较复杂的牛吃草问题及盈亏应用题
牛顿牛吃草数学题

牛顿牛吃草数学题
牛吃草的数学题是17世纪英国伟大的科学家牛顿提出来的,题目如下:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,期间一直有草生长。
如果供给25头牛吃,可以吃多少天?
解题环节主要有以下四步:
1.求出每天长草量。
2.求出牧场原有草量。
3.求出每天实际消耗原有草量(牛吃的草量-生长的草量=消耗原有的草量)。
4.最后求出牛可吃的天数。
这片草地天天以匀速生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,类似于60头牛1天吃的草,平均分到(22-10)天里,便得到5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把所有头牛分成两部分来研究,用其中一部分(5头)吃掉新长出的草,用另外一部分吃掉原有的草,即可求出全部头牛吃的天数。
设一头牛1天吃的草为一份。
那么10头牛22天吃草为1×10×22=220(份),16头牛10天吃草为1×16×10=160(份)。
(220-160)÷(22-10)=5(份),说明牧场上一天长出新草5份。
220-5×22=110(份),说明原有老草110份。
综合式:110÷(25-5)=5.5(天)。
因此供给25头牛吃,可以吃5.5天。
1/ 1。
行测数量盈亏和牛吃草问题 非常好的思路和解析 附练习题

【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。
(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。
(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。
求这个小组有多少人?一共有多少棵树苗?分析:已知如果每人栽3棵,还剩下15棵树苗,也就是说还有15棵树苗没有栽上,树苗余下了;又知如果每人栽5棵,就缺少9棵树苗,这就是说,树苗不够了。
按照第一种方案去栽,树苗余下了,若按照第二种方案去栽,树苗不足了。
一个是余下一个是不足,这两个方案之间相差多少棵呢?相差(15+9=)24棵,也就是说,如果按照第二种方案去栽的话,可以比第一种方案多栽24棵树。
为什么能多栽24棵树呢?因为每个人多栽(5-3=)2棵。
由于每一个人多栽2棵树,一共多栽24棵树,即“2棵树”对应于“1个人”。
这样,小组的人数可以求得。
随之,树苗的棵数也可以求得。
计算:(1)小组的人数:(15+9)÷(5-3)=24÷2=12(人)(2)树苗的棵数:3×12+15=51(棵)答:这个小组有12人,一共有51棵树苗。
在解题时,常常要找两个“差”。
一个是总棵数之差,即第一种方案同第二种方案所栽树苗的总差数;另一个是单量之差,即每个人所栽树苗的差。
有了这两个差即可求出结果。
因此,这种解题的思路也可以称作“根据两个差求未知数”。
例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。
公考牛吃草问题经典例题

公考牛吃草问题经典例题公考牛吃草问题,听着是不是有点让人头疼?别急,咱们一块儿聊聊,保准让你轻松搞懂。
这类问题其实一点也不复杂,只要你放松点,像在和朋友聊八卦一样,慢慢琢磨,答案就会在脑袋里清晰得像晴天一样。
首先啊,咱们得知道,牛吃草这种问题,归根结底是在考你如何理解“速度”和“时间”的关系。
你可以把它当作一场牛吃草的比赛,看看每头牛用多长时间吃完草,再算算草的总量。
简简单单,关键是得捋清楚每一部分。
想象一下,草地上有一堆草,旁边有一头牛,它慢慢地吃着,吃着,慢慢就能把草吃完。
你可能会问,牛吃草的速度快不快?如果只有一头牛,那它吃完草可能得很长时间,甚至你都能在旁边睡上一觉。
可要是有两头牛呢?它们分工合作,速度就能加快。
更妙的是,若是三头牛,你估计连吃草的机会都没得抢。
这种问题其实就像是大家一起去参加接力赛,每个人负责一段,大家合力完成,时间自然就短了。
别看这个问题简单,实际上一点也不简单。
咱们得有点策略才行。
假设题目给了你牛吃草的时间,告诉你一头牛吃完草需要多长时间。
比如,一头牛吃完草得10天。
那么问题来了,别的牛吃草是不是也能更快呢?答案是肯定的!如果有两头牛,它们的吃草速度肯定是加起来的,所以吃草的总时间就短了。
你可以想象成两个人合作画画,两个小伙伴一起工作,完成任务的时间自然缩短。
牛吃草也是这个道理,合作得好,时间自然就缩短了。
说到这里,你可能会心想:“好啊,那如果我有三头牛呢?”呵呵,三头牛更是能让你眼前一亮。
想象一下,它们三个人同时吃草,肯定是分担了更多的任务。
时间一下子就从10天缩短成了几天,牛吃草的速度比原来快多了。
怎么样,是不是有点像打游戏,团队合作,分工明确,任务就能很轻松完成呢?不过,事情也不是永远都这么简单。
草地的草量可能不固定,草可能吃不完或者有些剩余。
这个时候,你就得注意了,要根据题目提供的草量来计算,别光想着自己有多牛。
有些题目还特别喜欢搞一些小花样,像是草的生长速度、牛的吃草速度不一致等等。
牛吃草问题例题

牛吃草问题例题
一、例题
一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。
如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
二、题目解析
1. 设每头牛每天的吃草量为1份
对于15头牛吃10天的情况,总草量包括原有草量和10天生长的草量。
因为每头牛每天吃1份草,15头牛10天吃草:15×10 = 150份。
然后,25头牛吃5天,总草量为25×5=125份。
2. 计算每天草的生长量
15头牛吃10天的总草量比25头牛吃5天的总草量多的部分,就是(10 5)天生长出来的草量。
150 125=25份,这25份草是5天生长出来的,所以每天草的生长量为25÷5 = 5份。
3. 计算原有草量
根据15头牛吃10天的情况,原有草量 = 15头牛10天吃的草量-10天生长的草量。
10天生长的草量为5×10 = 50份,所以原有草量为150-50 = 100份。
4. 计算10头牛可以吃的天数
设10头牛可以吃x天。
10头牛x天吃的草量等于原有草量加上x天生长的草量。
10头牛x天吃草10x份,x天生长的草量为5x份,原有草量为100份,则10x=100 + 5x。
移项可得10x-5x=100,即5x = 100,解得x = 20天。
所以这片草地若供10头牛吃,可以吃20天。
牛吃草问题经典例题10道

牛吃草问题经典例题10道牛吃草问题常被认为是经典的运筹学题目,在这里我们汇总了10道牛吃草问题的理论例题,以帮助大家学习这些问题的解决方法,加深对运筹学的理解。
例题一:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,那么它最少要移动几次,才能将草地吃完?解答:首先,要吃完草地,牛至少要移动L/a次,也就是说,牛要吃完草地,它最少要移动L/a次,例如当L=12,a=4时,牛需要移动3次才能吃完草地。
例题二:有一片长度为L的草地,有两头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:这里我们可以使用二分法来求解,即每次移动时,两头牛分别前进a/2的距离,最后再合起来这样移动L/a次便可将草地吃完,即当L=12,a=4时,两头牛最少要移动6次,分别前进2次,才能将草地吃完。
例题三:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:牛的数量与它们吃掉草地的最少次数没有关系,只要它们每次移动距离等于a,那么无论有多少头牛,它们最少要移动L/a次,例如当L=12,a=4时,无论有几头牛,它们最少要移动3次才能吃完草地。
例题四:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,而每头牛的移动速度不同,那么它们最少要移动几次,才能将草地吃完?解答:考虑到牛的不同移动速度,它们吃完草地的最少次数取决于最慢移动的牛,即其吃掉草地的总时间就等于最慢移动的牛移动的时间,也就是说最慢移动的牛最少要移动L/a次才能吃完草地,例如当L=12,a=4时,无论有几头牛,最慢的牛最少要移动3次才能将草地吃完。
例题五:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,但是牛有一定的消耗,每移动一次需要消耗b的能量,它有总共c的能量,那么它最多可以移动几次?解答:由于牛有一定的消耗,所以它最多可以移动c/b次,例如当L=12,a=4,b=1,c=8时,牛最多可以移动8次。
牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)牛吃草问题一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天)。
说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(10—5)×20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
因此,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
六年级奥数牛吃草问题应用题专项练习

牛吃草问题专项练习(1)11头牛10天可吃完5公顷草,12头牛14天可吃完6公顷全部牧草,问8公顷草地可供19头牛吃多少天?(假设每块草地每公顷每天牧草长得一样快)(2)12头牛28天可吃完10公亩牧场上全部牧草,21头牛63天可吃完30公亩牧场上全部牧草.多少头牛126天可吃完72公亩牧场上全部牧草?(每公亩牧场上原有的草量相等,且每公亩牧场上每天草的生长量相同)(3)22头牛,吃33公亩牧场的草54夭可吃尽,17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽?(4)仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?(5)超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。
某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了?(6)春节期间,某火车站已有不少的旅客在候车室等候验票,并且前来验票上车的旅客按照一定的速度在增加,如果只开放一个窗口验票,需要半小时全部旅客才能进站上车;如果开放两个窗口,则需要10分钟全部旅客就可进站上车了。
然而,现在等候上车的时一列加班车,必须在5分钟内全部上车,准点上车。
那么这个火车站至少要同时开放多少个窗口?(7)村民组织抗旱,从一个地下泉水挑水浇地。
如果50人挑,20小时就把水挑完;如果70人挑水,10小时也可挑完。
现在有130人挑,几小时可把水挑完?(8)哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级。
在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级。
如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?(9)画展9点开门,但早就有人排队等候入场了。
高难度牛吃草问题例题

