人教高中数学选修 第一讲 整数的整除一整数的整除 课件

合集下载

第一讲整数的整除性

第一讲整数的整除性

第一讲 整数的整除性一、整除的概念·带余除法我们知道两个整数的和、差、积仍然是整数,但是用一不等于零的整数去除另一个整数所得的商却不一定是整数,因此我们引入整除的概念:定义1 设a ,b 是整数,b ≠ 0,如果存在整数q ,使得a = bq成立,则称b 整除a (或a 能被b 整除),记作a ∣b 。

此时,称a 是b 的倍数,b 是a 的约数(或因数)。

如果上述q 不存在,我们就说b 不整除a 或a 不能被b 整除,记作|b a /。

显然每个非零整数a 都有约数 ±1,±a ,称这四个数为a 的平凡约数,a 的另外的约数称为非平凡约数。

下面我们来讨论关于整除的基本性质.定理1(传递性) 如果a ,b 和c 是整数,且a ∣b ,b ∣c ,则a|c.证明因为a ∣b ,b ∣c ,所以存在整数e 和f ,使得b=ae ,c=bf .因此c=bf=(ae )f=a (ef ),从而得到a|c.例如,11|66而66|198,由上述定理可知11|198.定理2 如果a, b, c ,m ,n 为整数且c ∣a,c ∣b,则c ∣(ma+nb )证明 因为c ∣a ,c ∣b ,所以存在整数e 和f ,使得a=ce ,b=cf .因此 ma+nb=m (ce )+n (cf )=c (me+nf ),从而得到c ∣(ma+nb )定理3 如果a|b,c|d, 则ac|bd .下面的定理是关于整除性的一个重要结论.定理4(带余除法)如果a 、b 是整数且b≠0,则存在唯一的整数q 和r ,使得a=bq+r ,(0||r b ≤<).证明 (存在性)(i)当b>0时,作整数序列…,-3b,-2b,-b ,0,b ,2b ,3b, …若a 与上面序列中的某一项相等,则a=bq ,即a=bq+r,r=0.若a 与上面序列中的任一项都不相等,则a 必在此序列的某相邻两项之间,即有确定的整数q ,使bq<a<b(q+1).令r a bq =-,则0r b ≤<(ii )若0b <,则||0b >.由(i)知,存在整数s,t 满足||a b s t =+且0||t b ≤<.又因||b b =-,所以a bs t =-+.取q s =-,r t =,则有a bq r =+且0||r b ≤<.(惟一性)假设有两对整数q '、r '与q ''、r ''满足a = q ''b + r '' = q 'b + r ',0 ≤ r ', r '' < |b |,则 (q '' - q ')b = r ' - r '',因0 ≤ r ', r '' < |b |,所以|r ' - r ''| < |b |, 从而| (q '' - q ')b|= |q '' - q '||b|< |b|, 即|q '' - q '|<1,故|q '' - q '|=0 即q '' = q ' 从而r ' = r ''。

第1讲 数的整除(1)

第1讲   数的整除(1)

第一讲数的整除(1)【知识梳理】1、整除的定义:对于整数a和不为零的整数b,如果a除以b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记做b a。

a就是b的倍数,b是a的因数(或因数)。

2、一些数的整除特征:①被2整除的特征:数的个位上是0、2、4、6、8(即是偶数);②被3、9整除的特征:数的各数位上的数字和是3或9的倍数;③被5整除的特征:数的个位上是0、5;④被4、25整除的特征:数的末两位是4或25的倍数;⑤被8、125整除的特征:数的末三位是8或125的倍数;⑥被11整除的特征:数的奇数位上的数字和与偶数位上的数字和,两者的差是11的倍数。

