41道路路线平面设计全解
公路总体布局—路线设计

筑龙网 W W W .Z H U L O N G .C O M公路总体布局——路线设计1、公路路线与地形类别公路路线根据所处地理位置的不同可分为平原区路线、丘陵区路线和山岭区路线,其特点如下:1) 平原地路线因平原区的地面高差变化微小,其平面线形可采用较高的技术指标,尽量避免采用长直线或小偏角,但不应为避免长直线而随意转弯,在避让局部障碍物时要注意线形的连续、舒顺。
纵面线形应结合桥涵、通道、交*等构造物的布局,合理确定路基设计高度,纵坡不应频繁起伏,也不宜过于平缓。
2)丘陵区路线选线活动余地较大,应综合考虑平、纵、横三者的关系,恰当地掌握标准,提高线形质量。
设计中应注意:(1)路线应随地形的变化布设,在确定路线平、纵面线位的同时,应注意横向填挖的平衡。
横坡较缓的地段,可采用半填半挖或填多于挖的路基;横坡较陡的地段,可采用全挖或挖多于填的路基。
同时还应注意纵向土、石方平衡,以减少废方和借方。
(2)平、纵、横三个面应综合设计,不应只顾纵坡平缓,而使路线弯曲,平面标准过低;或者只顾平面直捷、纵坡平缓,而造成高填深挖,工程过大;或者只顾工程经济,过分迁就地形,而使平、纵面过多地采用极限或接近极限的指标。
(3)冲沟比较发育的地段,汽车专用公路和二级公路可考虑采用高路堤或高架桥的直穿方案;三、四级公路则宜采用绕越方案。
筑龙网 W W W .Z H U L O N G .C O M 丘陵地形包括微丘和重丘,它们介于平原和山岭间,其特点是宽脊低岭,山形或聚或散,迂回曲折,地面起伏多变,相对高差较大。
根据地形起伏大小丘陵地区路线分为:微丘区路线和重丘区路线。
微丘区路线的平面线形应充分利用地形处理好平、纵线形的组合,不应迁就微小地形,造成线形曲折,也不宜采用长直线,造成纵面线形起伏。
重丘区的路线选线活动余地较大。
3)山岭区路线山岭地区山水相隔,山峦重叠,山高坡陡,谷深流急,地形曲折复杂,但山脉水系清晰。
山岭地区路线一般以顺山沿河布设,必要时横越山岭。
道路路线工程图

竖曲线设计
2.竖曲线设计标准
(1)竖曲线最小半径
1)凹型竖曲线极限最小半径 2)凸型竖曲线极限最小半径 3)竖曲线一般最小半径 (2)竖曲线最小长度
8%(120)+6%(?m)
?=(1-120/300)*700=420
纵坡设计
3.合成坡度(resultant gradient) (1)合成坡度---道路在平曲线路段,若纵向有纵
坡且横向又有超高时,则最大坡度在纵坡和超高横坡
所合成的方向上,这时的最大坡度称为合成坡度。
i 2 i2 iz c H
以汽车在竖曲线上行程3s控制曲线长度
高等级道路上的爬坡车道
高等级道路上的爬坡车道
1.设置爬坡车道的条件 爬坡车道-----(climbing lane)是陡坡路段主线行车道 外侧增设的供载重车行驶的专用车道。
(1)公路 1)沿上坡方向行驶载重汽车的行驶速度降低到表4-14 的允许最低速度以下时,可设置爬坡车道。 2)上坡路段的设计通行能力小于设计小时交通量时, 应设置爬坡车道。
上坡方向允许最低速度
计算行车速度(km∕h) 容许最低速度(km∕h) 120 60 100 55
表4-14
80 50 60 40
高等级道路上的爬坡车道
1.设置爬坡车道的条件 (2)城市道路 1)快速路及行车速度为60Km/h的主干道,纵坡度大 于5%的路段。
2)80→ 50 Km /h 能力时。
道路纵断面设计
竖曲线设计
竖曲线概念: 为了行车平顺,纵断面上相邻两条纵坡线的相交处(俗称转坡点或变坡点) 通常用一段曲线——二次抛物线连接起来,这条曲线称为竖曲线 竖曲线有两种形式:相邻两条纵坡线的交角(转坡角)ω 为正值时,为凸形竖曲线;ω 为负值时,为凹形竖曲线。其计算式为: ω =ⅰ1 -ⅰ2 设计流程:
《公路平面设计》PPT课件

