知识点 完全平方公式(填空)
完全平方公式及答案完整版

完全平方公式及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】完全平方公式(一)知识点:1.完全平方公式:=+2)(b a ;=-2)(b a 2.特点:左边:右边:例1:(1)2)2(y x - (2)2)32(b a - (3)2)21(b a +- (4))32)(23(x y y x -- 变式:1、判断正误:对的画“√”,错的画“×”.(1)(a+b)2=a 2+b 2;( ) (2)(a-b)2=a 2-b 2;( )(3)(a+b)2=(-a-b)2;( ) (4)(a-b)2=(b-a)2.( )2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、下列计算正确的是( )A 、9124)32(22--=-x x xB 、424)22(222y xy x y x ++=+ C 、22))((b a b a b a -=--- C 、22244)2(y xy x y x +-=--4、(a+3b)2-(3a+b)2计算的结果是( ).(a-b)2 (a+b)2 C.8b 2-8a 2 D.8a 2-8b 25、(1)2)21(y x - (2)2)3(b a -- (3)2)212(+-a (4)2)(z y x +- 例2:(1)(3a+2b)2-(3a-2b)2 (2)(x 2+x+6)(x 2-x+6) (3)(a+b+c+d)2变式 :(1))4)(2)(2(22y x y x y x --+ (2)22)321()321(b a b a +- (3)22)2()2)(2()1(++-+-+x x x x 其中x=-2(4)化简求值:22)2()2()2)(12(+---+-x x x x ,其中23-=x 例2;(1)如果x 2+kx+81是一个完全平方式,那么k 的值是( ).B.-9C.9或-9 或-18(2)2216y mxy x ++是完全平方式。
完全平方公式(第2课时)

初三数学导学案课题:完全平方公式(二)一、学习目标:能熟练掌握平方差公式和完全平方公式及其相关计算。
二、学习过程:复习回顾:1、叙述完全平方公式的内容并用字母表示;叙述平方差公式的内容并用字母表示;2、用简便方法计算(1)1022(2)(3x-2y)2(3)(3x+2y)(3x-2y) (4) (100+1)(100-1)3、请同学们各编一个符合平方差公式、完全平方公式结构的计算题,并算出结果.【知识应用与能力形成】例1:计算(x-2y)(x+2y) –(x+2y)2 + 8y2(1)思考: 此题能使用几个公式?用同桌讲一讲,然后完成此题。
(2)解: (x-2y)(x+2y) –(x+2y)2 + 8y2===(3)总结一下解此题的收获。
例2 计算:(a+2b+3c)(a+2b-3c)解:(a+2b+3c)(a+2b-3c)=[(a+2b)+3c][(a+2b)- 3c]=(a+2b)2-(3c)2=思考:用以上办法计算(a+2b+3c)2(把a+2b看做公式中的a,把3c看做公式中的b)三.达标检测1、填空:(1)a+b+c=( )+c; (2)a-b+c=( )+c;(3)-a+b-c=-( )-c; (4)-a-b+c=-( )+c;(5)a+b-c=a+( ) (6)a-b+c=a-( );(7)a-b-c=a-( ); (8)a+b+c=a-( ).2运用乘法公式计算:(l)()()x y z x y z++--(2)(21)(21)a b a b+++-(3)(23)(23)a b c a b c-++-(4)(1)(1)x y x y++--3.(1)与相等吗?答:(2)与相等吗?答:4.计算:(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2(3)(x+3)2—x2 (4)(x+5)2-(x-2)(x-3)初三数学导学案课题:乘法公式复习(一)基本训练,巩固旧知1.填空:两个数的和乘以这两个数的差,等于这两个数的 ,即 (a+b)(a-b)= ,这个公式叫做 公式.2.用平方差公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) = = = =(3) (y+3x)(3x-y) (4) (-2+ab)(2+ab) = = = = = = 3.判断正误:对的画“√”,错的画“×”.(1)(a-b)(a+b)=a 2-b 2; ( ) (2)(b+a)(a-b)=a 2-b 2; ( ) (3)(b+a)(-b+a)=a 2-b 2; ( ) (4)(b-a)(a+b)=a 2-b 2; ( ) (5)(a-b)(a-b)=a 2-b 2. ( ) 4.