科学与工程计算有限元

合集下载

有限元法概述

有限元法概述

大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。

有限元边界条件定义

有限元边界条件定义

有限元边界条件定义有限元方法是一种常用的数值分析方法,用于解决工程和科学领域中的各种物理问题。

在使用有限元方法进行计算之前,需要定义适当的边界条件。

边界条件是指在计算区域的边界上所施加的约束条件,用于模拟真实世界中的物理现象。

本文将详细介绍有限元边界条件的定义和应用。

1. 强制边界条件强制边界条件是指在计算区域的边界上施加的已知值或已知函数。

这些边界条件通常是由实验数据、分析解或其他先验知识提供的。

强制边界条件可以是以下几种类型:1.1 固定边界条件固定边界条件是指在计算区域的边界上施加的位移或变形的已知值。

例如,当我们研究一个悬臂梁的弯曲问题时,可以将梁的一端固定在原点,这样就施加了一个固定边界条件。

1.2 力边界条件力边界条件是指在计算区域的边界上施加的外力或力密度的已知值。

例如,当我们研究一个杆件的拉伸问题时,可以在杆件的一端施加一个已知的拉力,这样就施加了一个力边界条件。

1.3 热边界条件热边界条件是指在计算区域的边界上施加的温度或热流的已知值。

例如,当我们研究一个热传导问题时,可以在物体的表面上施加一个已知的温度,这样就施加了一个热边界条件。

2. 自然边界条件自然边界条件是指在计算区域的边界上施加的无约束条件。

这些边界条件通常是由物理现象本身决定的,不需要额外的输入。

自然边界条件可以是以下几种类型:2.1 自由边界条件自由边界条件是指在计算区域的边界上不施加任何约束条件。

例如,当我们研究一个流体力学问题时,可以将流体的边界设置为自由边界,这样流体可以自由地进出计算区域。

2.2 绝缘边界条件绝缘边界条件是指在计算区域的边界上施加的无热流或无质量流的条件。

例如,当我们研究一个热传导问题时,可以将物体的边界设置为绝缘边界,这样热量不能通过边界传递。

2.3 对称边界条件对称边界条件是指在计算区域的边界上施加的关于某个轴对称的条件。

例如,当我们研究一个结构的弯曲问题时,可以将结构的边界设置为对称边界,这样只需要计算一半的结构即可。

有限元计算效率 超算 电脑配置表

有限元计算效率 超算 电脑配置表

有限元计算是一种用于工程和科学领域的数值分析方法,通过将复杂的物理系统离散化为有限数量的简单元素,然后利用计算方法对这些元素进行求解,以模拟和分析物理系统的行为。

有限元计算广泛应用于结构分析、流体力学、热传递和电磁学等领域,因其高精度和灵活性而受到了广泛关注。

然而,有限元计算的复杂性和计算量往往使得其计算效率较低,尤其是对于大规模的工程和科学计算问题而言。

为了提高有限元计算的效率,超级计算机(Supeputer)成为了一种重要的解决方案。

超级计算机是一种拥有大规模并行处理能力的计算机系统,能够同时进行大量的计算操作,从而加快计算速度并提高计算效率。

通过超级计算机的并行计算能力,有限元计算可以在短时间内完成大规模计算任务,这在科学研究和工程实践中具有非常重要的意义。

而要充分发挥超级计算机的计算能力,良好的电脑配置表也是不可或缺的。

电脑配置表(Specification)是指计算机硬件和软件的详细参数和规格清单,包括处理器(CPU)、内存(RAM)、硬盘(HDD/SSD)、显卡(GPU)等硬件设备的型号、规格和性能指标,以及操作系统和其他软件的版本和配置信息。

在进行有限元计算和利用超级计算机进行大规模并行计算时,合理的电脑配置对于充分利用超级计算机的性能和提高计算效率至关重要。

接下来,我们将从有限元计算效率、超级计算机和电脑配置表三个方面展开讨论,分析它们之间的关系和如何提高有限元计算的效率。

一、有限元计算效率有限元计算的效率直接决定了计算任务的完成时间和计算成本。

在工程领域,有限元分析被广泛应用于结构强度、热力学特性、振动和断裂等问题,这些工程问题往往涉及到大规模的复杂结构和较长的时间跨度,计算量庞大,要求高效的数值方法和计算技术。

提高有限元计算的效率是工程和科学研究中的重要问题之一。

要提高有限元计算的效率,需要综合考虑多个方面的因素。

合理的数值算法和计算模型是提高计算效率的关键。

针对不同的物理问题和计算需求,需要选择合适的数值方法和计算模型,通过优化求解算法和改进模型参数来提高计算的收敛速度和精度。

有限元法基础ppt课件

有限元法基础ppt课件

有限单元法
一、数值模拟方法概述 二、有限单元法简介 三、有限单元法分析步骤 四、利用有限元软件进行工程分析
一、数值模拟方法概述
工程技术领域中的许多力学问题和场问题,如固 体力学中的位移场、应力场分析、电磁学中的电磁 分析、振动特性分析、热力学中的温度场分析,流 体力学中的流场分析等,都可以归结为在给定边界 条件下求解其控制方程的问题。
结构矩阵分析方法认为:整体结构可以看作是由有限 个力学小单元相互连接而组成的集合体,每个单元的 力学特征可以看作建筑物的砖瓦,装配在一起就能提 供整体结构的力学特性。
结构矩阵分析方法分析的结构本身都明显地由杆件组 成,杆件的特征可通过经典的位移法分析建立。
虽然矩阵位移法整个分析方法和步骤都与有限单元法 相似,也是用矩阵来表达、用计算机来求解,但是它 与目前广泛应用的有限单元法是有本质区别的。
❖ 国际上早在20世纪50年代末、60年代初就投入大量的人力和 物力开发具有强大功能的有限元分析程序。其中最为著名的是 由美国国家宇航局(NASA)在1965年委托美国计算科学公司 和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系 统发展至今已有几十个版本,是目前世界上规模最大、功能最 强的有限元分析系统。
有限元法
既可以分析杆系结构,又分析非杆系的连续 体结构。
三、有限单元法简介
有限单元法的常用术语:
有限元模型 是真实系统理想化的数学抽象。
定义
真实系统
有限元模型
自由度(DOFs- degree of freedoms)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
目前在工程技术领域内常用的数值模拟方法有: 1、有限单元法FEM( Finite Element Method) 2、边界元法BEM(Boundary Element Method ) 3、有限差分法FDM( Finite Difference Method 4、离散单元法DEM(Discrete Element Method) 其中有限单元法是最具实用性和应用最广泛的。

有限元法概述

有限元法概述
但真正的应用实际问题是到1960年以后,随着电子数 值计算机的广泛应用和发展,有限单元法的发展速度才显 著加快。现代有限元法第一个成功的尝试,是将刚架位移 法推广应用于弹性力学平面问题,这是Turner,Clough 等人在分析飞机结构时于1956年得到的成果。他们第一 次给出了用三角形单元求得平面应力问题的正确解答。
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。

有限元方法

有限元方法

有限元方法求解微分方程,特别是椭圆型边值问题的一种离散化方法,其基础是变分原理和剖分逼近。

有限元方法是传统的里茨-加廖金方法的发展,并融会了差分法的优点,处理上统一,适应能力强,已广泛应用于科学与工程中庞大复杂的计算问题。

作为有限元方法出发点的变分原理,是表达物理基本定律的一种普遍形式。

其表述可概括如下:给出一个依赖物理状态v的变量J(v)(v是函数,J(v)在数学上称为泛函),同时给出J(v)的容许函数集V,即一切可能的物理状态,则真实的状态是V中使J(v)达到极小值的函数。

剖分逼近是有限元离散化的手段,把问题的整体(即求解域)剖分为有限个基本块,称为"单元",然后通过单元上的插值逼近,得到一个结构简单的函数集,称为"有限元空间",它一般是容许函数集V的子集或有某种联系。

有限元方法就是在这个有限元空间中寻找J(v)的极小解作为近似解。

典型问题为具体说明有限元方法,讨论二维有界域Ω上的椭圆型方程, (1)变系数β表示介质不均匀。

物理学中许多平衡态或定常态问题都可归结为这个典型方程。

与方程(1)相配的有如下三类边界条件:第一类:;第二类:;第三类:。

这里的φ、g及α均为定义在边界дΩ上的已知函数,表示外法向导数,第二类边界条件是第三类当α=0时的特例。

为说明有限元方法能统一处理复杂的情况,假定讨论的问题是混合边值,并且介质有间断,即дΩ分成Г0和Г1两部分,分别有边界条件, (2),(3)β(x,y)有间断线,把Ω分为Ω-,Ω+两部分,在间断线上微分方程(1)无定义,而代之以接触条件, (4)及表示间断线上分别指向Ω+及Ω-的法向导数。

变分原理与微分方程(1)及附加条件(2)、(3)、(4)的边值问题相对应的是物理学中的极小能量原理。

构造"能量积分"并取J(v)的容许函数集V为一切满足边界条件(2)且一阶偏导数平方可积的函数,则使J(v)达到极小值的u,即,(6)也必满足方程(1)及(2)、(3)、(4)。