a
50
一般最小平曲线半径
式中:R—— 一般最小半径,m; ib—— 路拱超高横坡度; ——一般最小半径所对应的横向力系数。
a
51
3.不设超高的最小半径 定义:指平曲线半径较大,离心力较小时,汽车 沿双向路拱(不设超高)外侧行驶的路面摩阻力足 以保证汽车行驶安全稳定所采用的最小半径。路面 , 不设超高。
a
27
A.当V≥60km/h时,直线≥6V(以km/h计)为宜 B.当V≤40km/h时,可参照上述规定执行
a
28
②反向曲线间的直线最小长度
两反向曲线间夹有直线段时,由于两弯道转弯方 向相反,考虑其超高和加宽缓和的需要以及驾驶人员 的操作方便,其间的直线最小长度应予以限制。《公
路路线设计规范》规定,当计算行车速度≥60km/h时, 反向曲线间直线最小长度(以m计)以不小于行车速 度 ( 以 km/h 计 ) 的 2 倍 为 宜 ; 当 计 算 行 车 速 度 ≤40km/h时,可参照上述规定执行。特别困难的山岭 区三、四级公路设置超高时,中间直线长度不得小于 15m。若二反向曲线已设缓和曲线,在受到条件限制 的地点也可将二反向曲线首尾相连,但被连接的二缓 和曲线和圆曲线应满足一定的技术条件。
略感曲线存在,尚平稳;
0.20
已感到曲线存在,稍感到不平稳;
0.35
感到有曲线存在,已感到不平稳;
0.40
转弯时已非常不稳定,站立不住有倾倒的危险;
运营经济性:
0.10 ~0.15 轮胎磨耗及燃料消耗增加较小。
aபைடு நூலகம்
47
二、最小半径的计算
《标准》根据不同横向摩阻系数值,对于不同等级的公路规 定了极限最小半径、一般最小半径和不设超高的最小半径三个最 小半径。
道路工程识图全解PPT课件

第28页/共66页
(7) 竖曲线要素计算
A、竖曲线的基本方 程式:
B、竖曲线要素计算
a.竖曲线长L
L=Rw 或R=L/w
b.切线长T:因为T1=T2
T=L/2=Rw/2
y
1 2R
x2 +i1x
L
T1
T2
L-x
Ph E
Q x
h’ i1
第29页/共66页
c.竖曲线外距E:E=T2/2R
d.竖曲线上任一点竖距h: 因为
第25页/共66页
(3)直线及平曲线 表示左转弯的圆曲线
表示右转弯的圆曲线 (4)桩号 千米桩、百米桩、二十米整桩、曲 线要素点桩、构造物中心点以及加 桩。
第26页/共66页
(5)标高(与里程桩号点对应) 设计高程:路基边缘点设计高程 地面高程:原地面点中心点标高 填挖高度=设计高程-地面高程
正值为填高,负值为挖深
y —竖曲线上任一点到切线的竖 距,即竖曲线上任一点与坡线的高差。
第31页/共66页
c.竖曲线起终点桩号计算
起点:QD=BPD-T 终点:ZD=BPD+T
d.逐桩设计高程计算
T1
切线高程:Ht=i1x+HQD
设计高程:Hs=Ht±y 凹曲线取+,凸曲线取-
QD
L T2
ZD
E
i1
BPD
第32页/共66页
X轴为南北线,正向为 X150 北;Y轴为东西线,正
向为东
该坐标网表示距坐标网原点北150、东150单位(m)
第6页/共66页
(3)地貌、地物
地貌:用等高线表示。等高线越稠密, 表示高差越大,反之,高差越小。 相邻等高线高差为2m。 地物:用图例表示。常用图例见表 找出大的居民点、主要构造物。
道路路线

