典型应用题(牛吃草问题)
最新五年级应用题牛吃草学生版

五年级应用题牛吃草学生版单块地简单牛吃草1. 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?2. 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天? 牛吃草3.青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光.改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同.“廿”即二十之意.)题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完.若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)4.牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?5.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周.那么它可供21头牛吃几周?6.由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?7.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?8.林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)多块地简单牛吃草1.东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?2.有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?3.有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?4.17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)5.(2008第九届“中环杯”小学生思维能力训练活动五年级决赛)11头牛10天可吃完5公顷的草地上的草,12头牛14天可以吃完6公顷的草地上的草.假设每公顷草地上的草量相等,每天新长出来的草量相等,每头牛每天的吃草量也相等,那么8公顷草地可供19头牛吃多少天?6.有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?7.一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?8.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?混合、变化型牛吃草1.一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?2.(第六届希望杯六年级二试)有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么,17头牛和20只羊多少天可将草吃完?3.一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?5.有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?6.一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?牛吃草典型变例Ⅰ检票付款1.早晨6点,某火车进口处已有945名旅客等候检票进站,此时,每分钟还有若干人前来进口处准备进站.这样,如果设立4个检票口,15分钟可以放完旅客,如果设立8个检票口,7分钟可以放完旅客.现要求5分钟放完,需设立几个检票口?2.火车站的检票处检票前已有一些人等待检票进站,假如每分钟前来检票处排队检票的人数一定,那么当开一个检票口时,27分钟后就无人排队;当开两个检票口时,12分钟就无人排队.如果要在6分钟后就无人排队,那么至少需要开个检票口.3.(第七届中环杯五年级决赛)某火车站检票口在检票前已经有一些人在排队,检票开始后每分钟有10人前来排队检票,一个检票口每分钟能检票25人.如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后()分钟就没有人排队.4.画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队.求第一个观众到达的时间.5.某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了,如果当时有两个收银台工作,那么付款开始__ ________小时就没有人排队了.Ⅱ进、排水6.(第五届希望杯六年级二试)2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村名饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中.第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完.后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?7.一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?8.一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?9.北京密云水库建有10个泄洪洞,现在水库的水位已经超过安全线,并且水量还在以一个不变的速度增加,为了防洪,需要调节泄洪的速度,假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30个小时以后水位降至安全线;若同时打开两个泄洪闸,10个小时后水位降至安全线.根据抗洪形势,需要用2个小时使水位降至安全线以下,则至少需要同时打开泄洪闸的数目为多少个?10.(2008年五年级希望杯二试)有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管.开始时,进水管以均匀的速度不停地向蓄水池注水.后来,想打开出水管,使池内的水全部排光.如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水.若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管?11.一个蓄水池有1个进水口和15个出水口,水从进水口匀速流入.