热力学作业(标准答案)
化学热力学基础作业

第二章 化学热力学习题1.阿波罗登月火箭用N 2H 4(l )作燃料,用N 2O 4作氧化剂,燃烧后产生N 2(g )和H 2O(l)。
写出配平的化学方程式,并计算1kg N 2H 4(l )燃烧后的Δr H°。
2.已知:(1)4NH 3(g)+5O 2(g)=4NO(g)+6H 2O(l) Δr H 1θ= -1168.8 kJ ⋅mol -1(2) 4NH 3(g)+3O 2(g)=2N 2(g)+6H 2O(l) Δr H 2θ= -1530.4kJ ⋅mol -1 试求NO 的标准生成焓。
3.CO 是汽车尾气的主要污染源,有人设想以加热分解的方法来消除之:)(21)()(2g O s C g CO += 试从热力学角度判断该想法能否实现?4.蔗糖在新陈代谢过程中所发生的总反应可写成)(11)(12)(12)(222112212l O H g CO g O s O H C +=+假定有25%的反应热转化为有用功,试计算体重为65kg 的人登上3000m 高的山,需消耗多少蔗糖{已知?}2222)(1112212-⋅-=∆mol kJ O H C H m f5.利用附录数据,判断下列反应:)()()(24252g O H g H C g OH H C += (1) 在25°C 能否自发进行?(2) 在360°C 能否自发进行?(3) 求该反应能自发进行的最低温度。
6. 已知 2CuO (S) == Cu 2O (S) + 1/2O 2(g) △f H m θ(298.15K )/(KJ •mol -1) -157.3 -168.6 0 S m θ(298.15K )/(J •mol -1•K -1) 42.63 93.14 205.03 计算:该反应在P (O2)=200Kpa 时能自发进行的温度7. 反应2CuO (S)==Cu 2O (S)+1/2O 2(g) ,已知ΔG θ(400K )=95.4 kJ •mol -1, ΔG θ(300K )=107.9 kJ •mol -1,求1)应的ΔH θ和ΔS θ。
【精品】热力学作业题答案

【关键字】精品第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aPV b T V V b =--+=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson 方程;(4)普遍化关系式。
解:查附录二得NH 3的临界参数:T c =405.6K P c =11.28MPa V c =72.5 cm 3/mol ω=0.250 (1) 求取气体的摩尔体积对于状态Ⅰ:P=2.03 MPa 、T=447K 、V=2.83 m 3477405.6 1.176r c T T T === 2.0311.280.18r c P P P ===—普维法∴01.6 1.60.4220.4220.0830.0830.24261.176r BT =-=-=- 11c r c rBP PV BP P Z RT RT RT T =+==+→V=1.885×10-3m 3/mol∴n=2.83m 3/1.885×10-3m 3/mol=1501mol对于状态Ⅱ:摩尔体积V=0.142 m 3/1501mol=9.458×10-5m 3/mol T=448.6K (2) Vander Waals 方程 (3) Redlich-Kwang 方程 (4) Peng-Robinson 方程 ∵448.6405.6 1.106r c T T === ∴220.3746 1.542260.269920.3746 1.542260.250.269920.250.7433k ωω=+-=+⨯-⨯=∴()()()a T RTPV b V V b b V b =--++- (5) 普遍化关系式 ∵559.458107.2510 1.305r c V V V --==⨯⨯=<2 适用普压法,迭代进行计算,方法同1-1(3)2-7:答案: 3cm第三章3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
化工热力学第一章作业参考答案

2、求1nol 理想气体在常压、25℃时的体积由理想气体状态方程有ν=RT/p =8.314×298/101325=0.02445m 3=24.45L4、1mol 丙烷放在2L 容器中,用RK 方程分别求100℃和6℃时容器内的压力。