超高的大小用横坡度表示
公路等级 高速公路
10 6
一
二
三
8
四
一般地区(%) 积雪冰冻地区(%)
各级公路圆曲线部分的最大超高横坡度
计算行车速度(km/h) 超高横坡度(%) 2 3 4 5 6 7 8 9 10 120 ≥3240 ≥2160 ≥1620 ≥1300 ≥1080 ≥930 ≥810 ≥720 ≥650 100 ≥1710 ≥1220 ≥950 ≥770 ≥650 ≥560 ≥500 ≥440 ≥400 80 ≥1240 ≥830 ≥620 ≥500 ≥410 ≥350 ≥310 ≥280 ≥250 60 ≥810 ≥570 ≥430 ≥340 ≥280 ≥230 ≥200 ≥160 ≥125 40 ≥390 ≥270 ≥200 ≥150 ≥120 ≥90 ≥60 30 ≥230 ≥150 ≥110 ≥80 ≥60 ≥50 ≥30 20 ≥105 ≥70 ≥55 ≥40 ≥30 ≥20 ≥15
2.3 道路纵断面设计
竖曲线设计
竖曲线概念: 为了行车平顺,纵断面上相邻两条纵坡线的相交处(俗称转坡点或变坡点)通常用一段 曲线——二次抛物线连接起来,这条曲线称为竖曲线 竖曲线有两种形式:相邻两条纵坡线的交角(转坡角)ω为正值时,为凸形竖曲线;ω为负值时,为凹形 竖曲线。其计算式为: ω=ⅰ1 -ⅰ2 设计流程:
圆曲线上有超高时,按超高旋转轴绘出超高横坡度和左右路肩边缘连线;有加宽时,绘出加宽后
不设超 高的 最小半 径(m)
路拱≤2.0% 路拱>2.0%
各级公路的最小半径值
2.2 道路线形设计
缓和曲线
关键词:过渡线形、曲率均匀变化
缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由直线向圆曲线或 较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。它的主要特征是曲
3-1路线几何设计_道路平面设计

20
汽车行驶的横向稳定性与圆曲线半径
二、圆曲线
《规范》规定:各级公路不论转角大小,均应设置曲线。 圆曲线是路线上常采用的最简单的曲线。
(一)影响因素
圆曲线半径计算的一般公式
R=V2/127(μ ±i)
取整!
21
汽车行驶的横向稳定性与圆曲线半径
横向力系数
横向力和竖向力是反映汽车行驶稳定性的两个重要因素, 横向力是不稳定因素,竖向力是稳定因素。但大小相等 的横向力作用在不同的汽车上有不同的稳定程度,例如,
3
二、 汽车行驶轨迹与道路平面线形
1 汽车行驶轨迹 1) α=0 (不打方向盘)
角度为0时,汽车的行驶轨迹为直线;
-直线 --曲率半径为无穷大
2)α= 常数(等角速度ω打方向盘) -圆曲线--曲率半径为常数
角度不变时,汽车的行驶轨迹为圆曲线;
3)△α= 常数(打方向盘的角速度均匀变化) -缓和曲线--曲率半径为变数
R=V2/127(μ ±i)
μ=X/Ga = v2/gR ±io =V2/127R ± io---单位车重的横向力 ----横向力系数
关于μ 值:横向力存在,对行车会产生影响。主要表现为: (1)危及行车安全,使汽车产生侧滑或倾覆的危险
要求:u≤Ф 0 、u≤ b/2hg
(2)增加操纵困难, (3)增加燃料消耗和轮胎磨损, (4)行旅不舒适。
角度匀速变化时,汽车的行驶轨迹为缓和曲线。
导向轮旋转面与纵轴之间夹角
α
4
二、 汽车行驶轨迹与道路平面线形
行驶中的汽车,其轨迹在几何 性质上有以下特征: 1)轨迹是连续和圆滑的; --轨迹上任意一点不出现错头、折线、间断
2)曲率是连续的;
--轨迹上任意一点不出现两个曲率值 3)曲率的变化是连续的。 --轨迹上任意一点不出现两个曲率变化值
道路平面线型概述