运用完全平方公式计算: (1) 219921100⨯ (2) (y-5)2(3) (-2x+5)2(4) (34x-23y)2(一)基本训练,巩固旧知 1.填空:完全平方公式(a+b)2= ,(a-b)2= . 2.运用乘法公式计算:(1) (a+2b-1)2(2) (2x+y+z)(2x-y-z) (3)(x+1)(x-3)-(x+2)2+(x+2)(x-2) (4) )32)(32(+--+y x y x3.先化简,再求值(8分)(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-14、17)5)(1()1(2=+---x x x 29、)10(13)13()52(222->++-x x x5已知:2,3==n m x x ,求n m x 23+ 的值。
初中数学《完全平方公式》知识点归纳

初中数学《完全平方公式》知识点归纳初中数学《完全平方公式》知识点归纳完全平方公式是初中学习当中一个比较重要的知识点,今天极客数学帮就为大家总结了完全平方公式的知识点以及练习题。
帮助同学们学习、掌握完全平方公式的知识内容。
完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a b)2=a 2ab b ,(a-b)2=a -2ab b 。
(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
该知识点重点是对完全平方公式的熟记及应用。
难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
结构特征:1左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2左边两项符号相同时,右边各项全用“ ”号连接;左边两项符号相反时,右边平方项用“ ”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.记忆口诀:首平方,尾平方,2倍首尾。
使用误解:①漏下了一次项;②混淆公式;③运算结果中符号错误;④变式应用难于掌握。
注意事项:1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b 可以是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。
完全平方公式例题解析:(一)、变符号例:运用完全平方公式计算:(1)(-4x 3)(2)(-a-b)分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原公式中的a,将(-b)看成原公式中的b,即可直接套用公式计算。
完全平方公式(含答案)

第2课时 完全平方公式知识点 1 完全平方公式1.填空:(1)(x +2)2=x 2+2·________·________+________2=__________; (2)(2a -3b )2=________2+________+________2=__________. 2.下列计算正确的有( )①(a +b )2=a 2+b 2; ②(a -b )2=a 2-b 2; ③(a +2b )2=a 2+2ab +2b 2; ④(-2m -3n )2=(2m +3n )2. A .1个 B .2个 C .3个 D .4个3.若x 2+16x +m 是完全平方式,则m 的值是( ) A .4 B .16 C .32 D .644.计算:(1)(2x +y )2=______________; (2)⎝ ⎛⎭⎪⎫12x -2y 2=______________; (3)(-2x +3y )2=______________; (4)(-2m -5n )2=______________.5.计算:(1)(x +y )2-x (2y -x ); (2)计算:(a +1)(a -1)-(a -2)2;(3)(x +y -3)2.知识点 2 完全平方公式的几何意义6.利用如图8-5-3①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图8-5-3②所示的图形,则根据图②的面积关系能验证的恒等式为( )图8-5-3A .(a -b )2+4ab =(a +b )2B .(a -b )(a +b )=a 2-b 2C .(a +b )2=a 2+2ab +b 2D .(a -b )2=a 2-2ab +b 2知识点 3 利用完全平方公式进行简便计算7.