当池中有一半的水时,如果打开9个出水口,9小时可以把水排空.如果打开7个出水口,18小时可以把水排空.如果是一满池水,打开全部出水口放水,那么经过时分水池刚好被排空.12.一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?13.一个装满了水的水池有一个进水阀及三个口径相同的排水阀,如果同时打开进水阀及一个排水阀,则30分钟能把水池的水排完,如果同时打开进水阀及两个排水阀,则10分钟把水池的水排完.问:关闭进水阀并且同时打开三个排水阀,需要多少分钟才能排完水池的水?14.由于环境恶化、气候变暖,官厅水库的水在匀速减少,为了保证水库的水量,政府决定从上游的壶流河水库以及册田水库分别向官厅水库进行调水,已知这两个水库的每个闸门放水量是相同的,如果同时打开壶流河水库的5个闸门30小时可以使官厅水库水量达到原来的标准,如果同时打开册田水库的4个闸门40小时可以使官厅水库水量达到原来的标准,如果24小时使官厅水库水量达到原来的标准,问需同时打开两个水库的几个闸门?15.小方用一个有洞的杯子从水缸里往三个同样的容积的空桶中舀水.第一个桶距水缸有1米,小方用3次恰好把桶装满;第二个桶距水缸有2米,小方用4次恰好把桶装满.第三个桶距水缸有3米,那么小方要多少次才能把它装满(假设小方走路的速度不变,水从杯中流出的速度也不变)16.(2008年五年级陈省身杯)有一个水池,池底存了一些水,并且还有泉水不断涌出.为了将水池里的水抽干,原计划调来8台抽水机同时工作.但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时.工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时.这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机.17.如下图,有一个敞口的立方体水箱,在其侧面一条高线的三等分点出有两个排水孔A和B,它们排水的速度是恒定的.从上面给水箱注水,如果打开A孔,关闭B孔,那么经过20分钟可将水箱注满;如果关闭A孔,打开B孔,那么需要22分钟才能注满.若两个孔都打开,则注满水箱需要多长时间?18. 甲乙两个相同的长方体水箱,在它们的侧面上分别有排水孔A 和B .A 孔和B 孔与底面的距离分别是水箱高度的56和12,且排水速度相同.现在以相同的速度一起给两水箱注水,并通过管道使A 孔排出的水直接流入乙水箱,这样经过了70分钟后,甲乙水箱同时被注满.移掉甲水筒,乙箱的B 孔仍存在,那么按照上述的速度给乙箱注水,水箱从空到满需要多少分钟?Ⅲ 电梯19. 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.20. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒.问:该扶梯共有多少级梯级?21. (第七届中环杯中小学生思维能力训练活动初预(六)年级复赛活动内容)某人从向下运动着的自动扶梯步行而下,每步一级,共走了30级到达底层.在到达底层后,他又返身奔上这一自动扶梯,也是每步一级,一共走了60级到达上层.设这人向上奔走的速度是他向下步行速度的3倍,并且上下来回都是匀速运动,那么自动扶梯停止后,一共能看到( )扶梯.Ⅳ行程22. 小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米, 分钟能追上. 甲乙23.有固定速度行驶的甲车和乙车,如果甲车以现在速度的2倍追赶乙车,5小时后甲车追上乙车;如果甲车以现在速度的3倍追赶乙车,3小时后甲车追上乙车,那么如果甲车以现在的速度去追赶乙车,问:几个小时后甲车追上乙车?24.快、中、慢三车同时从A地出发沿同一公路开往B地,途中有骑车人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑车人.已知快车每分钟行800米,慢车每分钟行600米,中速车的速度是多少?25.小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.Ⅴ工程以及变量工程26.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多.用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完.仓库里原有的存货若用1辆汽车运则需要多少天运完?27.甲、乙、丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)28.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙,14天可以把砖用完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?29.食品厂开工前运进一批面粉,开工后每天运进相同数量的面粉,如果派5个工人加工食品30天可以把面粉用完,如果派4个工人,40天可以把面粉用完,现在派4名工人加工了30天后,又增加了2名工人一起干,还需要几天加工完?Ⅵ其他30.假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年;或供90亿人生活210年.为了使人类能够不断繁衍,地球上最多能养活多少人?31.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每天爬20分米,另一只每天爬15分米.黑夜往下滑,两只蜗牛滑行的速度都是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.求井深.32.为了保护渔业资源,春夏季封海,9月份开始捕鱼,而且只准捕捞大鱼,如果用100只船在附近海域可捕捞2个月,由于天气不断转冷,鱼群均匀减少,60只船只能捕捞3个月,问几只船可捕捞2个半月?一课一练1.牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2.一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?3.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?4.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?5.有一块1200平方米的牧场,每天都有一些草在匀速生长,这块牧场可供10头牛吃20天,或可供15头牛吃10天,另有一块3600平方米的牧场,每平方米的草量及生长量都与第一块牧场相同,问这片牧场可供75头牛吃多少天?6.