一、道路平面线型概述一、路线道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。
路线:是指道路中线的空间位置。
平面图:路线在水平面上的投影。
纵断面图:沿道路中线的竖向剖面图,再行展开。
横断面图:道路中线上任意一点的法向切面。
路线设计:确定路线空间位置和各部分几何尺寸。
分解成三步:路线平面设计:研究道路的基本走向及线形的过程。
路线纵断面设计:研究道路纵坡及坡长的过程。
路线横断面设计:研究路基断面形状与组成的过程。
二、汽车行驶轨迹与道路平面线形(一)汽车行驶轨迹行驶中汽车的轨迹的几何特征:(1)轨迹连续:连续和圆滑的,不出现错头和折转;(2)曲率连续:即轨迹上任一点不出现两个曲率的值。
(3)曲率变化连续:即轨迹上任一点不出现两个曲率变化率的值。
(二)平面线形要素行驶中汽车的导向轮与车身纵轴的关系:现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。
二、直线一、直线的特点1、优点:①距离短,直捷,通视条件好。
②汽车行驶受力简单,方向明确,驾驶操作简易。
③便于测设。
2、缺点①线形难于与地形相协调②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。
③易超速二、最大直线长度问题:《标准》规定:直线的最大与最小长度应有所限制。
德国:20V(m)。
美国:3mile(4.38km)我国:暂无强制规定景观有变化≧20V;<3KM景观单调≦ 20V公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。
采用长的直线应注意的问题:公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。
(1)直线上纵坡不宜过大,易导致高速度。
(2)长直线尽头的平曲线,设置标志、增加路面抗滑性能(3)直线应与大半径凹竖曲线组合,视觉缓和。
(4)植树或设置一定建筑物、雕塑等改善景观。
道路路线平面设计PPT课件

.
32
.
33
4.1.3.2 超高构成
从直线上的不设超高过渡到圆曲线上的全超高,有两种构成方式, 即绕未加宽前的路面内边缘旋转和绕线路中心线旋转。如图4-7。
.
34
4.1.3.3 超高缓和段 从直线上的路拱双坡横断面变为曲线段的具有全超高的单坡横
断面的渐变过程,这一变化段称为超高缓和段(见图4-6)。
但是,当ib很大时,行车速度低于设计速度或因故停车时,汽车 由于重力作用,会有向路面内侧下滑的倾向,特别是当冬季路面冰 冻或雨季路面泥泞湿就更危险。因此,ib的容许值应依据道路所在 地区的气候条件、地形等因素来决定。
.
24
为了保证低速车在恶劣的气候条件下能安全行驶不致有下滑的危 险性,则超高的最大容许值ib必须满足以下条件。即
0.18
0.16
0.14
美国
0.12
日本
0.10
德国
0 20 40 60 80 100 120 140 v/(km/h)
图4-5设计车速与横向力系数关系
.
23
(2)最大超高率
汽车以一定的设计速度在曲线上行驶的稳定性是由路面超高横 坡度和路面与轮胎之间横向附着力共同保证的。若取得较大的向心 力来平衡离心力,就需较大的超高度ib,以保证行车的稳定性。
127( ib)
式中:v—计算行车速度,km/h; —横向力系数; ib—路面超高横坡度,%。
在指定的设计车速下,极限最小半径Rmin决定于可以容许的最大 横向系数 ma和x 该曲线的最大超高度 ib max
最小半径
V2
Rmin12(7maxibma)x
.
18
对于 和 max 做ib m如ax 下讨论: