机械振动基础试卷3答案
第3章 多自由度机械振动系统 作业答案

⎤ ⎡ x1 ⎤ ⎡ p1 ( t ) ⎤ ⎢x ⎥ = ⎢ p t ⎥ − k3 ⎥ ⎥ ⎢ 2 ⎥ ⎢ 2 ( )⎥ k3 + k 4 ⎥ ⎦⎢ ⎣ x3 ⎥ ⎦ ⎢ ⎣ p3 ( t ) ⎥ ⎦ 0
d ∂T ∂T ∂U ∂D ( )− + + = Qi i ∂qi ∂qi ∂q i dt ∂q
2、拉格朗日法:
1 1 2 12 + m2 x 2 T = m1 x 2 2
U=
1 2 1 1 2 ⎤ k1 x1 + k2 (2 x2 − x1 ) 2 = ⎡ (k1 + k2 ) x12 + 4k2 x1 x2 + 4k2 x2 ⎣ ⎦ 2 2 2
Dr. Rong Guo
School of automotive studies, tongji university
⎡ k1r 2 K =⎢ 2 ⎣ − k1r
⎡3 2 ⎢ 2 Mr ⎢ ⎢ 0 ⎢ ⎣ 0
⎤ ⎥ ( k1 + k2 ) r 2 ⎦ − k1r 2
− k1r 2 ⎤ ⎡θ1 ⎤ ⎡0 ⎤ ⎥⎢ ⎥ = ⎢ ⎥ θ 2 ⎦ ⎣0 ⎦ ( k1 + k2 ) r 2 ⎦ ⎣
⎤ ⎤ ⎡ k1r 2 ⎥ ⎡θ ⎥ ⎢ 1 ⎥ + ⎢ 3 −k r 2 θ Mr 2 ⎥ ⎣ 2 ⎦ ⎣ 1 ⎥ ⎦ 2
x1 2l + k1 x1 2l + m2 x2l = 0 ⎧m1 ⎨ ⎩m2 x2l + k2 ( 2 x2 − x1 ) 2l = 0 x1 + m2 x2l + 2k1 x1 = 0 ⎧2m1 ⎨ x2 − 2k2 x1 + 4k2 x2 = 0 ⎩ m2 ⎡ 2m1 ⎢ 0 ⎣ m2 ⎤ ⎡ x1 ⎤ ⎡ 2k1 ⎢ ⎥ + ⎢ −2 k m2 ⎥ x 2 ⎦⎣ 2⎦ ⎣ 0 ⎤ ⎡ x1 ⎤ ⎡0 ⎤ ⎢ x ⎥ = ⎢0 ⎥ 4k 2 ⎥ ⎦⎣ 2⎦ ⎣ ⎦
机械振动答案

机械振动答案(1)选择题1解析:选D.如图所示,设质点在A 、B 之间振动,O 点是它的平衡位置,并设向右为正.在质点由O 向A 运动过程中其位移为负值;而质点向左运动,速度也为负值.质点在通过平衡位置时,位移为零,回复力为零,加速度为零,但速度最大.振子通过平衡位置时,速度方向可正可负,由F =-kx 知,x 相同时F 相同,再由F =ma 知,a 相同,但振子在该点的速度方向可能向左也可能向右.2.解析:选B.据简谐运动的特点可知,振动的物体在平衡位置时速度最大,振动物体的位移为零,此时对应题图中的t 2时刻,B 对.3.解析:选BD.质点做简谐运动时加速度方向与回复力方向相同,与位移方向相反,总是指向平衡位置;位移增加时速度与位移方向相同,位移减小时速度与位移方向相反.4解析:选C.因为弹簧振子固有周期和频率与振幅大小无关,只由系统本身决定,所以f 1∶f 2=1∶1,选C.5解析:选B.对于阻尼振动来说,机械能不断转化为内能,但总能量是守恒的.6.解析:选B.因质点通过A 、B 两点时速度相同,说明A 、B 两点关于平衡位置对称,由时间的对称性可知,质点由B 到最大位移,与由A 到最大位移时间相等;即t 1=0.5 s ,则T2=t AB +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2 A ,即2A =12 cm ,A =6 cm ,故B 正确.7.解析:选A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g,两球周期相同,从释放到最低点O 的时间t =T4相同,所以相遇在O 点,选项A 正确.8.解析:选C.从t =0时经过t =3π2L g 时间,这段时间为34T ,经过34T 摆球具有最大速度,说明此时摆球在平衡位置,在给出的四个图象中,经过34T 具有负向最大速度的只有C 图,选项C 正确.9.解析:选CD.单摆做简谐运动的周期T =2πlg,与摆球的质量无关,因此两单摆周期相同.碰后经过12T 都将回到最低点再次发生碰撞,下一次碰撞一定发生在平衡位置,不可能在平衡位置左侧或右侧.故C 、D 正确.10.解析:选D.通过调整发生器发出的声波就能使酒杯碎掉,是利用共振的原理,因此操作人员一定是将声波发生器发出的声波频率调到500 Hz ,故D 选项正确. 二、填空题(本题共2小题,每小题8分,共16分.把答案填在题中横线上)11答案:(1)B (2)摆长的测量、漏斗重心的变化、液体痕迹偏粗、阻力变化……12答案:(1)ABC (2)①98.50 ②B ③4π2k计算题13.(10分)解析:由题意知弹簧振子的周期T =0.5 s ,振幅A =4×10-2m. (1)a max =kx max m =kA m=40 m/s 2. (2)3 s 为6个周期,所以总路程为s =6×4×4×10-2m =0.96 m.答案:(1)40 m/s 2(2)0.96 m14.