计算:3012=________.8.用简便方法计算:20182-4036×2019+20192.知识点 4 与完全平方公式有关的化简求值问题9.(1)[2018·宁波]先化简,再求值:(x -1)2+x (3-x ),其中x =-12.(2)已知代数式(x -2y )2-(x -y )(x +y )-2y 2.①当x =1,y =3时,求代数式的值;②当4x =3y 时求代数式的值.10.若x 2+kx +64是某个整式的平方,则k 的值是( )A .8B .-8C .±8D .±1611.若等式x 2+ax +19=(x -5)2-b 成立,则a +b 的值为( )A .16B .-16C .4D .-412.如图8-5-4,从边长为(a +4)cm 的正方形纸中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )图8-5-4A .(2a 2+5a )cm 2B .(3a +15)cm 2C .(6a +9)cm 2D .(6a +15)cm 213.若xy =12,(x -3y )2=25,则(x +3y )2的值为( )A .196B .169C .156D .14414.已知(x -1)2=ax 2+bx +c ,则a +b +c 的值为________.15.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________. 16.用两种方法计算:(12x -2y )2-(12x +2y )2.17.阅读下列材料并解答后面的问题:利用完全平方公式(a ±b )2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b )2-2ab 或a 2+b 2=(a -b )2+2ab .从而使某些问题得到解决.例:已知a +b =5,ab =3,求a 2+b 2的值.解:a 2+b 2=(a +b )2-2ab =52-2×3=19. 解决问题:(1)已知a +1a =6,则a 2+1a2=________;(2)已知a -b =2,ab =3,分别求a 2+b 2,a 4+b 4的值.18.如图8-5-5所示,已知AB =a ,P 是线段AB 上一点,分别以AP ,BP 为边作正方形. (1)设AP =x ,求两个正方形的面积之和S ; (2)当AP 分别为13a 和12a 时,比较S 的大小.图8-5-5完全平方公式答案【详解详析】1.(1)x 2 2 x 2+4x +4(2)(2a ) (-2·2a ·3b ) (3b ) 4a 2-12ab +9b 22.A3.D [解析] x 2+16x +m =x 2+2×8x +m .∵x 2+16x +m 是完全平方式,∴m =82=64.4.(1)4x 2+4xy +y 2(2)14x 2-2xy +4y 2(3)4x 2-12xy +9y 2(4)4m 2+20mn +25n 25.解:(1)原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.(2)原式=a 2-1-(a 2-4a +4)=a 2-1-a 2+4a -4 =4a -5.(3)(x +y -3)2=(x +y )2-2(x +y )×3+32=x 2+2xy +y 2-6x -6y +9.6.A [解析] ∵大正方形的边长为(a +b ),∴大正方形的面积为(a +b )2.1个小正方形的面积加上4个长方形的面积和为(a -b )2+4ab ,∴(a -b )2+4ab =(a +b )2.7.90601 [解析] 3012=(300+1)2=3002+2×300+1=90601.8.解: 原式=20182-2×2018×2019+20192=(2018-2019)2=1.9.解:(1)原式=x 2-2x +1+3x -x 2=x +1.当x =-12时,原式=-12+1=12.(2)原式=x 2-4xy +4y 2-(x 2-y 2)-2y 2=x 2-4xy +4y 2-x 2+y 2-2y 2=-4xy +3y 2.①当x =1,y =3时,原式=-4×1×3+3×32=-12+27=15; ②当4x =3y 时,原式=-y (4x -3y )=0.10.D [解析] 由完全平方公式的特点可知,当k =±16时,x 2+kx +64是某个整式的平方.故选D.11.D [解析] 由已知,得x 2+ax +19=(x -5)2-b =x 2-10x +25-b ,可得a =-10,b =6,则a +b =-10+6=-4.故选D.12.D13.B [解析] (x +3y )2=(x -3y )2+12xy =25+12×12=169.