已知其饱和蒸汽压为0.57MPa 100℃时:R-K 方程 a = 18.301 b = 6.268×10-5 (R 取8.3145) P = 1.3718 MPa SRK 方程m = 0.7617 a(Tr) = 0.9935 a(T) = 0.9447 b = 6.268×10-5 (R 取8.3145) P = 1.3725 MPa 6℃时:R-K 方程 P = 0.9325 MPaSRK 方程 a(Tr) = 1.1969 a(T) = 1.1381 P = 0.922 MPa 饱和液体摩尔体积可采用修正的Rackett 方程计算 V sl = 84.33 cm 3/mol<2.0×10-3 m 3/mol, 故P = 0.57 MPa7. van der waals 方程B = b-a/(RT) 代入数值后B = -5.818×10-5C = b 2 代入数值后 C = 1.850×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.7453 RK 方程: B = b-a/(RT 3/2) 代入数值后 B = -5.580×10-5C = b 2+ab/(RT 3/2) 代入数值后 C = 3.441×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.7840 SRK 方程: B = b-a(T)/(RT) 代入数值后 B = -5.355×10-5C = b 2+a(T)b/(RT) 代入数值后 C = 3.375×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.7958 PR 方程: B = b-a(T)/(RT) 代入数值后 B = -6.659×10-5C = b 2+2a(T)b/(RT) 代入数值后 C = 5.7166×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.756210、请将van der waals 方程转换为式(2-67)所示的对比形式23138rr r r V V T P --=解:van der waals 方程为:2Vab V RT P r --=()RT b V V a P =-⎪⎭⎫ ⎝⎛+⇒2由学习van der waals 方程时得到的结论:3,89c c c b RT a υυ== 又由cc c c c c T VP R P RT 3883=⇒=υ代入上式,有: c c rc c c V P T V V V V P P 383322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+ 两边消去PcVc ,即得所求。
热力学练习题全解

热力学练习题全解热力学是研究热能转化和热力学性质的科学,它是物理学和化学的重要分支之一。
在热力学中,我们通过解决一系列练习题来巩固和应用所学知识。
本文将为您解答一些热力学练习题,帮助您更好地理解和应用热力学的基本概念和计算方法。
1. 练习题一题目:一个理想气体在等体过程中,吸收了50 J 的热量,对外界做了30 J 的功,求该气体内能的变化量。
解析:根据热力学第一定律,内能变化量等于热量和功之和。
即ΔU = Q - W = 50 J - 30 J = 20 J。
2. 练习题二题目:一摩尔理想气体从A状态经过两个等温过程和一段绝热过程转变为B状态,A状态和B状态的压强和体积分别为P₁、P₂和V₁、V₂,已知 P₂ = 4P₁,V₁ = 2V₂,求这个过程中气体对外界做的总功。
解析:由两个等温过程可知,气体对外界做的总功等于两个等温过程的功之和。
即 W = W₁ + W₂。
根据绝热过程的特性,绝热过程中气体对外做功为零。
因此,只需要计算两个等温过程的功即可。
根据理想气体的状态方程 PV = nRT,结合已知条件可得:P₁V₁ = nRT₁①P₂V₂ = nRT₂②又已知 P₂ = 4P₁,V₁ = 2V₂,代入式①和式②可得:8P₁V₂ = nRT₁③4P₁V₂ = nRT₂④将式③和式④相减,可得:4P₁V₂ = nR(T₁ - T₂) ⑤由于这两个等温过程温度相等,即 T₁ = T₂,代入式⑤可得:4P₁V₂ = 0所以,这个过程中气体对外界做的总功 W = 0 J。
通过以上两个练习题的解答,我们可以看到在热力学中,我们通过应用热力学第一定律和理想气体的状态方程等基本原理,可以解答各种热力学问题。
熟练掌握这些计算方法,有助于我们更深入地理解热力学的基本概念,并应用于实际问题的解决中。
总结:本文对两道热力学练习题进行了详细解答,分别涉及了等体过程和等温过程。
通过这些例题的解析,读者可以理解和掌握热力学的基本计算方法,并将其应用于实际问题的求解中。
化工热力学标准答案

化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式解 (1)用理想气体方程(2-4)V =RT P =68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为Tc =190.6K ,Pc =4.600Mpa ,ω=0.008将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -2 0.0867c cRT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6)4.053×106= 58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯ 迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可)(3)用普遍化关系式673 3.53190.6r T T Tc === 664.053100.8814.610r P P Pc ⨯===⨯ 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。