【例题精讲】例1、按要求写出符合要求的数:一个四位数467□。

(1)要使它是2的倍数,这个数可能是();(2)要使它是5的倍数,这个数可能是();(3)要使它既含有因数2,又含有因数5,这个数是()。

分析:个位上是0、2、4、6、8的数是2的倍数数;个位上是0或5的数是5的倍数;个位上是0的数,能同时被2和5整除。

解答:(1)这个数可能是4670、4672、4674、4676、4678。

(2)这个数可能是4670、4675。

(3)这个数是4670。

例2、判断47382能否被3或9整除?分析:能被3或9整除的数的特点是这个数各数位上的数字和是3或9的倍数。

47382各个数位的数字相加和是24,24是3的倍数但不是9的倍数。

解答:47382能被3整除,不能被9整除。

例3、判断:1864能否被4整除?分析:能被4整除的数的特点是这个数的末两位是4的倍数, 1864的末两位是64,64是4的倍数。

能被125整除的数的特点是这个数的末三位是125的倍数,29375的末三位是375,375是125的倍数。

解答:1864能被4整除,29375能被125整除。

例4、29372能否被8整除?分析:能被125整除的数的特点是这个数的末三位是8的倍数,29372的末三位是372,372不是8的倍数。

第一节 整除意义、特征和性质

第一节 整除意义、特征和性质

第一讲数的整除第一节整除的意义与特征、性质第1课时教学内容:整除的意义与常用数的整除特征。

教学目标:理解整除的意义,掌握常用数的整除特征,并能运用特征判断。

教学重难点:理解掌握常用数的整除的特征。

教学过程:一、整除的意义当两个整数a和b(b≠0),a除以b商为整数余数为零时,则称a能被b整除或b能整除a,也把a叫做b的倍数,b叫a的因数,记作b|a,如果a 除以b所得的余数不为零,则称a不能被b整除,或b不整除a,记作b|a.二、整除特征(1)1与0的特性:1是任何整数的因数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的个位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的各位数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的个位是0或5,则这个数能被5整除。

(6)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

(7)若一个整数的各位数字和能被9整除,则这个整数能被9整除。

(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

(9)如果一个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7(11、13)整除,这个数就能被7(11、13)整除。

三、例题讲解例1:(1)判断47382能否被3或9整除?(2)判断1548764能否被7整除?(3)判断42559,7295872能否被11整除?解:(1)4+7+3+8+2=24 3|24, 9|24∴3|47382, 9|47382(2)1548-764=784=7×112 7|784 ∴ 7|1548764(3)(4+5+9)―(2+5)=18―7=11∴11|42559(7+9+8+2)―(2+5+7)=26―14=12 11|12 ∴11|7295871小结:判断一个整数能否被另一个整数整除,充分考虑整除的特征,这样有利于我们去判断。

第一讲数的整除

第一讲数的整除

第一讲数的整除一、基础知识:1、能被4(25)、8(125)、3(9)、7(11)(13)整除的数的特征;4(25):;8(125):;3(9):;7(11)(13):。

2、分解质因数:。

二、例题:例1、一个六位数568abc分别能被3、4、5整除,这个六位数最小是多少?例2、六年级有72名学生捐款(处辨认不清),每人捐款例3、六位数能被66整除,找出所有这样的六位数;例4、一个2004位数A能被9整除,它的各位数字之和为a,a的各位数字之和为b,b的各位数字之和为c,求c是多少?例5、要使932×975×995×()的积的最后五个数字都是0,那么在括号内最小应该填几?例6、四个班分一批图书,他们所得的本数一个班比一个班多3本,四个班分得图书本数之积是68040。

每个班各分得图书多少本?例7、24有多少个约数?这些约数的和是多少?24=23×3 约数个数=(3+1)×(1+1)=-1 31+1–1×=3-1三、练习:a)四位数8A1B能被2、3、5整除,问这些四位数是多少?b)能同时被2、9整除,填出c)已知六位数19 能被35整除,那么这个六位数是多少?d)84×300×365×(),要使这个连乘积的最后五个数字都是0,在括号里最小应填什么数?e)五个连续奇数的积是135135,这五个奇数的和是多少?四、作业:1、数学考试结果,某班学生中有1/3得优,3/7得良,其余得中或差,已知全班人数在40与60之间,得中或差的学生有多少人?2、一个六位数能被11和13整除,这个六位数所有的质因数的和是多少?3、四个连续自然数的积是3024,这四个自然数分别是多少?4、求4500的约数个数及所有约数的和是多少?五、思考题:在3×3的方格图中填入几个互不相同的自然数,如果每行、每列三个数相乘所得的六个乘积都等于n,那么(1)n可以是1996、1997、1998、1999、2000、2001、2002、2003这八个数中的哪些数?(2)在下面方格中填出一n=第二讲余数问题一、基础知识:1、被除数=除数×商+余数;除数=(被除数-余数)÷商2、余数要比除数小。

第一讲整数奇偶性与整除性

第一讲整数奇偶性与整除性

互素(互质)。这是数论中的非常重要的一个概念.

同样,如果对于多个(不全为零)的整数a,b,…c,
可类似地定义它们的最大公约数(a,b,…c). 若(
a,b,…c)=1,则称a,b,…c互素. 请注意,此时不能推 出a,b,…c两两互素;但反过来,若(a,b,…c)两两互素
,则显然有(a,b,…c)=1.
• 最小公倍数主要有以下几条性质: • 1)a与b的任一公倍数都是[a,b]的倍数,对于多于两个数
的情形,类似结论也成立; • 2)两个整数a,b的最大公约数与最小公倍数满足:
(a,b)[a,b]=|ab|(但请注意,这只限于两个整数的情形, 对于多于两个整数的情形,类似结论不成立); • 3)若a,b,…,c两两互素,则[a,b,…,c]=| a·b·…·c|; • 4)若a|d,b|d,……,c|d且两两互素,则a·b·…·c|
由于d+c与d-c的奇偶性相同, 当d+c与d-c同为奇数时,(d+c)(d-c)为4k+1型; 当d+c与d-c同为偶数时,(d+c)(d-c)为4k型;
均不能为4k+2型. 所以当ab是奇数时,一定不存在正整数使得a2+b2+c2=d2成立.
二 · 整除
在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是
初等数论 代数 几何
组合初步
目录
数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO试题中 有5道与数论有关。
数论的魅力在于它可以适合小孩到老头,只要有算术基础的 人均可以研究数论――在前几年还盛传广东的一位农民数学爱好 者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。可是这 也说明了最难的数论问题,适合于任何人去研究。

第一讲:整除与整数的性质

第一讲:整除与整数的性质

第一讲 整除与整数的性质【知识点金】一.整数的基本性质1.整数集关于加、减、乘运算的封闭性,即整数的和、差、积仍为整数(两个整数的商不一定是整数)。

2.奇数和偶数的简单性质能被2整除的整数称为偶数,可表示为2n ()n Z ∈形式;不能被2整除的整数称之为奇数,可表示为21n -()n Z ∈形式。

对于奇数和偶数有以下性质:(1)任意多个偶数的和、差、积仍为偶数; (2)奇数个奇数的和、差仍为奇数; (3)偶数个奇数的和、差为偶数; (4)奇数与偶数的和为奇数,其积为偶数;(5)若有限个整数之积为奇数,则其中每个整数都是奇数;有限个整数之积为偶数,则这些整数中至少有一个是偶数;3.整数集的离散性两个连续整数之间不再有其他整数,两个连续整数的完全平方数之间不存在 完全平方数。

任一个整数有限集中必有最大数和最小数。

二.整除的定义和基本性质1.定义:设a 、b 是整数(0)b ≠,若存在整数q ,0q ≠,使a bq =,则称b 整除a ,或a 能被b 整除,记为b a ,这时b 叫做a 的因数或约数,a 叫做b 的倍数。

2.整除的基本性质(1)若b a ,则()b a -,b a -,()()b a --,b a ; (2)若a b ,b c ,则a c ;(3)若,,,a b c m Z ∈,且a b ,a c ,则()a b c ±,a mb ,a mc ,()a m b c ±。

事实上可推广到一般情形:若,,i i a b x Z ∈(1,2,,)i n =,且i a b ,则1ni i i a b x =∑;(4)设,a b Z ∈,且a b ,则对于任何m Z ∈,都有am bm ;反之,若am bm ,则a b 。