故选B.14.0 [解析] 将x =1代入(x -1)2=ax 2+bx +c ,得(1-1)2=a +b +c ,则a +b +c =0.15.2 [解析] 依题意,得(x +1)2-(1-x )2=(x 2+2x +1)-(1-2x +x 2)=4x =8, ∴x =2.16.解:方法一:原式=(14x 2+4y 2-2xy )-(14x 2+4y 2+2xy )=-4xy .方法二:原式=(12x -2y +12x +2y )(12x -2y -12x -2y )=x ·(-4y )=-4xy .17.解:(1)a 2+1a 2=(a +1a )2-2·a ·1a=62-2=34.(2)a 2+b 2=(a -b )2+2ab =22+2×3=10;a 4+b 4=(a 2+b 2)2-2a 2b 2=102-2×32=100-18=82.18.解:(1)S =AP 2+BP 2=x 2+(a -x )2=x 2+a 2-2ax +x 2=2x 2-2ax +a 2.(2)当AP =13a 时,S =⎝ ⎛⎭⎪⎫13a 2+⎝ ⎛⎭⎪⎫23a 2=19a 2+49a 2=59a 2;当AP =12a 时,S =⎝ ⎛⎭⎪⎫12a 2+⎝ ⎛⎭⎪⎫12a 2=12a 2.因为59a 2>12a 2,所以当AP =12a 时,S 更小.。
初中数学完全平方公式知识点归纳

初中数学完全平方公式知识点归纳完全平方公式是指二元二次方程的解可以通过将方程化为完全平方形式来求解的方法。
下面是初中数学中关于完全平方公式的归纳知识点:1.完全平方公式的形式:对于一元二次方程ax^2 + bx + c = 0,如果其中a ≠ 0,那么它的解可以通过将方程化为完全平方形式来求解。
完全平方形式是指将二次项和一次项的系数合并为一个完全平方的形式。
2.完全平方公式的表达式:设一元二次方程为ax^2 + bx + c = 0,其中a ≠ 0,则它的解可以表示为:x = (-b ± √(b^2 - 4ac)) / (2a)3.完全平方公式的推导:在推导完全平方公式时,首先将方程右侧移到左侧,得到一个平方的形式,然后通过配方完成平方形式的提取。
4.完全平方公式的用途:完全平方公式可以用于求解一元二次方程的根,特别对于不能直观看出解的二次方程来说,可以通过完全平方公式直接求解。
5.完全平方公式的例题:例如,对于方程2x^2+5x-3=0,可以应用完全平方公式计算出其解为:x=(-5±√(5^2-4(2)(-3)))/(2(2))6.完全平方公式的注意事项:在应用完全平方公式时,需要注意判别式的值。
判别式为b^2 - 4ac,当判别式大于0时,方程有两个不相等的实数根;当判别式等于0时,方程有两个相等的实数根;当判别式小于0时,方程没有实数根。
7.完全平方公式与图像的关系:完全平方公式也可以用来解释二次函数的图像特征。
例如,当b=0时,方程的解为x=±√(-c/a),可以看出二次函数的图像与x轴交于两点;当判别式大于0时,二次函数的图像与x轴有两个不相等的交点;当判别式等于0时,二次函数的图像与x轴有一个重复的交点;当判别式小于0时,二次函数的图像与x轴没有交点。
8.完全平方公式的应用:完全平方公式不仅可以用于求解一元二次方程的根,还可以应用于其他数学问题中。
例如,可以用完全平方公式证明两条直线之间的距离公式、证明两个平面之间的夹角余弦公式等。
完全平方公式知识点例题变式

完全平方公式知识点例题变式完全平方公式知识点、例题、变式。
一、完全平方公式知识点。
1. 公式内容。
- (a + b)^2=a^2 + 2ab+b^2- (a - b)^2=a^2-2ab + b^22. 公式结构特点。
- 左边是一个二项式的完全平方,右边是一个三项式。
- 右边第一项是左边第一项的平方,右边第三项是左边第二项的平方,右边第二项是左边两项乘积的2倍(对于(a + b)^2是正的2ab,对于(a - b)^2是负的2ab)。
二、例题。
1. 计算(3x + 2y)^2。
- 解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 3x,b=2y。
- 计算过程:- (3x+2y)^2=(3x)^2+2×(3x)×(2y)+(2y)^2- = 9x^2+12xy + 4y^2。
2. 计算(2m - 5n)^2。
- 解析:根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 2m,b = 5n。
- 计算过程:- (2m - 5n)^2=(2m)^2-2×(2m)×(5n)+(5n)^2- =4m^2-20mn + 25n^2。