由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138代入式(2-43)010.02690.0080.1380.0281BPc B B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3 m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。
北航工程热力学 作业答案参考

作业:思考题1-5,1-7;习题1-6。
S 1-5:何为平衡状态?平衡状态和均匀状态是否同一概念?平衡必须满足什么条件?系统不受外界影响的条件下,如果各部分的宏观状态参数不随时间变化,系统处于平衡状态。
平衡状态和均匀状态不是同一概念。
平衡状态强调不受外界影响+状态参数不随时间变化;均匀状态强调的是状态参数不随空间变化,空间分布均匀。
举例:封闭刚性容器内的水和水蒸汽混合物,处于平衡状态,但不处于均匀状态。
平衡条件:力平衡、温度平衡、化学平衡-无势差。
注意:要讲清楚二者的区别,而不是简单的判断和给出定义描述。
S 1-7:可逆过程与平衡过程(内平衡过程)有何区别?造成不可逆的因素有哪些?可逆过程一定是平衡过程,平衡过程不一定是可逆过程;无耗散(无摩擦)的平衡过程是可逆过程。
造成不可逆的因素:胀缩时有力不平衡、传热有温差,运动有摩擦。
注意:要讲清楚二者的区别,而不是简单的判断和给出定义描述。
X 1-6: 解:1760 1.03323 1.01325atm mmHg at bar === 19.829.82/1.033239.504p at atm atm === 2 4.24 4.24/1.01325 4.185p bar atm atm ===745745/7600.98B mmHg atm atm === 19.5040.9810.484A p p B atm =+=+= 2B A p p p +=210.484 4.185 6.299B A p p p atm =-=-= 注意:2B p p B =+是错误的;“真空度”:v p B p =-,B 一般特指地面标准大气压,1B atm =,所以1v p atm <。
S2-5:功是过程量,而推挤功pv 却只取决于状态,怎么理解?热力学力里的功是广义功,体系作功的大小与过程经历的路径和条件有关,不同的过程即使起止状态相同,做功大小也不同,因此,功是过程量。
大学物理 热力学第一定律 习题(附答案)

A13 = Q13 = 1.25 × 10 4 ( J)
(5)由(1)有系统终态的体积为
hi
5 R , R = 8.31 J / mol ⋅ K 。 2
na
T V3 = V2 ( 2 ) γ−1 = 40 × 21. 5 = 113 ( l) T1 nRT3 2 × 8.31 × 300 p3 = = ÷ 1.013 × 10 5 = 0.44 ( atm) −3 V3 113 × 10
0 . 44
O
om
p (atm ) 1 2
3
三、计算题: 1.2 mol 初始温度为 27 � C ,初始体积为 20 L 的氦气,先等压过程膨胀到体积加倍, 然 后绝热过程膨胀回到初始温度。 (1)在 p-V 平面上画出过程图。 (2)在这一过程中系统总吸热是多少? (3)系统内能总的改变是多少? (4)氦气对外界做的总功是多少?其中绝热膨胀过程对外界做功是多少? (5)系统终态的体积是多少?
5 = 1 × R × 60 = 1.25 × 10 3 ( J) 2
γ
(B) p 0 γ (D) p 0 / 2
(γ = C
p
/ Cv )
p0
解:绝热自由膨胀过程中 Q = 0,A = 0,由热力学第一定律,有 ∆ E = 0 ,膨胀前后系统
[
]
(A) (B) (C) (D)
这是一个放热降压过程 这是一个吸热升压过程 这是一个吸热降压过程 这是一个绝热降压过程
将状态 a、b 分别与 o 点相连有
om
A
O
V1
V2
V
T B
C
Q
V
等压过程中吸收了相同的热量,则它们对外做功之比为 A 1: A 2 = (各量下角标 1 表示氢气,2 表示氦气)
中国石油大学远程教育化工热力学作业答案

化学热力学高升专答案第一次作业第 1 题水处于饱和蒸气状态,其自由度为您的答案:A题目分数:0.5此题得分:0.5批注:第 2 题如要查询水的饱和蒸气热力学性质表,则需要个独立状态参数的已知条件。