有限元方法的发展及应用

有限元方法的发展及应用

有限元⽅法的发展及应⽤有限元⽅法的发展及应⽤摘要:有限元法是⼀种⾼效能、常⽤的计算⽅法。

有限元法在早期是以变分原理为基础发展起来的,所以它⼴泛地应⽤于以拉普拉斯⽅程和泊松⽅程所描述的各类物理场中。

⾃从1969年以来,某些学者在流体⼒学中应⽤加权余数法中的迦辽⾦法或最⼩⼆乘法等同样获得了有限元⽅程,因⽽有限元法可应⽤于以任何微分⽅程所描述的各类物理场中,⽽不再要求这类物理场和泛函的极值问题有所联系。

基本思想:由解给定的泊松⽅程化为求解泛函的极值问题。

1有限元法介绍1.1有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是⽤较简单的问题代替复杂问题后再求解。

它是起源于20世纪50年代末60年代初兴起的应⽤数学、现代⼒学及计算机科学相互渗透、综合利⽤的边缘科学。

有限元法的基本思想是将求解域看成是由许多称为有限元的⼩的互连⼦域组成,对每⼀单元假定⼀个合适的(较简单的)近似解,然后推导求解这个域总的满⾜条件(如结构的平衡条件),从⽽得到问题的解。

这个解不是准确解,⽽是近似解,因为实际问题被较简单的问题所代替。

由于⼤多数实际问题难以得到准确解,⽽有限元不仅计算精度⾼,⽽且能适应各种复杂形状,因⽽成为⾏之有效的⼯程分析⼿段。

有限元法最初应⽤在⼯程科学技术中,⽤于模拟并且解决⼯程⼒学、热学、电磁学等物理问题。

1.2有限元法优缺点有限元⽅法是⽬前解决科学和⼯程问题最有效的数值⽅法,与其它数值⽅法相⽐,它具有适⽤于任意⼏何形状和边界条件、材料和⼏何⾮线性问题、容易编程、成熟的⼤型商⽤软件较多等优点。

(1)概念浅显,容易掌握,可以在不同理论层⾯上建⽴起对有限元法的理解,既可以通过⾮常直观的物理解释来理解,也可以建⽴基于严格的数学理论分析。

(2)有很强的适⽤性,应⽤范围极其⼴泛。

它不仅能成功地处理线性弹性⼒学问题、费均质材料、各向异性材料、⾮线性应⽴-应变关系、⼤变形问题、动⼒学问题已及复杂⾮线性边界条件等问题,⽽且随着其基本理论和⽅法的逐步完善和改进,能成功地⽤来求解如热传导、流体⼒学、电磁场等领域的各类线性、⾮线性问题。

科学计算与数据分析

科学计算与数据分析

科学计算与数据分析科学计算与数据分析是现代科学和工程领域中不可或缺的基础工具之一。

随着计算机技术的发展,科学计算与数据分析的重要性也越来越体现出来。

本文将详细介绍科学计算与数据分析的概念、方法以及在各领域的应用。

一、科学计算的概念和方法科学计算是指利用计算机进行数值仿真、实验和计算的过程。

科学计算的主要方法包括有限元方法、有限差分法、有限体积法等。

有限元方法是一种数学方法,常用于求解各种工程问题。

有限差分法是求解偏微分方程的有效方法,适用于求解各种宏观和微观力学问题。

有限体积法是一种流场数值计算方法,适用于求解各种气动、水动力学问题。

科学计算的过程分为三个步骤:建模、计算和分析。

建模是指将实际问题抽象成数学模型的过程,计算是指使用计算机对建立的数学模型进行计算仿真,分析则是将计算结果与实际情况进行比较,验证计算结果的准确性。

科学计算的精度和准确性对于科学研究和工程设计非常重要。

近年来,机器学习和人工智能等新方法也为科学计算带来新的方向和发展。

二、数据分析的概念和方法数据分析是指通过计算机处理和分析数据,发现数据中的规律和趋势的过程。

数据分析的主要方法包括数据挖掘、机器学习、人工智能等。

数据挖掘是利用计算机处理海量数据,提取有用信息的过程。

机器学习是利用计算机对数据进行学习和预测的方法。

人工智能则是将计算机技术应用到人类智能领域,实现机器智能的过程。

数据分析的过程分为四个步骤:采集、清洗、分析和应用。

采集是指收集和整合数据的过程,清洗是指清除数据中的错误和噪声,分析则是对大量数据进行处理和分析,应用则是将分析结果应用于实际业务和决策中。

数据分析的应用范围非常广泛,包括金融、医疗、社交媒体等领域。

三、科学计算和数据分析在各领域的应用科学计算和数据分析是现代科技各领域中不可或缺的工具,在以下几个领域中得到广泛应用。

1. 工程设计:工程设计需要进行各种仿真计算,以及数据分析预测,如建筑工程的有限元分析、机械工程的动力学仿真、电子工程的电磁仿真等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档