三、变式。
1. 已知(x + 3)^2=x^2+ax + 9,求a的值。
- 解析:根据完全平方公式(x + 3)^2=x^2+2× x×3+9=x^2 + 6x+9,因为(x + 3)^2=x^2+ax + 9,所以a = 6。
2. 若(m - n)^2=16,m^2 + n^2=20,求mn的值。
- 解析:- 由完全平方公式(m - n)^2=m^2-2mn + n^2,已知(m - n)^2 = 16,即m^2-2mn + n^2=16。
- 又已知m^2 + n^2=20,将其代入m^2-2mn + n^2=16中,得到20-2mn = 16。
- 移项可得-2mn=16 - 20=-4,解得mn = 2。
学习知识点058完全平方公式定理(解答)

1、已知n是正整数,1++是一个有理式A的平方,那么,A= ±.考点:完全平方式。
专题:计算题。
分析:先通分,分母n2(n+1)2是完全平方的形式,然后把分子整理成完全平方式的形式,从而即可得解.解答:解:1++=,分子:n2(n+1)2+(n+1)2+n2=n2(n+1)2+n2+2n+1+n2,=n2(n+1)2+2n(n+1)+1,=[n(n+1)+1]2,∴分子分母都是完全平方的形式,∴A=±.故答案为:±.点评:本题考查了完全平方式,先通分,然后把分子整理成完全平方公式的形式是解题的关键,难度较大,灵活性较强.2、关于x的二次三项式:x2+2mx+4﹣m2是一个完全平方式,求m的值.考点:完全平方式。
专题:计算题。
分析:这里首末两项是x和m这两个数的平方,那么中间一项为加上或减去x和m积的2倍.解答:解:∵x2+2mx+4﹣m2是完全平方式,∴x2+2mx+4﹣m2=(x±m)2,∴4﹣m2=m2,∴m=±,即m1=,m2=﹣.点评:本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3、x,y都是自然数,求证:x2+y+1和y2+4x+3的值不能同时是完全平方.考点:完全平方式。
专题:证明题。
分析:先假设x2+y+1和y2+4x+3的值能同时是完全平方,那么就可写成完全平方式,从而可求y=2x,x=y,而xy是自然数,则必是无理数,那么就与已知相矛盾,故可得证.解答:解:设x2+y+1和y2+4x+3的值能同时是完全平方,那么有x2+y+1=(x+1)2,y2+4x+3=(y+)2,∴y=2x,4x=2y,即y=2x,x=y,又∵x、y是自然数,∴y必是无理数,∴与已知矛盾,故x2+y+1和y2+4x+3的值不能同时是完全平方.点评:本题考查了完全平方式、无理数、自然数的定义.两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.4、(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.考点:完全平方式。
专项练习1:完全平方公式(有答案)

专项练习:完全平方公式一、填空题1.(x+3y)2=_________,_________=y2﹣y+.2.________=9a2﹣______+16b2;x2+10x+____=(x+_____)2.3.(﹣x﹣y)_________=x2+2xy+y2.4.(x+y)2=(x﹣y)2+_________.5.若(x+y)2=9,(x﹣y)2=5,则xy=_________.6.如果x2+mx+16是一个整式的完全平方,那么m=_________.7.已知x﹣=5,则x2+=_________.二、选择题8.下列算式不成立的是()A.3a﹣b)2=9a2﹣6ab+b2B.(a+b﹣c)2=(c﹣a﹣b)2C.(x﹣y)2=﹣xy+y2D.(x+y)(x﹣y)(x2﹣y2)=x4﹣y49.若|x+y﹣5|+(xy﹣3)2=0,则x2+y2的值为()A.19 B.31 C.27 D.2310.若(x﹣2y)2=(x+2y)2+m,则m等于()A.4xy B.﹣4xy C.8xy D.﹣8xy11.若(3x+2y)2=(3x﹣2y)2+A,则代数式A是()A.﹣12xy B.12xy C.24xy D.﹣24xy12.若a﹣b=2,a﹣c=1,则(2a﹣b﹣c)2+(c﹣a)2的值是()A.9B.10 C.2D.1三、解答题13.计算.(1)(5x﹣2y)2+20xy;(2)(x﹣3)2(x+3)2;(3)(3x﹣5)2﹣(2x+7)2;1/ 5(4)(x+y+1)(x+y﹣1)14.计算.(1)89.82;(2)472﹣94×27+272.15.已知(x+y)2=25,(x﹣y)2=9,求xy与x2+y2的值.16.南湖公园有一正方形草坪,需要修整成一长方形草坪,在修整时一边长加长了4m,另一边长减少了4m,这时得到的长方形草坪的面积比原来正方形草坪的边长减少2m后的正方形面积相等,求原正方形草坪的面积是多少.17.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是_________.(填上正确的一个即可,不必考虑所有可能的情况)18.(2011•凉山州)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.参考答案一、填空题1.解:(x+3y)2=x2+6xy+9y2,(y﹣)2=y2﹣y+.故答案为x2+6xy+9y2,y﹣.2.解:(3a﹣4b)2=9a2﹣24ab+16b2;x2+10x+25=(x+5)2.故答案为3a﹣4b,24ab;25,5.3.解:∵(x+y)2=x2+2xy+y2,而﹣x﹣y=﹣(x+y),∴[﹣(x+y][﹣(x+y)]=x2+2xy+y2,即(﹣x﹣y)(﹣x﹣y)=x2+2xy+y2.故答案为﹣x﹣y.4.解:∵(x+y)2=x2+2xy+y2,(x﹣y)2=x2﹣2xy+y2,∴(x+y)2﹣(x﹣y)2=4xy.故本题答案为:4xy.5.解:(x+y)2=x2+2xy+y2=9 (1),(x﹣y)2=x2﹣2xy+y2=5 (2),(1)﹣(2)可得:4xy=4,解得xy=1.6.解:∵x2+mx+16=x2+mx+42,∴mx=±2×4x,解得m=±8.故答案为:±8.7.解:∵x﹣=5,∴(x﹣)2=25,即x2﹣2+=25,∴x2+=27.故答案为:27.二、选择题8.解:A、(3a﹣b)2=9a2﹣6ab+b2,成立,故本选项错误;B、(a+b﹣c)2=(c﹣a﹣b)2成立,故本选项错误;C、(x﹣y)2=x2﹣xy+y2,成立,故本选项错误;D、(x+y)(x﹣y)(x2﹣y2)=(x2﹣y2)(x2﹣y2)=x4﹣2x2y2+y4,故本选项正确.故选D.9.解:根据题意得,x+y﹣5=0,xy﹣3=0,∴x+y=5,xy=3,∵(x+y)2=x2+2xy+y2=25,∴x2+y2=25﹣2×3=25﹣6=19.故选A.10.解:(x﹣2y)2,=x2﹣4xy+4y2,=x2﹣8xy+4xy+4y2,=(x+2y)2﹣8xy,∴m=﹣8xy.故选D.11.解:∵(3x+2y)2=(3x﹣2y)2+A,∴A=(3x+2y)2﹣(3x﹣2y)2=9x2+12xy+4y2﹣9x2+12xy﹣4y2=24xy.故选C.三、解答题13.解:(1)(5x﹣2y)2+20xy=25x2﹣20xy+4y2+20xy=25x2+4y2;(2)(x﹣3)2(x+3)2=(x2﹣9)2=x4﹣18x2+81;(3)(3x﹣5)2﹣(2x+7)2=9x2﹣30x+25﹣(4x2+28x+49)=9x2﹣30x+25﹣4x2﹣28x﹣49=5x2﹣58x﹣24;(4)(x+y+1)(x+y﹣1)=[(x+y)+1][(x+y)﹣1]=(x+y)2﹣1=x2+2xy+y2﹣1.14.解:(1)(89.8)2=(90﹣0.2)2=902﹣2×0.2×90+0.22=8064.04;(2)472﹣94×27+272=472﹣2×47×27+272=(47﹣27)2=202=400.15.解:∵(x+y)2=25,(x﹣y)2=9,∴x2+2xy+y2=25①,x2﹣2xy+y2=9②,①﹣②得,4xy=16,解得xy=4,①+②得,2(x2+y2)=34,解得x2+y2=17.故答案为:4,17.16.解:设原正方形草坪的边长为xm,则(x+4)(x﹣4)=(x﹣2)2,x2﹣16=x2﹣4x+4,解得:x=5,故原正方形的面积为:x2=52=25(m2).17.解:∵4x2±4x+1=(2x±1)2,∴加上的单项式可以是±4x.故答案为:4x(答案不唯一).18.解:(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5(3分)(2)原式=25+5×24×(﹣1)+10×23×(﹣1)2+10×22×(﹣1)3+5×2×(﹣1)4+(﹣1)5 (5分)=(2﹣1)5=1(6分)注:不用以上规律计算不给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、多项式x2+2mx+64是完全平方式,则m=±8.考点:完全平方式。
分析:根据完全平方公式结构特征,这里首尾两数是x和8的平方,所以中间项为加上或减去它们乘积的2倍.解答:解:∵x2+2mx+64是完全平方式,∴2mx=±2•x•8,∴m=±8.点评:本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解.2、代数式4x2+3mx+9是完全平方式,则m=±4.考点:完全平方式。