您的答案:A题目分数:0.5此题得分:0.5批注:第3题经历一个不可逆循环过程,体系工质的熵C您的答案:题目分数:0.5此题得分:0.5批注:第4题范德华方程与R- K方程均是常见的立方型方程,对于摩尔体积V 存在三个实根或者一个实根,当存在三个实根时,最大的V值是您的答案:B题目分数:0.5此题得分:0.5批注:第5题可以通过测量直接得到数值的状态参数是C您的答案:题目分数:0.5此题得分:0.5批注:第 6 题处于平衡的气体的摩尔体积vg 和液体的摩尔体积vL 的关系为您的答案:A题目分数:0.5批注:第7 题随着温度的增加,处于平衡的气体的摩尔体积vg和液体的摩尔体积vL的变化规律为您的答案:A题目分数:0.5此题得分:0.5批注:第8题您的答案:处于临界点的平衡的气体和液体B题目分数:0.5此题得分:0.5批注:第9题您的答案:超临界流体是下列条件下存在的物质A题目分数:0.5此题得分:0.5批注:第10 题对应态原理认为,在相同的对比态下,所有物质表现出相同的性质。
即您的答案:D题目分数:0.5此题得分:0.5批注:第11 题关于建立状态方程的作用,以下叙述不正确的是您的答案:C题目分数:0.5此题得分:0.5批注:第12 题纯流体在一定温度下,如压力低于该温度下的饱和蒸汽压,则此物质的状态为您的答案:D题目分数:0.5批注:第13 题利用麦克斯韦关系式,其目的是将难测的()与易测的()联系起来。
您的答案:C题目分数:0.5此题得分:0.5批注:第14 题真实气体在的条件下,其行为与理想气体相近。
您的答案:D题目分数:0.5此题得分:0.5批注:第15 题水的三相点的自由度数目为您的答案:A题目分数:0.5此题得分:0.5批注:第16 题二元系统气液平衡的自由度为2您的答案:错误题目分数:0.5此题得分:0.5批注:第17 题理想气体的熵仅仅是温度的函数您的答案:错误题目分数:0.5此题得分:0.5批注:第18 题某工质在封闭系统进行不可逆循环后,其熵必定增加您的答案:错误题目分数:0.5批注:第19 题理想气体经可逆绝热膨胀后,温度不变您的答案:错误题目分数:0.5 此题得分:0.5 批注:第20 题恒沸点和临界点时的气体和液体都是平衡的,而且两相的组成是相同的,其它的性质也相同您的答案:错误题目分数:0.5 此题得分:0.5 批注:第21题气体混合物的virial系数,如B, C…,只是温度和组分的物性的函数您的答案:错误题目分数:0.5 此题得分:0.5 批注:第22 题纯物质的三相点随着温度或压力的不同而改变您的答案:错误题目分数:0.5 此题得分:0.5 批注:第23题对于纯物质,当P> PC T> TC时,物质以液态存在您的答案:错误题目分数:0.5 此题得分:0.5 批注:第24题当压力大于临界压力时,纯物质就以液态存在您的答案:错误题目分数:0.5此题得分:0.5批注:第25 题温度和压力相同的两种理想气体(纯物质)等温等压混合后,则总体积为原来两气体体积之和,总熵为原来两气体熵之和您的答案:错误题目分数:0.5此题得分:0.5批注:第26 题由于分子间相互作用力的存在,实际气体的体积一定小于同温、同压下理想气体的体积,所以理想气体的压缩因子Z=1,实际气体的压缩因子Z< 1 您的答案:错误题目分数:0.5此题得分:0.5批注:第27 题纯物质的第二维里仅仅是温度的函数您的答案:正确题目分数:0.5此题得分:0.5批注:第28 题节流过程为等焓过程,所以节流后流体的温度不变您的答案:错误题目分数:0.5此题得分:0.5批注:第29 题对于一个绝热不可逆过程,其熵变可以设计一个可逆过程来计算您的答案:正确题目分数:0.5此题得分:0.5批注:第30 题吸热过程一定使系统熵增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[D]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为 ,熵增量为 ,则应有
(A) (B) .
(C) .(D)
【提示】由上题分析知: ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。
等压过程: ,根据状态方程 ,得: , ,
绝热过程: , ,
得: ,所以,选择(D)
【或者】等压过程: , ;
绝热过程: , ;
∵ ,由图可知 ,所以
[A]5.(自测提高3)一定量的理想气体,分别经历如图(1)所示的abc过程,(图中虚线ac为等温线),和图(2)所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.
解:(1)等温膨胀: , ,
(2)绝热过程: ,其中 , , 可由绝热过程方程求得: , ,
2、(基础训练19)一定量的单原子分子理想气体,从初态A出发,沿如图所示直线过程变到另一状态B,又经过等容、等压两过程回到状态A.(1)求A→B,B→C,C→A各过程中系统对外所作的功W,内能的增量E以及所吸收的热量Q.(2)整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).
根据热力学第一定律:
AD绝热过程: ;
AC等温过程: ;
AB等压过程: ,且
[B]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是
(A)p0.(B)p0/ 2.(C)2γp0.(D)p0/2γ.
