017. (Ⅰ)由于34´与43均不属于数集{}1,3,4,∴该数集不具有性质P. 由于66123612,13,16,23,,,,,,231236´´´´都属于数集{}1,2,3,6,∴该数集具有性质∴该数集具有性质P.(Ⅱ)∵(Ⅱ)∵{}12,,n A a a a = 具有性质P ,∴n n a a 与nna a 中至少有一个属于A , 由于121n a a a £<<< ,∴n n n a a a >,故n n a a A Ï. 从而1n na A a =Î,∴11a =.∵121n a a a =<<< , ∴k n n a a a >,故()2,3,,k n a a A k n Ï= .由由A 具有性质P 可知()1,2,3,,nka A k n a Î= .∴12111na a a a a a ---+++=+++ . 时,有55,a a ==可知4a Î,得34a a =Î3a <=,∴34a a ==∴5342a a a a a a a a ====5是首项为。

高一数学命题及其关系试题

高一数学命题及其关系试题

高一数学命题及其关系试题1.无穷等差数列的各项均为整数,首项为、公差为,是其前项和,3、21、15是其中的三项,给出下列命题:①对任意满足条件的,存在,使得99一定是数列中的一项;②对任意满足条件的,存在,使得30一定是数列中的一项;③存在满足条件的数列,使得对任意的,成立。

其中正确命题的序号为()A.①②B.②③C.①③D.①②③【答案】C.【解析】根据条件等差数列的其中三项为:3、15、21,可得:;①99-21=78能被6整除,且,假设15和21之间有项,那么99和21之间有项,所以99一定是数列中的一项,故正确;②30-21=9不能被6整除,如果,那么30一定不是数列中的一项,故不正确;③如果有,那么由等差数列求和公式有:,化简得到,所以只要满足条件的数列,就能使得对任意的,成立.【考点】等差数列的通项公式;等差数列的前项和.2.给出下列4个命题:①若,则是等腰三角形;②若,则是直角三角形;③若,则是钝角三角形;④若,则是等边三角形.其中正确的命题是()A.①③B.③④C.①④D.②③【答案】B【解析】①,得到,或,即,或,是等于三角形或是直角三角形,故不正确;②,得到,或,故不正确;③其中必有一项小于0,若,在为钝角;④根据 ,得,,,是等边三角形,故④正确,故答案为 B.【考点】命题的真假判定与应用3.给出下列4个命题:①若,则是等腰三角形;②若,则是直角三角形;③若,则是钝角三角形;④若,则是等边三角形.其中正确的命题是()A.①③B.③④C.①④D.②③【答案】B【解析】①若sin2A=sin2B,则 2A=2B,或2A+2B=π,即A="B" 或C=,故△ABC为等腰三角形或直角三角形,故①不正确.②若sinA=cosB,不能推出△ABC是直角三角形,如A=B=45°时,虽有sinA=cosB,但△ABC不是直角三角形,故②不正确.③若cosA•cosB•cosC<0,则由三角形各个内角的范围及内角和等于180°知,cosA、cosB、cosC两个是正实数,一个是负数,故A、B、C中两个是锐角,一个是钝角,故③正确.④若cos(A-B)•cos(B-C)•cos(C-A)=1,则由三角形各个内角的范围及内角和等于180°知,cos(A-B)=cos(B-C)=cos(C-A)=1,故有 A=B=C,故△ABC是等边三角形,故④正确.即③④正确,故选B.【考点】和差的三角函数公式,三角形的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( C)充要条件;
(D)既非充分又非必要条件。
13.集合 S { 0, 1, 2, 3, 4, 5 } ,A 是 S 的一个子集,当 x A 时,若有 (x-1) A,且 (x+1) A,
则称 x 为 A 的一个“孤立元素” ,那么 S 中无“孤立元素”的 4 元子集的个数是 (

( A) 4 个;




3 .命题 P:(x-1)(y-2)=0 ;命题 Q: (x 1) 2 ( y 2) 2 0 ,则命题 P 是命题 Q的


( A)充分非必要条件; ( C)充要条件;
(B)必要非充分条件; (D)即非充分又非必要条件。
4 .设 U为全集, A、B 都是 U 的子集,下列命题中真命题的个数

8 .有下列命题,其中真命题的个数


( 1) { 质数 } { 奇数 } ; ( 2)空集是任意集合的真子集; ( 3)集合 {1 ,3, 5} 与集合 {2 , 4, 6} 没有相同的子集;
( 4)若 A B=A C,则 B=C成立。
1
( A) 0 个;
(B)1 个;
(C)2 个;
(D) 3 个。
( C)充要条件;
(D)即非充分又非必要条件。
11.原命题“若 A B B ,则 A B A”,
与其逆命题、否命题、逆否命题中,真命题的个数是
( A) 0 个;
(B)1 个;
(C)2 个;
(D) 4 个。
12. : x 1; : x2 1,则 是 的




( A)充分非必要条件;
(B)必要非充分条件;
2 .给出命题其中真命题的个数为
( 1)若 A ( 2)若 M ( 3)若 A ( 4)若 A
B A C ,则 B C ; A B , P A B,则必有 M P ; B ,则 A 、 B 中至少有一个是空集; B B ,则 B A 。
( A) 0 个;
(B)1 个;;
(C)2 个;
(D) 3 个。
a b
c d

条件;
( 3) A=CUB 是 A∪ B=U的
条件;
( 4) a> b

a c2
b c2

条件;
( 5) a> 2 且 b>3 是 a+b>5 且 ab>6 的
( 6) c=0 是 y=ax2+bx+c (a 0) 图象过原点
条件; 条件;
( 7)“a 是 3 的倍数”的
条件是“ a 是 6 倍数”;
它的否命题为
;这否命题为
21.(1)写出“ x y 2 ”的一个充分非必要条件:
(2)写出│ x│>│ y│的一个充分非必要条件:
命题(判真或假); 命题(判真或假) 。 。
2
22.填“充分非必要” “必要非充分”“充要”“不充分不必要”
( 1) a> b 是 a
b的
条件;
( 2) ad=bc 是

8)“
x

2”是“
2
x
-5x+6

0”的
条件;

9)
22
x +y =0

条件是 xy=0;
2
( 10)“实系数方程 ax +bx+c=0(a≠ 0) 有两个正根”的
2
条件是“ b -4ac ≥0”;
23.(1)若 是 成立的必要非充分条件,则 是 成立的
一、填空题
1 .给定下列四个命题,其中真命题的个数为
( A) 0;
(B)1;
(C)2;
(D) 3 。
( 1)“a>b”是“ ac2> bc2”的充要条件; ( 2)“a<5”的必要非充分条件是“ a<3”;
( 3)“a+b 是无理数”是“ a,b 都是无理数”的充分非必要条件; ( 4)“a>b”是“ a2>b2”的充要条件。
二、选择题
17.A;|x-2| >1,B:x>3,则 A是 B 的
条件。
18.已知命题“若
2
x
3x
2
0 ,则 x=1 或 x=2”。它的逆否命题是

判这逆否命题的真假

19.写出命题“若两个整数之积是偶数,则这两个整数中至少有一个是偶数”的逆否命题

20.若已知命题 a 2或 b 3 ,则 a b 5 ,这个命题为
(B)5 个;
(C)6 个;
(D) 7 个。
14.命题甲: x2-3x+2 ≠0 ,命题乙: x 1,那么命题甲是命题乙的


( A)充要条件;
(B)充分不必要条件;
( C)必要不充分条件;
(D)非充分非必要条件。
15.已知 a 为非零实数, x 为某一实数,有命题 p:x {-a ,a} ,命题 q: ∣ x∣=a,则
9.设 是 的充分非必要条件, r 是 必要非充分条件,则 r 是 的


( A )充分非必要条件; ( C)充要条件;
(B)必要非充分条件; (D)即非充分又非必要条件。
10.若已知命题 A :| x 3 | 3 , B : x 6 ,则 A 是 B 的


( A )充分非必要条件;
(B)必要非充分条件;
p 是q的


( A)充分不必要条件;
(B)必要不充分条件;
( C)充要条件;
(D)非充分非必要条件。
16.设 p:集合 A B都是 A B 的子集, q: A 是 A B 的子集或是 A B 的子集,
那么 p、q 的真假是


( A) p 真 q 真;
(B)p 真 q 假;
(C)p 假 q 真;
(D) p 假 q 假。

( 1)若 A B U ,则 A=B=U;
(2)若 A B ,则 A=B= ;
( 3)若 A B ,则 Cu A Cu B U ; (4)若 A B ,则 A=B= ;
( 5)若 A B U ,则 Cu A Cu B ; (6)若 A B U ,则 A=B=U。
( A) 2;
(B)3;
(C)4;
(D) 5 。
5 .设 a、b、m∈R,则“ a> b”是“ m 2a m2b ”的


( A)充分非必要条件;
(B)必要非充分条件;
( C)充要条件;
(D)非充分非必要条件。
6 .设集合 A { x | 1 x 1} , B { x| 1 a x 1 a } ,则“ a 1 ”是“ A B ”的 (

( A)充分非必要条件;
(B)必要非充分条件;
( C)充要条件;
(D)既非充分又非必要条件。
7 .命题:若 a、b R 满足 a 2 b2 =0,则 a、b都是 0,则它的等价命题为


( A)若实数 a、b 有一个不是零,则 a2 b 2 0; ( B)若实数 a、b 至少有一个不是零,则 a 2 b 2 0; ( C)若实数 a、b 都不是零,则 a 2 b2 0; ( D)若实数 a、b 都是零,则 a2 b 2 =0 。
相关文档
最新文档