高难度牛吃草问题例题摘要:一、牛吃草问题的背景和意义1.牛吃草问题的起源和发展2.牛吃草问题在实际生活中的应用二、牛吃草问题的基本概念和公式1.牛吃草问题的定义2.牛吃草问题的基本公式三、牛吃草问题的解题方法1.直接解法2.换元法3.比例法4.代入法5.消元法四、牛吃草问题的例题解析1.例题一解析2.例题二解析3.例题三解析五、牛吃草问题的总结和拓展1.牛吃草问题的关键点和注意事项2.牛吃草问题的拓展应用和实际案例正文:一、牛吃草问题的背景和意义牛吃草问题,起源于我国古代著名的数学家、农学家贾思勰所著的《齐民要术》。
这个问题旨在帮助农民解决牛吃草的喂养问题,从而提高农业生产效率。
随着数学的发展,牛吃草问题逐渐演变成一个具有广泛应用的数学问题,如在生态学、经济学、物理学等领域都有所应用。
二、牛吃草问题的基本概念和公式牛吃草问题,通常可以表述为:已知一头牛每天吃草的速度为x,草的生长速度为y,问多少头牛可以在z 天内将一片草地吃完?根据题意,我们可以得到牛吃草问题的基本公式:z = (xy) / (x - y)。
三、牛吃草问题的解题方法1.直接解法:根据题意,直接代入公式求解。
2.换元法:设u = x - y,将原方程转化为关于u 的一元二次方程求解。
3.比例法:将牛的头数和草的生长速度、牛吃草的速度建立比例关系,从而求解。
4.代入法:先求出草的生长速度和牛吃草的速度,再代入公式求解。
5.消元法:通过消去草的生长速度,将方程简化后求解。
四、牛吃草问题的例题解析1.例题一解析:假设一头牛每天吃草的速度为3,草的生长速度为2,问多少头牛可以在10 天内将一片草地吃完?解析:代入公式z = (xy) / (x - y),得到z = (3 * 2) / (3 - 2) = 6。
所以需要6 头牛可以在10 天内将草地吃完。
2.例题二解析:假设一头牛每天吃草的速度为5,草的生长速度为3,问多少头牛可以在20 天内将一片草地吃完?解析:使用换元法,设u = x - y,则原方程可转化为关于u 的一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
较复杂的牛吃草问题及盈亏问题应用题
1、在一片牧场里,放养4头牛,吃6亩草,18天可以吃完:放养6头牛,吃1 0亩草,30天可以吃完,请问放入多少头牛,吃8亩草,24天可以吃完?(假定这片牧场每亩中的原草量相同,且每天草的生长两相等)
提示:牛吃草问题在奥数竞赛中常见,近几年考试的难度不会加深,但变形的题目五花八门。
不过不管怎么变,只要知道牛吃草问题的根本解法,一切都会变得很简单。
还记得牛吃草问题的第一步怎么做吗?
有人说求出草量,这不是第一步,你是怎么求出草量的?哦,明白了吧!
那就是假设!假设一头牛一天吃的是一份!这个是最关键的一步,也是非常容易忽视的一步,大家一定要记住这一步!
好,这样你就可以求出6亩和10亩的草量了吧!
转化一下,转化成一亩的草量,否则生长量和原有草量都不一样就无法求解了!
接下来的事情就好办了,就和普通的牛吃草问题一样了,求出一亩的原有草量和生长量。
请大家认真思考,把剩下的步骤写出来!
2、有快、中、慢三辆车同时从同一地点出发,沿同一公路追赶路上的一个骑车人。
这三辆车分別用6小时、10小时、12小时追上骑车人。
現在知道快车每小时走24千米,中速車每小时走20千米,那么,慢速車每小時走多少千米?
提示:找到题中的“牛”与“草”,你就成功了一半。
3、某游乐场在开门前已经有100个人排队等待,开门后每分钟来的游人数是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口20分钟后就没有人排队,现在开放8个入口处,每分钟关闭一个门,那么开门后几分钟就没人排队了?
提示:解答出“原来一共的人”和“每分钟来的人”后,要结合我们很擅长的等差数列问题来解决。
盈亏问题,顾名思义有剩余就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产生这种盈亏现象.盈亏问题的关键是抓住两次分配时盈亏总量的变化.盈亏问题分为三类:⑴直接计算型盈亏问题;⑵条件转换型盈亏问题;⑶关系互换型盈亏问题.
1 2、3、。