三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?7.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)8.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?9.一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?10.一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?11.一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?12.有一牧场长满牧草,每天牧场匀速生长.这个牧场可供17头牛吃30天,可供19头牛吃24天.现有若干头牛吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,求原有牛的头数.13.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟.如果要使队伍10分钟消失,那么需同时开几个检票口?14.画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.15.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?16.有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?17.一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?18.有一泉水池,泉水匀速涌出.如果用甲水管抽10小时,可把满池水抽干;如果用乙水管抽5小时,可把满池水抽干;如果用甲、乙两管合抽2小时,也可把满池水抽干.问泉水被抽干后又经过多少小时可涌满水池?19.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?20.一个水池,地下水从四壁渗入,每小时渗入该水池的水是固定的.当这个水池水满时,打开A管,8小时可将水池排空;打开B管,10小时可将水池排空;打开C管,12小时可将水池排空.如果打开、两管,将水池排空需要多少时间?、两管,4小时可将水池排空,那么打开B CA B21.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走1梯级,女孩每3秒钟走2梯级.结果男孩用50秒到达楼上,女孩用60秒到达楼上.该楼梯共有多少级?22.甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.23.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120名工人砌了10天后,又增加5名工人一起砌,还需要再砌几天可以把砖用完?24.甲、乙、丙三个煤窑有同样多的煤,如果用一台皮带输送机和12个工人5小时可把甲煤窑的煤全部装车;如果用一台皮带输送机和28个工人3小时可把乙煤窑的煤全部装车.现在要用两台皮带输送机和若干个工人2小时把丙煤窑的煤全部装车,则需要用多少工人?25.某面粉厂,可储存全厂45日的用麦量.当仓库无货时,一辆大卡车去运,除了供应车间生产外,5日可将仓库装满;若用2辆小卡车去运,9日可运满.如用1辆大卡车和2辆小卡车同时去运,几日能仓库装满?题库补充1.由于打字员的辞职,一个公司积压下一批需要打印的材料,而且每天还要新增加固定数量需要打印的材料.假设材料以页计数,每个打字员的打字速度是相同的、固定的(单位是页/天).如果公司聘任5名打字员,24天就恰好打完所有材料;如果公司聘任9名打字员,12天就恰好打完所有材料.公司聘任了苦干名打字员,工作8天之后,由于业务减少,每天新增的需要打印的材料少了一半,结果这些打字员共用40天才恰好完成打字工作.问:公司聘任了多少名打字员?2.某玩具厂有四个车间,某周是质量检查周,现每个车间都原有a个产品,且每个车间每天都生产b个成品,质检科派出若干名检验员于星期一、星期二检验其中两个车间原有的与这两天生产的所有的成品.然后,星期三至星期五检验另两个车间原有的与本周生产的所有的成品.假定每个检验员每天检验的成品数相同.试问:(1)这若干名检验员1天检验多少个成品?(用含a、b的算式表示)(2)若1名质检验员1天能检验45b个成品,则质检科至少派出多少名检验员?3.某企业现有九个车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员,他们先用两天将第一、第二两个车间的所有成品(指原。
小学 应用题之牛吃草问题

第8讲应用题之牛吃草问题例1.牧场上长满牧草,每天牧草都匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天,那么这片牧场可供几头牛吃25天?如果想要保证草永远吃不完,最多可以放牧多少头牛?解:设1头牛1天的草量是1,10×20=200,15×10=150,(200–150)÷(20–10)=5,(草地每天新生的草量)200–5×20=100,(草地原有的草量)100÷25+5=9(头)。
最多可以放牧5头牛。
例2.牧场上长满牧草,每天牧草都匀速生长,这片牧场可供27头牛吃6天,可供23头牛吃9天,那么可供21头牛吃几天?解:设1头牛1天的草量是1,27×6=162,23×9=207,(207–162)÷(9–6)=15,(草地每天新生的草量)162–15×6=72,(草地原有的草量)72÷(21–15)=12(天)。
例3.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么可供11头牛吃几天?解:设1头牛1天的草量是1,20×5=100,16×6=96,(100–96)÷(6–5)=4,(草地每天减少的草量)100+4×5=120,(草地原有的草量)120÷(11+4)=8(天)。
例4.有一片草场,草每天的生长速度相同,若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊1天的吃草量相当于1头牛1天的吃草量)。
那么,17头牛和20只羊多少天可将草吃完?解:设1头牛1天的草量是1,14×30=420,70÷4×16=280,(420–280)÷(30–16)=10,(草地每天新生的草量)420–30×10=120,(草地原有的草量)17头牛和20只羊(相当于22头牛),120÷(22–10)=10(天)。
牛吃草类型应用题解题方法完整版

牛吃草类型应用题解题方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]例1牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草.200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草(10-5)×20=100(份)或(15-5)×10=100(份).现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).所以,这片草地可供25头牛吃5天.在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.例2一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题.设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是水管排原有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份.每分钟进水量答:出水管比进水管晚开40分钟.例3由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天..例4自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题.上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级).解:自动扶梯每分钟走(20×5-15×6)÷(6-5)=10(级),自动扶梯共有(20+10)×5=150(级).答:扶梯共有150级.例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).例6有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?分析与解:例1是在同一块草地上,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.[5,6,8]=120.因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天”这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264-180)×10=840(份).可供285头牛吃840÷(285-180)=8(天).所以,第三块草地可供19头牛吃8天我将“牛吃草”归纳为两大类,用下面两个例题来说明例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。
牛吃草问题

1、有一片匀速生长的牧草,可供17头牛吃30天,或可供19头牛吃24天。
原来有若干头牛在草地上吃草,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问原来有牛多少头?2、请问12头牛4周吃牧草(一种草类)3又3分之1格尔(面积单位),同样的草,21头牛9周吃10格尔,问题是24格尔的草,多少头牛18周吃完?3、一块1000平方米的牧场里的草能够让12头牛吃16星期,或让18头牛吃8个星期。
如果在全部时间内,草能够均匀地成长,那么,一块4000平方米的牧场6个星期能养活多少头牛?4、一块牧场长满草,每天牧草都均匀生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.问:可供25头牛吃多少天?5、牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?6、一个牧场可供58头牛吃7天,或者可供50头牛吃9天。
假设草的生长量每天相等,每头牛的吃草量也相等,那么,可供多少头牛吃6天?7、有一口水井,持续不断地涌出泉水,每分钟涌出的泉水量相等,如果使用8架抽水机抽水,30分钟可以抽完;如果使用5架抽水机抽水,60分钟可以抽完。
现在要在18分钟内抽完水,需要多少抽水机?例题:一牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6周,或供23头牛吃9周。
要使牧草永远吃不完,至多可以放牧几头牛?那么可供21头牛吃几周?答案:解:设每头牛每星期的吃草量为1。
27头牛6个星期的吃草量为27×6=162,这既包括牧场上原有的草,也包括6个星期长的草。
23头牛 9个星期的吃草量为 23×9= 207,这既包括牧场上原有的草,也包括9个星期长的草。
因为牧场上原有的草量一定,所以上面两式的差207-162=45正好是9个星期生长的草量与6个星期生长的草量的差。
由此可以求出每星期草的生长量是45÷(9-6)=15。
牧场上原有的草量是162-15×6=72,或207-15×9= 72。
牛吃草问题

牛吃草问题一、考点、热点回顾牛吃草问题最先见于牛顿所著的《普通算术》一书中,所以人们习惯上称这类问题为牛顿的牛吃草问题。
牛吃草问题同一般的工程应用题不同,在一般的工程问题中工作总量是固定的,而牛吃草问题中草场上的草每天都在匀速的生长,这样就增加了解题的难度。
其实牛吃草问题有其一般的解答规律,只要理解并掌握了这个规律,这类问题还是比较容易解决的。
二、典型例题例1、牧场上长满了牧草,牧草每天匀速的生长,这个牧场上的牧草可供10头牛吃20天,可供15头牛吃10天,问:这个牧场上的牧草可供25头牛吃多少天?例2、有一水池,池底不断有泉水涌出,每小时涌出的水量相等,如果用12台抽水机3小时可以抽完,如果用5台抽水机10小时可以抽完,如果要2小时把水抽完,需要多少台抽水机?例3、一个牧场上长满了牧草,牧草每天匀速的生长,这些牧草可供16只羊吃20天,或者可供20只羊吃15天,现在牧场上有12只羊吃牧草,5天后又增加了12只羊,还要多少天可以将牧场上的牧草吃完?例4、有3个牧场长满了牧草,第一个牧场330平方米,可供22头牛吃54天,第二个牧场280平方米,可供17头牛吃84天,第三个牧场400平方米,可供多少头牛吃24天?(每个牧场每平方米的原有草量是相同的,而且都是匀速生长。