(10分)解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M R +h2据单摆的周期公式可知T 0=2πLg ,T =2πL g h由以上各式可求得h =(T T 0-1)R . 答案:(T T 0-1)R15.(12分解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g =πl g. 则该振动系统的周期T =12T A +12T B =12(T A +T B )=3π2l g. 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰 撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为t =6T -t ′=9πl g -2T 2l g =17π2lg. 答案:17π2l g16.(12分解析:在力F 作用下,玻璃板向上加速,图示OC 间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC 代表音叉振动1.5个周期内玻璃板运动的位移,而OA 、AB 、BC 间对应的时间均为0.5个周期,即t =T 2=12f=0.1 s .故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设板竖直向上的加速度为a ,则有:s BA -s AO =aT 2①s CB -s BA =aT 2,其中T =152 s =0.1 s ②由牛顿第二定律得F -mg =ma ③ 解①②③可求得F =24 N. 答案:24 N机械振动(2)机械振动(3)1【解析】 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球在最低点时,处于平衡位置,回复力为零,但合外力不为零,B 错误.【答案】 C2【解析】 质量是惯性大小的量度,脱水桶转动过程中质量近似不变,惯性不变,脱水桶的转动频率与转速成正比,随着转动变慢,脱水桶的转动频率减小,因此,t 时刻的转动频率不是最大的,在t 时刻脱水桶的转动频率与机身的固有频率相等发生共振,故C 项正确.【答案】 C3【解析】 摆球从A 运动到B 的过程中绳拉力不为零,时间也不为零,故冲量不为零,所以选项A 错;由动能定理知选项B 对;摆球运动到B 时重力的瞬时功率是mg v cos90°=0,所以选项C 错;摆球从A 运动到B 的过程中,用时T /4,所以重力的平均功率为P =m v 2/2T /4=2m v 2T ,所以选项D 错.【答案】 B4【解析】 由振动图象可看出,在(T 2-Δt )和(T2+Δt )两时刻,振子的速度相同,加速度大小相等方向相反,相对平衡位置的位移大小相等方向相反,振动的能量相同,正确选项是D.【答案】 D5【解析】 据受迫振动发生共振的条件可知甲的振幅较大,因为甲的固有频率接近驱动力的频率.做受迫振动物体的频率等于驱动力的频率,所以B 选项正确.【答案】 B6【解析】 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.【答案】 C题号 1 2 3 4 5 6 7 8 9 10答案 ACBADACBDACADD(T 2-T 1)R/T 17【答案】 C8【解析】 根据题意,由能量守恒可知12kx 2=mg (h +x ),其中k 为弹簧劲度系数,h 为物块下落处距O 点的高度,x 为弹簧压缩量.当x =x 0时,物块速度为0,则kx 0-mg =ma ,a =kx 0-mg m =kx 0m -g =2mg (h +x 0)mx 0-g =2g (h +x 0)x 0-g >g ,故正确答案为D.【答案】 D9【解析】 由题中条件可得单摆的周期为T =0.30.2s =1.5s ,由周期公式T =2πlg可得l=0.56m.【答案】 A10【解析】 当摆球释放后,动能增大,势能减小,当运动至B 点时动能最大,势能最小,然后继续摆动,动能减小,势能增大,到达C 点后动能为零,势能最大,整个过程中摆球只有重力做功,摆球的机械能守恒,综上可知只有D 项正确.【答案】 D机械振动(4)1解析:选A.周期与振幅无关,故A 正确.2解析:选C.由单摆周期公式T =2π lg知周期只与l 、g 有关,与m 和v 无关,周期不变频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=12·4m ·(v 2)2,可知h ′≠h ,振幅改变.故选C.3解析:选D.此摆为复合摆,周期等于摆长为L 的半个周期与摆长为L2的半个周期之和,故D 正确.4解析:选B.由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8s ,f =1T=1.25 Hz ,选项B 正确.5解析:选D.当单摆A 振动起来后,单摆B 、C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A 错误而D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项C 正确而B 错误.6解析:选BD.速度越来越大,说明振子正在向平衡位置运动,位移变小,A 错B 对;速度与位移反向,C 错D 对.7解析:选AD.P 、N 两点表示摆球的位移大小相等,所以重力势能相等,A 对;P 点的速度大,所以动能大,故B 、C 错D 对.8解析:选BD.受迫振动的频率总等于驱动力的频率,D 正确;驱动力频率越接近固有频率,受迫振动的振幅越大,B 正确.9解析:选B.读图可知,该简谐运动的周期为4 s ,频率为0.25 Hz ,在10 s 内质点经过的路程是2.5×4A =20 cm.第4 s 末的速度最大.在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相反.。
《机械振动》单元测试题(含答案)

A. 时刻钢球处于超重状态
H.最小刻度为毫米的米尺
用了游标卡尺和米尺后,还需要从上述器材中选择__________(填写器材前面的字母)。
(2)用10分度的游标卡尺测量小球的直径d,测量的示数如图2所示,读出小球直径的值为_________mm。
(3)将符合实验要求的单摆悬挂在铁架台上,将其上端固定,下端自由下垂。用米尺测量摆线长度为l。小球在竖直平面内小角度平稳摆动后,测得小球完成n次全振动的总时间为t请写出重力加速度的表达式g=______。(用l,d,n,t表示)
(1)由实验数据得出图(b)所示的拟合直线,图中纵轴表示______(用题中所给的字母表示);
(2) 的国际单位为_______;
(3)若摆的质量测量值偏大,重力加速度g的测量值____(选填:“偏大”、“偏小”或“不变”)
23.用单摆测定重力加速度的实验装置如图所示.
(1)组装单摆时,应在下列器材中选用(选填选项前的字母)
(2)有同学测得的g值偏小,可能原因是______。
A.测摆线时摆线拉得过紧
B.摆线上端未牢固地系于悬点
C.以摆球直径和摆线长之和作为摆长来计算
D.开始计时时,小球开始摆动后稍迟才按下停表计时
E.摆球通过平衡位置并开始计时时,将摆球通过平衡位置的次数计为1
25.某实验小组利用如图甲所示的装置测量当地的重力加速度。
《机械振动》单元测试题(含答案)
《机械振动基础》期末复习试题5套含答案.doc

中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。
2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析()的振动性质的基础。
5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。
二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。
(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。
(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。
13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。
{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。
(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。
(10 分) 4.简述线性多自由度系统动力响应分析方法。
(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。
3机械振动练习与答案

A . 1/2 sB . 1/4 sC . 1/6 sD . 1/8 s []5.质点作简谐振动,运动速度与时间 的曲线如图所示,若质点的运动规律用余第三次 机械振动练习班 级 _________________________ 姓 名 _________________________ 班内序号 ______________________ 一.选择题1. 一质点做简谐振动,如振动方程为:t=T/2时,质点的速度为:A . - A sinC . - A cos 2.图示为一单摆装置,把小球从平衡位置 b ,拉开一小角度J 。
至a 点, 在t = 0时刻松手让其摆动,摆动规律用余弦函数表示,则在a 》c 的摆动中,F 列哪个说法是正确的?A . a 处动能最小,相位为山;B . b 处动能最大,相位为-/2 ;C . c 处动能为零,相位为-入;D . a.b.c 三处能量相同,相位依次减少。
3.如简谐振动在t = 0时,X • 0, V ”: 0,则表示该简谐振动的旋转矢量图 应该是:4 .质点沿X 轴作简谐振动,振动方程为x = 4 10~2 cos(Z : t 3 )(SI),从t = 0 时刻起,到质点位置为x = -2cm 处、且向X 轴正方向运动的最短时间间隔为:C A>tox = Acos (,i ),周期为T ,贝U 当[ ]B . A 、sin D . A cos二•填空题1.____________________________________ 简谐振动的三个基本特征量为_____________________________________________ 、____________ 和_____________ ;它们分别取决于 ________________ 、________________ 和________________ 。
2._____________________________________________________ 两个同频率、同方向简谐振动的合振动为 _______________________________________ ,合振动的振幅取决于 ________________________________________ ,两个相互垂直的同频率的简谐振动,其合振动的运动轨迹一般为 __________________________ ,若两分振动的频率为简单整数比,则合成运动的轨迹为 __________________________ 。
长春市机械振动试题(含答案)

长春市机械振动试题(含答案)一、机械振动 选择题1.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是A .物体系统的固有频率为f 0B .当驱动力频率为f 0时,物体系统会发生共振现象C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D .驱动力频率越大,物体系统的振幅越大2.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 3.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA4.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以t =0时刻作为计时起点,其振动图像如图所示,则A.t=14T时,货物对车厢底板的压力最大B.t=12T时,货物对车厢底板的压力最小C.t=34T时,货物对车厢底板的压力最大D.t=34T时,货物对车厢底板的压力最小5.如图所示是在同一地点甲乙两个单摆的振动图像,下列说法正确的是A.甲乙两个单摆的振幅之比是1:3B.甲乙两个单摆的周期之比是1:2C.甲乙两个单摆的摆长之比是4:1D.甲乙两个单摆的振动的最大加速度之比是1 :46.如图所示,固定的光滑圆弧形轨道半径R=0.2m,B是轨道的最低点,在轨道上的A点(弧AB所对的圆心角小于10°)和轨道的圆心O处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则()A.两小球同时到达B点B.A点释放的小球先到达B点C.O点释放的小球先到达B点D.不能确定7.如图所示,水平方向的弹簧振子振动过程中,振子先后经过a、b两点时的速度相同,且从a到b历时0.2s,从b再回到a的最短时间为0.4s,aO bO,c、d为振子最大位移处,则该振子的振动频率为()A.1Hz B.1.25HzC .2HzD .2.5Hz8.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小 9.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( )A .T =2πr GM lB .T =2πr l GMC .T =2πGM r lD .T =2πlr GM 10.悬挂在竖直方向上的弹簧振子,周期T=2s ,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是( )A .t=1.25s 时,振子的加速度为正,速度也为正B .t=1.7s 时,振子的加速度为负,速度也为负C .t=1.0s 时,振子的速度为零,加速度为负的最大值D .t=1.5s 时,振子的速度为零,加速度为负的最大值11.一简谐振子沿x 轴振动,平衡位置在坐标原点.0t =时刻振子的位移0.1m x =-;4s 3t =时刻0.1m x =;4s t =时刻0.1m x =.该振子的振幅和周期可能为( ) A .0.1 m ,8s 3 B .0.1 m, 8s C .0.2 m ,8s 3 D .0.2 m ,8s12.装有一定量液体的玻璃管竖直漂浮在水中,水面足够大,如图甲所示。
机械振动题库(含答案)

…………2分 …………2分 …………2分 …………2分
16.有两个同方向、同频率的简谐振动,它们的振动表式为:
x1
0.05cos 10t
3 4
x2
0.06 cos 10t
1
4
(SI)