分析:本题考查完全平方公式的灵活应用,这里首末两项是2x和3的平方,那么中间项为加上或减去2x和3的乘积的2倍.解答:解:∵4x2+3mx+9是完全平方式,∴3mx=±2×3•2x,解得m=±4.点评:本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.3、设4x2+mx+121是一个完全平方式,则m=±44.考点:完全平方式。
分析:这里首末两项是2x和11这两个数的平方,那么中间一项为加上或减去2x和11积的2倍.解答:解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4、若9x2+mx+25是完全平方式,则m=±30.考点:完全平方式。
专题:计算题。
分析:这里首末两项是3x和5这两个数的平方,那么中间一项为加上或减去3x和5积的2倍,故m=±30.解答:解:∵(3x±5)2=9x2±30x+25,∴在9x2+mx+25中,m=±30.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.5、已知x2﹣4x+a是一个完全平方式,则a为4.考点:完全平方式。
分析:根据乘积二倍项先确定出这两个数是x和2,再根据完全平方公式结构特点,a等于2的平方.解答:解:∵4x=2×2x,则a=22=4.点评:本题考查完全平方公式的灵活应用程度.根据完全平方公式,两数和的平方加上或减去它们乘积的2倍,根据结构特征分析得出a=4.6、如果x2+kx+1是一个完全平方式,那么k的值是±2.考点:完全平方式。
分析:这里首末两项是x和1这两个数的平方,那么中间一项为加上或减去x和1积的2倍,故k=±2.解答:解:中间一项为加上或减去x和1积的2倍,故k=±2.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.7、若a2+ma+36是一个完全平方式,则m=±12.考点:完全平方式。
分析:由完全平方公式:(a±b)2=a2±2ab+b2.把所求式化成该形式就能求出m的值.解答:解:a2+ma+36=(a±6)2,解得m=±12.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用平方项求乘积项.8、要使多项式x2+4x+m可以化成一个完全平方式,则m=4.考点:完全平方式。
专题:计算题。
分析:先根据乘积二倍项确定出这两个数是x和2,再根据完全平方公式即可求出m等于2的平方.解答:解:∵4x=2×2•x,∴m=22=4.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,确定出这两个数是求解的关键.9、若9x2+kx+16是一个完全平方式,则k的值是24或﹣24.考点:完全平方式。
分析:这里首末两项是3x和4这的平方,那么中间一项为加上或减去3x和4积的2倍,故k=±24.解答:解:中间一项为加上或减去3x和4积的2倍,故k=±24故填24;﹣24.点评:本题考查了完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10、多项式4x2+M+9y2是一个完全平方式,则M等于12xy(填一个即可).考点:完全平方式。
分析:这里首末两项是2x和3y这两个数的平方,那么中间一项为加上或减去2x和3y积的2倍,故M=±12xy.解答:解:∵(2x±3)2=4x2±12xy+9y2=4x2+M+9y2,∴M=±12xy.故答案为:12xy或﹣12xy(任选一个即可).点评:本题考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.11、若25x2﹣mxy+9y2是完全平方式,则m的值为±30.考点:完全平方式。
分析:完全平方公式:(a±b)2=a2±2ab+b2.把所求式化成该形式就能求出m的值.解答:解:由25x2﹣mxy+9y2=(5x±3y)2,解得m=±30.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用平方项求乘积项.12、已知x2﹣ax+16在整数范围内可以用完全平方公式分解因式,则整数a的值是8(a>0).考点:完全平方式。
分析:先根据两平方项确定出这两个数,再利用完全平方公式即可求得答案.解答:解:∵x2﹣ax+16是完全平方公式,∴这两个数是x和4,∵a>0,∴ax=2×4x,解得a=8,故整数a的值是8.点评:本题考查完全平方式,根据两平方项确定出这两个数是解题的关键.13、若(x+m)(x+3)中不含x得一次项,则m的值为﹣3;x2+kx+9是一个完全平方式,则k=±6.考点:完全平方式。
专题:计算题。
分析:(1)先把式子展开并合并,因为其中不含有一次项,即一次项系数为0,列方程求解;(2)x2+kx+9是一个完全平方式,这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍,故k=±6.解答:解:(1)(x+m)(x+3)=x2+(m+3)x+3m,∵x2+(m+3)x+3m中不含x得一次项,∴m+3=0,即m=﹣3.(2)∵(x±3)2=x2±6x+9,∴在x2+kx+9中,k=±6.点评:不含某一项就是让这一项的系数等于0;根据完全平方公式确定出这两个数是求解的关键.14、若多项式x2+mx+9恰好是另一个多项式的平方,则m=±6.考点:完全平方式。
分析:本题考查完全平方公式的灵活应用,这里首末两项是x和3的平方,那么中间项为加上或减去x和3的乘积的2倍.解答:解:∵x2+3mx+9是另一个多项式的平方,∴mx=±2×x×3,解得m=±6.点评:本题考查了完全平方式,根据两平方项确定出这两个数是解题的关键,注意m的值有正负两种情形,不可漏解.15、如果4x2﹣mxy+9y2是一个完全平方式,则m=±12.考点:完全平方式。
分析:这里首末两项是2x和3y这两个数的平方,那么中间一项为加上或减去2x和3y积的2倍.解答:解:∵4x2﹣mxy+9y2是一个完全平方式,∴﹣mxy=±2×2x×3y,∴m=±12.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16、①a2﹣4a+4;②a2+a+;③4a2﹣a+;④4a2+4a+1.以上各式中属于完全平方式的有①②④.(填序号)考点:完全平方式。
分析:完全平方公式展开的三项应符合以下条件:符号相同的能写成平方的两项,加上或减去底数的积的2倍.解答:解:①a2﹣4a+4=(a﹣2)2,符合;②a2+a+=(a+)2,符合;③4a2﹣a+,不符合;④4a2+4a+1=(2a+1)2,符合.故应填:①②④.点评:本题考查了完全平方式的运用,熟练掌握完全平方式的结构是解题的关键.17、在□x2□2x□1的空格中,任意填上“+”,“﹣”,共有8种不同的代数式,其中能构成完全平方式的有4种.考点:完全平方式。
分析:根据每个空有“+”,“﹣”两种填法,所以共有23=8种不同的代数式,再根据完全平方公式判断完全平方式的种数.解答:解:共有8种具体如下:x2±2x+1;x2±2x﹣1;﹣x2±2x+1;﹣x2±2x﹣1.其中x2±2x+1、﹣x2±2x﹣1是完全平方式.故填8,4.点评:解决本题的关键是正确对括号中的符号进行讨论,以及对完全平方式结构的理解与记忆.18、a2x2﹣4x+b2是一个完全平方式,则ab=±2.考点:完全平方式。
分析:这里首末两项是ax和b这两个数的平方,那么中间一项为加上或减去ax和b积的2倍,故2ab=±4,ab=±2.解答:解:中间一项为加上或减去ax和b积的2倍,故2ab=±4,ab=±2故填±2.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19、已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=2.考点:完全平方式。
专题:计算题。
分析:把14分成1+4+9,与剩余的项构成3个完全平方式,从而出现三个非负数的和等于0的情况,则每一个非负数等于0,解即可.解答:解:∵x2+y2+z2﹣2x+4y﹣6z+14=0,∴x2﹣2x+1+y2+4y+4+z2﹣6z+9=0,∴(x﹣1)2+(y+2)2+(z﹣3)2=0,∴x﹣1=0,y+2=0,z﹣3=0,∴x=1,y=﹣2,z=3,故x+y+z=1﹣2+3=2.故答案为:2.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.20、当k=±12时,4x2﹣kxy+9y2为完全平方式.考点:完全平方式。
分析:先根据平方项确定出这两个数是2x和3y,再根据完全平方公式的乘积二倍项列式求解即可.解答:解:∵4x2﹣kxy+9y2为完全平方式,∴这两个数是2x和3y,∴﹣kxy=±2×2x•3y,解得k=±12.点评:本题考主要考查完全平方公式的应用,根据平方项确定出这两个数是求解的关键,要注意k值有两个,不要漏解.21、k取±4时,二次三项式4x2﹣kx+3是一个完全平方式.考点:完全平方式。