(5)若a b <,且b a ,则0a =; (6)若a 、b 互素,且a bc ,则a c ;(7)若p 是素数,且1ni i p a =∏,则至少有一个i a ,使得i p a (1)i n ≤≤;(8)若12,,,n a a a 两两互素,且i a A ,1,2,,i n =,则1ni i a A =∏;例1.求证:如果P 和2P +都是大于3的素数,那么6是1P +的因数。

人教版高中数学选修4-6《整除的概念》

人教版高中数学选修4-6《整除的概念》

a
i 1
m
i
b j 中,除某一项外,其
j 1
n
余各项都能被c整除,则这一项也能被c整除。
常用结论:
(1)设p为素数 ,若p ∣ b a ,则p ∣a 或 p ∣b . (2) p|a 或 (p,a)=1 .
(3)素数判定法则:
p a pa
2
设n是一个正整数,如果对所有的素数p≤ 都有p n,则n一定是素数.
2
例4 设正整数d 不等于2,5,13,证明集合 得a b-1 不是完全平方数。
2,5,13.d 中可以找到两个数a ,b ,使
二、整除
• 1、定义:设a,b是整数,b≠0。如果存在一个整数q使得等式: a=bq 成立,则称b能整除a或a能被b整除,记b∣a; 如果这样的q不存在,则称b不能整除a,记为b a。
a1 , a2 , 例2 设n 为奇数, ,n 的任意一个排列, 证明 (a 1)(a 2) (a n)
1 2 n
, an
是1,2,
必是偶数。
例3 将正方形ABCD分割成 n 个相等 的小方格(n 是正整数),把相对的顶 点A,C染成红色,B,D染成蓝色,其他 交点任意染成红蓝两色中的一种颜色, 证明:恰有三个顶点同颜色的小方格的 数目必是偶数。
ab b
a (b1)
2
a ( b 2)
... 2 1)
a
当n为素数时, 22 – 1=3, 23 – 1=7, 24 – 1=31, 27 – 1=127 都是素数, 而 211 – 1 = 2047 = 23 x 89 是合数.
设P为素数, 称如 2p–1的数为梅森(Matin Merdenne)数.
2、整除的性质

人教版高三数学选修4-6全册课件【完整版】

人教版高三数学选修4-6全册课件【完整版】

引言
人教版高三数学选修4-6全册课件 【完整版】
第一讲 整数的整除
人教版高三数学选修4-6全册课件 【完整版】
一 整除
人教版高三数学选修4-6全册课件 【完整版】
1.整除的概念和性质
人教版高三数学选修4-6全册课件 【完整版】
2.带余除法
人教版高三数学选修4-6全册课 件【完整版】目录
0002页 0078页 0197页 0225页 0257页 0271页 0289页 0307页 0358页 0376页 0408页 0442页 0444页 0512页 0529页
引言 一 整除 2.带余除法 二 最大公因数与最小公倍数 2.最小公倍数 第二讲 同余与同余方程 1.同余的概念 二 剩余类及其运算 四 一次同余方程 六 弃九验算法 一 二元一次不定方程 三 多元一次不定方程 一 信息的加密与去密 学习总结报告 附录二 多项式的整除性
人教版高三数学选修4-6全册课件 【完整版】
3.素数及其判别法
人教版高三数学选修4-6全册课件 【
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.通过将大化小,让学生自由讨论,教师 恰如其分的指出素数.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
情感态度与价值观
1.通过对整除的认识和学习,能够体会数 学中的联系与结合,有利于理解和掌握.
2.将知识应用到现实生活中. 3.培养合作交流意识.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
实例
如:3的正因数只有1和3所以3为 素数;6的正因数有1、2、3、6所以 由定义知6为合数. 思考:最小的素数和最小的合数各是几?
最小的素数是:2 最小的合数是:4
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
想一想 如何判 断一个 数是不 是素数
如果大于1的整数a不能
被所有不超过 a 的素数整
知识回顾
以前学过的整数加法、减法、乘 法有什么特点?整数除法的商又是怎 样的? 整数的加法、减法、乘法运 算得到的结果任然为整数.两个 整数的商不一定是整数.
×B=C,那么C÷B=A或C÷A=B
也就是说乘法和除法是互逆的 运算.
例如:
13×2 = 26
26÷2 = 13 26÷13 = 2
( 9、12、20 )
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
定义
仅有两个正因数的正整数叫做素 数,不是素数又不是1的正整数叫做 合数.1既不是素数,也不是合数.
自然数
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
素数 1 合数
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
素数及其判别方法
自然数 1 2 5 9 11 12 17 20
正因数
1 1、2 1、5 1、3、9 1、11 1、2、3、4、6、12
1、17 1、2、4、5、10、20
★只有一个约数的:
(1

★只有两个约数的:
(2、5、11、17 )
★有两个以上约数的:
共六条鱼,平均一只猫咪得几条鱼?
若是再多一条鱼,平均一只猫咪又各 得几条鱼呢?
想一想
在上一页第一种情况下,平均每 只猫咪得到 6÷2 = 3(条);第二种 情况下每只猫咪在得到3条鱼后还剩一条,就是 说这种情况下鱼并不能平均分给两只猫咪. 生活中这样的例子还有很多,我们从数 学的角度该怎样理解,又怎样定义呢?它们 又有怎样的性质?下面我们将具体的分析.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
教学重难点
重点
整除、公因子、素数的概念及性质,剩 余定理,求最大公因子的方法,整数的素数 分解定理.
难点
函数[x]、{x}的概念及其应用.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
实例
32除以某个整数,其商为5,求除数和余数. 解析:
解:设除数为b,余数为r则
由此可得 所以 因此
32=5b+r,0≤r<b. 5b ≤ 32<6b 32/6 < b ≤ 32/5 b=6,r=2
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
总结
能被非零整数n整除的数是n的倍数, 能整除n的整数是n的因数.
如12可被2整除,12是2的倍数,2是
12的因数.
想一想4的所 有因数有哪些
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
观察
12,21,24,30,33,51可同时被什么数整除, 有什么规律?
分析:以上6个数均可同时被3整除,并且各位 数字之和也能被3整除.
由此猜想:一个正整数的各位数字之和能被3 整除,那么这个正整数能被3整除.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
48÷24 = 2
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
整除的概念
一般地,设a, b为整数,且b ≠0.如果 存在q ,使得a = b q ,那么称b整除a , 或者a能被b整除,记做b | a .并且称b 是a的因数, a是b的倍数.如果这样的整数 q不存在,就称b不整除a ,记做b a.
带余除法
在生活中并不是什么情况下都可以整除, 很多情况都是不能除尽的.如:13÷2=6…1,在 整数集中这种表示法依然成立,叫做带余除法 (或欧氏除法算式).
一般地,设a,b为整数,且b≠0 , 则存在惟一的一对整数q和r,使得 a=bq+r,0≤r<︱b︱.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
整数的概念和性质
依以前学过的知识中我们知道加法与减
法、乘法和除法是可互逆的运算.
A×B = C
C÷B =A 或
C÷A = B
在这里我们假设A、B、C全是整数.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
实例
24×2 = 48
48÷2 =24 或
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
小练习
根据整除的概念判断下列式子正确与否: (1) 3|-9 ( √ ) (2) 2|4 ( √ )
(3) -2|6 ( √ ) (3) 5|16 ( × )
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
第一讲整数的整除
教学目标
知识与能力
1.在熟悉整数的基础上充分理解整除 的概念和性质;熟练掌握带余除法的运算, 且能进行运算.
2.理解什么是素数的概念,并掌握素数 的判别方法.
过程与方法
1.通过复习以前的乘法、除法的知识,让 学生合作探讨,老师启迪,自然引出整除的概 念及性质.•
2.在整除的基础上通过生活中的实例,引 导学生考虑不能整除的情况,并让学生自己进 一步思考不能整除情况的解决方法并总结带余 除法的概念.
相关文档
最新文档