)三、课堂练习1、有一个牧场长满了牧草,这片牧草每天匀速的生长,牧场上的牧草可供27头牛吃6天,可供23头牛吃9天,问:可供21头牛吃多少天?2、有一眼水井,井中持续不断地涌出泉水,每分钟涌出的水量相等,如果用4台抽水机15分钟可以抽完,如果用8台抽水机7分钟可以抽完,现在用11台抽水机,多少分钟可以把水抽完?3、一片牧草,每天生长的速度相同,现在这片牧草可供16头牛吃20天,或者可供80头羊吃12天,如果1头牛每天的吃草量等于4只羊每天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?4、有一眼水井,井中持续不断的涌出泉水,每分钟涌出的水量相等,如果用3台抽水机40分钟可以将井中的水抽完,如果用5台抽水机20分钟可以将井中的水抽完,如果要在10分钟内将井中的水抽完,需要多少台抽水机?5、牧场上长满了牧草,牧草每天匀速的生长,这片牧草可供8头牛吃8周,可供10头牛吃6周,问:这片牧草可供多少头牛吃4周?6、有一个酒槽,每天漏掉等量的酒,让6个人喝槽中的酒,4天可以喝完,让4个人喝槽中的酒,5天可以喝完,如果每个人每天的饮酒量相同,那么每天的漏酒量是槽中原有酒的几分之几?7、一个牧场上长满了牧草,牧草每天都匀速的生长,这些牧草可供8只羊吃30天,或者可供20只羊吃10天,现在牧场上有10只羊,10天后,又增加了12只羊,还要多少天可以将牧场上的牧草吃完?8、有一眼水井,井中不断的由泉水涌出,如果用5部抽水机20小时可以抽完,如果用8部抽水机10小时可以抽完,现在有5部抽水机在井中抽水,5小时后,又增加了6部抽水机,还要多少小时才能将井中的水抽完?9、有一个牧场上长满了牧草,牧草每天匀速生长,这个牧场上可供17头牛吃30天,可供19头牛吃24天,现有牛若干头在吃牧草,6天后,4头牛死亡,余下的牛吃了2天将牧草吃完,问:原来有牛多少头?10、有3个牧场长满了牧草,第一个牧场100平方米,可供20头牛吃50天,第二个牧场150平方米,可供40头牛吃30天,第三个牧场400平方米,可供多少头牛吃24天?(每个牧场每平方米的原有草量相同,而且都是匀速生长。
五年级应用题牛吃草学生版

五年级应用题牛吃草学生版单块地简单牛吃草1. 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?2. 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?3. 青青一牧场,牧草喂牛羊; 放牛二十七,六周全吃光.改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同.“廿”即二十之意.)题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完.若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)4. 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?5.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周.那么它可供21头牛吃几周?6.由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?7.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?8.林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)多块地简单牛吃草1.东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?2.有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?3.有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?4.17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)5.(2008第九届“中环杯”小学生思维能力训练活动五年级决赛)11头牛10天可吃完5公顷的草地上的草,12头牛14天可以吃完6公顷的草地上的草.假设每公顷草地上的草量相等,每天新长出来的草量相等,每头牛每天的吃草量也相等,那么8公顷草地可供19头牛吃多少天?6.有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?7.一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?8.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?混合、变化型牛吃草1.一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?2.(第六届希望杯六年级二试)有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么,17头牛和20只羊多少天可将草吃完?3.一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?5.有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?6.一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?牛吃草典型变例Ⅰ检票付款1.早晨6点,某火车进口处已有945名旅客等候检票进站,此时,每分钟还有若干人前来进口处准备进站.这样,如果设立4个检票口,15分钟可以放完旅客,如果设立8个检票口,7分钟可以放完旅客.现要求5分钟放完,需设立几个检票口?2.火车站的检票处检票前已有一些人等待检票进站,假如每分钟前来检票处排队检票的人数一定,那么当开一个检票口时,27分钟后就无人排队;当开两个检票口时,12分钟就无人排队.如果要在6分钟后就无人排队,那么至少需要开个检票口.3.(第七届中环杯五年级决赛)某火车站检票口在检票前已经有一些人在排队,检票开始后每分钟有10人前来排队检票,一个检票口每分钟能检票25人.如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后()分钟就没有人排队.4.画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队.求第一个观众到达的时间.5.某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了,如果当时有两个收银台工作,那么付款开始__ ________小时就没有人排队了.Ⅱ进、排水6.(第五届希望杯六年级二试)2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村名饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中.第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完.后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?7.