(A)S1>S2.(B)S1=S2.
(C)S1<S2.(D)无法确定.
【提示】两条绝热线下的面积大小即为“功的大小”。绝热过程的功的大小为 ,仅与高温和低温热源的温差有关,而两个绝热过程对应的温差相同,所以作功 的数值相同,即过程曲线下的面积相同。
二、填空题
1.(基础训练13)一定量的某种理想气体在等压过程中对外作功为200 J.若此种气体为单原子分子气体,则该过程中需吸热500J;若为双原子分子气体,则需吸热700J.
, ,
6.(自测提高15)1 mol的单原子理想气体,从状态I (p1,V1)变化至状态II (p2,V2),如图所示,则此过程气体对外作的功为 ,吸收的热量为
【提示】①气体对外作的功=过程曲线下的梯形面积;
②由热力学第一定律,得 ,
其中 , , ,
三.计算题
1.(基础训练1Βιβλιοθήκη )温度为25℃、压强为1 atm的1 mol刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(1)计算这个过程中气体对外所作的功.(2)假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?
【提示】a-b过程:
而acba循环过程的净吸热量 ,∵pc=2pa,由图可知: ,且 , ,所以
4.(自测提高12)如图所示,绝热过程AB、CD,等温过程DEA,和任意过程BEC,组成一循环过程.若图中ECD所包围的面积为70 J,EAB所包围的面积为30 J,DEA过程中系统放热100 J,则:(1)整个循环过程(ABCDEA)系统对外作功为40J.(2)BEC过程中系统从外界吸热为140J.
4.(自测提高19)如果一定量的理想气体,其体积和压强依照 的规律变化,其中a为已知常量.试求:(1)气体从体积V1膨胀到V2所作的功;(2)气体体积为V1时的温度T1与体积为V2时的温度T2之比.
解: ,
(1) :
:
:
(2)
3.(基础训练22)一定量的理想气体经历如图所示的循环过程,A→B和C→D是等压过程,B→C和D→A是绝热过程.已知:TC=300 K,TB=400 K.试求:此循环的效率.
解:
,
根据绝热过程方程得到: ,
而 ,
所以有 ,
故
(此题不能直接由 式得出,因为不是卡诺循环。在该系统的循环过程中,是经过推导后得出结论 ,但这个推导过程是必须的)
【提示】(1)整个循环过程(ABCDEA)系统对外作功为
;
(2) ,
同时 ,
5.(自测提高13)如图示,温度为T0,2T0,3T0三条等温线与两条绝热线围成三个卡诺循环:(1)abcda,(2)dcefd,(3)abefa,其效率分别为η1:33.3%,η2:50%,η3:66.7%
【提示】由 ( 对应高温热源的温度, 对应低温热源的温度),得:
[D]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在
(A)绝热过程中最大,等压过程中最小.
(B)绝热过程中最大,等温过程中最小.
(C)等压过程中最大,绝热过程中最小.
(D)等压过程中最大,等温过程中最小.
【提示】如图。等温AC过程:温度不变, ;
第八章热力学基础
一、选择题
[A] 1.(基础训练4)一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程
(A)是A→B.(B)是A→C.(C)是A→D.
(D)既是A→B也是A→C,两过程吸热一样多。
【提示】功即过程曲线下的面积,由图可知 ;
(A)abc过程吸热,def过程放热.
(B)abc过程放热,def过程吸热.
(C)abc过程和def过程都吸热.
(D)abc过程和def过程都放热.
【提示】(a) , ,吸热。
(b)df是绝热过程, ,∴ ,
,“功”即为曲线下的面积,由图中可见, ,故 ,放热。
[B]6.(自测提高6)理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S1和S2,则二者的大小关系是:
【提示】据题意
,
对于单原子分子: ,所以 ;
对于双原子分子: ,所以
2.(基础训练14)给定的理想气体(比热容比为已知),从标准状态(p0、V0、T0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T= ,压强p=
【提示】求温度的变化,可用绝热过程方程: ,
求压强的变化,可用绝热过程方程: ,得:
3.(自测提高11)有 摩尔理想气体,作如图所示的循环过程acba,其中acb为半圆弧,ba为等压线,pc=2pa.令气体进行ab的等压过程时吸热Qab,则在此循环过程中气体净吸热量Q<Qab.(填入:>,<或=)