一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?8.一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?9.北京密云水库建有10个泄洪洞,现在水库的水位已经超过安全线,并且水量还在以一个不变的速度增加,为了防洪,需要调节泄洪的速度,假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30个小时以后水位降至安全线;若同时打开两个泄洪闸,10个小时后水位降至安全线.根据抗洪形势,需要用2个小时使水位降至安全线以下,则至少需要同时打开泄洪闸的数目为多少个?10.(2008年五年级希望杯二试)有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管.开始时,进水管以均匀的速度不停地向蓄水池注水.后来,想打开出水管,使池内的水全部排光.如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水.若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管?11.一个蓄水池有1个进水口和15个出水口,水从进水口匀速流入.当池中有一半的水时,如果打开9个出水口,9小时可以把水排空.如果打开7个出水口,18小时可以把水排空.如果是一满池水,打开全部出水口放水,那么经过时分水池刚好被排空.12.一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?13. 一个装满了水的水池有一个进水阀及三个口径相同的排水阀,如果同时打开进水阀及一个排水阀,则30分钟能把水池的水排完,如果同时打开进水阀及两个排水阀,则10分钟把水池的水排完.问:关闭进水阀并且同时打开三个排水阀,需要多少分钟才能排完水池的水?14. 由于环境恶化、气候变暖,官厅水库的水在匀速减少,为了保证水库的水量,政府决定从上游的壶流河水库以及册田水库分别向官厅水库进行调水,已知这两个水库的每个闸门放水量是相同的,如果同时打开壶流河水库的5个闸门30小时可以使官厅水库水量达到原来的标准,如果同时打开册田水库的4个闸门40小时可以使官厅水库水量达到原来的标准,如果24小时使官厅水库水量达到原来的标准,问需同时打开两个水库的几个闸门?15. 小方用一个有洞的杯子从水缸里往三个同样的容积的空桶中舀水.第一个桶距水缸有1米,小方用3次恰好把桶装满;第二个桶距水缸有2米,小方用4次恰好把桶装满.第三个桶距水缸有3米,那么小方要多少次才能把它装满(假设小方走路的速度不变,水从杯中流出的速度也不变)16. (2008年五年级陈省身杯)有一个水池,池底存了一些水,并且还有泉水不断涌出.为了将水池里的水抽干,原计划调来8台抽水机同时工作.但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时.工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时.这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下 台抽水机.17. 如下图,有一个敞口的立方体水箱,在其侧面一条高线的三等分点出有两个排水孔A 和B ,它们排水的速度是恒定的.从上面给水箱注水,如果打开A 孔,关闭B 孔,那么经过20分钟可将水箱注满;如果关闭A 孔,打开B 孔,那么需要22分钟才能注满.若两个孔都打开,则注满水箱需要多长时间?18. 甲乙两个相同的长方体水箱,在它们的侧面上分别有排水孔A 和B .A 孔和B 孔与底面的距离分别是水箱高度的56和12,且排水速度相同.现在以相同的速度一起给两水箱注水,并通过管道使A 孔排出的水直接流入乙水箱,这样经过了70分钟后,甲乙水箱同时被注满.移掉甲水筒,乙箱的B 孔仍存在,那么按照上述的速度给乙箱注水,水箱从空到满需要多少分钟?Ⅲ 电梯19. 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.20. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒.问:该扶梯共有多少级梯级?21. (第七届中环杯中小学生思维能力训练活动初预(六)年级复赛活动内容)某人从向下运动着的自动扶梯步行而下,每步一级,共走了30级到达底层.在到达底层后,他又返身奔上这一自动扶梯,也是每步一级,一共走了60级到达上层.设这人向上奔走的速度是他向下步行速度的3倍,并且上下来回都是匀速运动,那么自动扶梯停止后,一共能看到( )扶梯.Ⅳ行程22. 小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米, 分钟能追上.23. 有固定速度行驶的甲车和乙车,如果甲车以现在速度的2倍追赶乙车,5小时后甲车追上乙车;如果甲车以现在速度的3倍追赶乙车,3小时后甲车追上乙车,那么如果甲车以现在的速度去追赶乙车,问:几个小时后甲车追上乙车?甲乙24.快、中、慢三车同时从A地出发沿同一公路开往B地,途中有骑车人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑车人.已知快车每分钟行800米,慢车每分钟行600米,中速车的速度是多少?25.小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.Ⅴ工程以及变量工程26.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多.用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完.仓库里原有的存货若用1辆汽车运则需要多少天运完?27.甲、乙、丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)28.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙,14天可以把砖用完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?29.食品厂开工前运进一批面粉,开工后每天运进相同数量的面粉,如果派5个工人加工食品30天可以把面粉用完,如果派4个工人,40天可以把面粉用完,现在派4名工人加工了30天后,又增加了2名工人一起干,还需要几天加工完?Ⅵ其他30.假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年;或供90亿人生活210年.为了使人类能够不断繁衍,地球上最多能养活多少人?31.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每天爬20分米,另一只每天爬15分米.黑夜往下滑,两只蜗牛滑行的速度都是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.求井深.32.为了保护渔业资源,春夏季封海,9月份开始捕鱼,而且只准捕捞大鱼,如果用100只船在附近海域可捕捞2个月,由于天气不断转冷,鱼群均匀减少,60只船只能捕捞3个月,问几只船可捕捞2个半月?一课一练1.牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2.一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?3.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?4.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?5.有一块1200平方米的牧场,每天都有一些草在匀速生长,这块牧场可供10头牛吃20天,或可供15头牛吃10天,另有一块3600平方米的牧场,每平方米的草量及生长量都与第一块牧场相同,问这片牧场可供75头牛吃多少天?6.三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?7.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)8.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?9.一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?10.一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?11.一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?12.有一牧场长满牧草,每天牧场匀速生长.这个牧场可供17头牛吃30天,可供19头牛吃24天.现有若干头牛吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,求原有牛的头数.13.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟.如果要使队伍10分钟消失,那么需同时开几个检票口?14.画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.15.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?16.有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?17.一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?18.有一泉水池,泉水匀速涌出.如果用甲水管抽10小时,可把满池水抽干;如果用乙水管抽5小时,可把满池水抽干;如果用甲、乙两管合抽2小时,也可把满池水抽干.问泉水被抽干后又经过多少小时可涌满水池?19.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?20.一个水池,地下水从四壁渗入,每小时渗入该水池的水是固定的.当这个水池水满时,打开A管,8小时可将水池排空;打开B管,10小时可将水池排空;打开C管,12小时可将水池排空.如果打开、两管,将水池排空需要多少时间?、两管,4小时可将水池排空,那么打开B CA B21.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走1梯级,女孩每3秒钟走2梯级.结果男孩用50秒到达楼上,女孩用60秒到达楼上.该楼梯共有多少级?22.甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.23.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120名工人砌了10天后,又增加5名工人一起砌,还需要再砌几天可以把砖用完?24.甲、乙、丙三个煤窑有同样多的煤,如果用一台皮带输送机和12个工人5小时可把甲煤窑的煤全部装车;如果用一台皮带输送机和28个工人3小时可把乙煤窑的煤全部装车.现在要用两台皮带输送机和若干个工人2小时把丙煤窑的煤全部装车,则需要用多少工人?25.某面粉厂,可储存全厂45日的用麦量.当仓库无货时,一辆大卡车去运,除了供应车间生产外,5日可将仓库装满;若用2辆小卡车去运,9日可运满.如用1辆大卡车和2辆小卡车同时去运,几日能仓库装满?题库补充1.由于打字员的辞职,一个公司积压下一批需要打印的材料,而且每天还要新增加固定数量需要打印的材料.假设材料以页计数,每个打字员的打字速度是相同的、固定的(单位是页/天).如果公司聘任5名打字员,24天就恰好打完所有材料;如果公司聘任9名打字员,12天就恰好打完所有材料.公司聘任了苦干名打字员,工作8天之后,由于业务减少,每天新增的需要打印的材料少了一半,结果这些打字员共用40天才恰好完成打字工作.问:公司聘任了多少名打字员?2.某玩具厂有四个车间,某周是质量检查周,现每个车间都原有a个产品,且每个车间每天都生产b个成品,质检科派出若干名检验员于星期一、星期二检验其中两个车间原有的与这两天生产的所有的成品.然后,星期三至星期五检验另两个车间原有的与本周生产的所有的成品.假定每个检验员每天检验的成品数相同.试问:(1)这若干名检验员1天检验多少个成品?(用含a、b的算式表示)(2)若1名质检验员1天能检验45b个成品,则质检科至少派出多少名检验员?3.某企业现有九个车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员,他们先用两天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再去检验第三、第四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B组的检验员检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求出B组检验员的人数.。
牛吃草经典例题

牛吃草经典例题
牛吃草问题是著名的趣味数学问题,典型例题有:
例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者供15头牛吃10天。
问可供25头牛吃几天?
例2:某块草地,假设每天匀速生长出青草正好够10头牛吃,这块草地可以放牧24头牛,则可以放牧多少头牛?
例3:有一片牧场,已知养牛60头,10天可以把草吃完;如果养牛45头,15天可以把草吃完;那么如果养牛20头,多少天可以把草吃完?
例4:有一块牧场,如果养25只羊,8天可以把草吃没,如果养21只羊,12天可以把草吃没,如果养16只羊,几天能把牧场上的一片牧草吃没?。
小学数学奥数测试题牛吃草问题_人教版

2019年小学奥数应用题专题——牛吃草问题1.青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)2.牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?3.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?4.有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?5.(2019年湖北省“创新杯”)牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则多少头牛96天可以把草吃完?6.一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?7.林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)8.由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?9.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?10.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?11.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生姓名: 年级:小升初 科目:数学
授课教师:贺琴 授课时间: 学生签字:
牛吃草问题
1、牧场上长满青草,草每天均匀生长。
这片牧场可供10头牛吃20
天,可供15头牛吃了10天,那么供25头牛可吃多少天?
2、有一片牧场上的草均匀地生长。
24头牛6天可以把草吃完,20头
牛10天可以把草吃完,牧场每天生长的草可供几头牛吃1天?
3、牧场上有一片青草,可以供27头牛吃6天,供23头牛吃9天,如果
每天牧草生长的速度相同,那么这片牧草可供21头牛吃几天?
4、牧场上有一片青草,24只羊6天可以把草吃完;20只羊10天也可
以把青草吃完。
那么多少只羊12天可以把青草吃完?
5、24头牛6天可以将一片牧草吃完,21头牛8天也可以的将这片牧草
吃完,如果每天牧草的增长量相等,要使这片牧草永远吃不完,至多放几头牛吃这片牧草?
6、一片牧草,每天生长速度相同,现在这片牧场上的草可供16头牛
吃20天,或者可供80只羊吃12天。
如果1头牛的吃草量等于4只羊的吃草量,那么10头牛和60只羊一起吃可以吃多少天?
7、有一片牧草,每天匀速生长,它可供17只羊吃30天,或可供19只
羊吃24天。
现有若干只羊,吃了6天后卖了4只,余下的羊再吃2天将草吃完,那么原来有多少只羊?
8、一块牧草,可供9头牛吃12天,也可供8头牛吃16天,现在开始只
有4头牛吃,从第7天起又意思啊若干头牛吃草,再吃6天吃完了所有的草,问从第7天起增加了多少头牛?
9、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。
经计
算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么可供11头牛吃多少天?
10、一只船发现漏水,已经进了一些水,水匀速进入船内。
如果10
人淘水,3小时淘完;如果5人淘水8小时淘完。
如果要求2小时淘完,要安排多少人淘水?
11、某火车站的检票口,在检票开始前已有一些人在排队,检票开
始后每分钟有10人前来排队检票,一个检票口每分钟能让25人检票进站。
如果只有一个检票口,检票开始8分钟后就没有人排队,如果有两个检票口,那么检票开始后多少分钟就没有人排队?
12、仓库里原有一批存货,以后继续有车运货进仓,且每天运进的
货一样多,有同样的汽车运货出仓。
如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的货若用1辆汽车运则需要多少天运完?
13、画展9点开门,但早就有人排队入场。
以第一个观众来算起,每
分钟来的观众人数一样多。
如果开3个入场口,则9分钟后就不再有人排队;如果开5个入场口,则5分钟后就再有人排队。
那么第一个观众到达的时间是几点几分?
14、一水库存量一定,河水均匀入库。
如果用5台抽水机,连续抽20
天可将水库抽干;如果用6台抽水机,连续抽15天可将水库抽
干。
现在希望6天将水库里的水抽干,问需要几台抽水机?(假设每台抽水机每天的抽水量相同)。