(1)求它们合成振动的振幅和初相位。
,
(2)若另有一振动 x3 0.07cos(10t 3), 问 3 为何值
7、在两个相同的弹簧下各悬一物体,两物体的质量
比为4∶1,则二者作简谐振动的周期之比为___2_:_1____ 。
8. 一简谐振动的振动曲线如图所示,则由图可得其振幅为
10 cm
_________
2
,其初相为___3______
,
xcm
10
其周期为__2_54___s___
O
2
x 0.1cos( 5 t 2 )
(A) 6T (B) T / 6 (C) 6T
(D) T
6
4.一个质点作简谐运动,振幅为A,在起始时质点的位移为
A / 2 ,且向x轴正方向运动,代表此简谐运动的旋转矢量
为( B )
A
OA x 2
A
2O
A
x
A
2
O
A
x
A
A O
x
2
(A)
(B)
(C)
(D)
5.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动
竖直放置 放在光滑斜面上
2. 如图所示,以向右为正方向,用向左的力压缩一弹簧,然后
松手任其振动,若从松手时开始计时,则该弹簧振子的初相位
为( D )
(A) 0
(B)
2
机械振动基础试卷3答案.doc

振动分析与实验基础课程考试试卷3答案1. 求如图1所示系统的周期,三个弹簧都成铅垂,且122kk=,13kk=。
(共计15分)解:等效刚度=132135)11(1kkkk=++由nω=mkmk351=故系统的周期为15322kmTnπωπ==2. 重物1m悬挂在刚度为k的弹簧上,并处于静平衡位置,另一重物2m从高度为h处自由落到1m上无弹跳,如图2所示,求其后的运动。
(共计15分)解:根据题意,取M=1m+2m所处的平衡位置为原点,向下为正,得系统运动的微分方程为:⎪⎩⎪⎨⎧+=-==+21222,mmghmxkgmxkxxM&&&解得txtxx nnnωωωsincos0&+==)sin(2)cos(212212tmmkkghmtmmkkgm+++-3. 如图3所示系统两个圆盘的半径为r,设,3,,32121kkkkkIII=====求系统的固有频率和振型。
(共计15分)解:取21,θθ为系统的广义坐标,系统的动能为)(2121212221222211θθθθ&&&&+=+=IIIE T系统的势能为2232212211)(21)(21)(21θθθθrkrrkrkU+++=从而可得[]⎥⎦⎤⎢⎣⎡=IIM,[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++=222223222222222142krkrkrkrrkrkrkrkrkrkK系统的特征方程为:⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫⎝⎛-I-4I221222222uukrkrkrkrωω得IkrIkr222221)23(,)23(+=-=ωω其振型分别为:⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧+-=112,12121uu4. 试从,)/2(1)(2nHAXωξωω+=[]222)/2(/-1/1|)(|nnHωξωωωω+=)(证明:1).无论阻尼比ξ取何值,在频率比n ωω/=2时,恒有A X=2).在n ωω/<2,X/A 随ξ增大而减小,而在n ωω/>2 ,A X /随ξ增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(共计15分)
故系统的周期为 2.重物m 1悬挂在刚度为k 的弹簧上,并处于静平衡位置,另一重物m 2 从高度为h 处自由落到m i 上无弹跳,如图2所示,求其后的运动。
(共
计15分) 解:根据题意,取M=M 1+m 2所处的平衡位置为原点,向下为正,得系 统运动的微分方程为: =詈cos (pZ t ) jl^sin (pZ t )
k
m 1 m 2
. k
. m, m 2
3.如图3所示系统两个圆盘的半径为r ,设
I 1 I 2 I,k 1 k 2 k,k 3 3k,求系统的固有频率和振型。
(共计15分) 解:取1, 2为系
统的广义坐标, 系统的动能为
E T
I 1 12 212 22 11 ( 12 22)
振动分析与实验基础课程考试
3答案
1.求如图1所示系统的周期,三个弹簧都成铅垂,
且k 2
2k 〔 , k g k
〔
o
解:
等效刚度二一1—
1 1 (-—)
k 1 k 2
k 3
永1
5k 1
k m 3m
解得 x x 0cos n t —°sin n t
n
T 乙2 n
2).
1 2
1 2 1 2
U 尹i (r
J 2
步(「! r 2)2 尹(「2)2
系统的特征方程为:
在频率比/ n = , 2时,恒有X A
2).在/ n V 、2 , X/A 随E 增大而减小,而在
/ n > 2 , X/A 随
E 增大而增大
(共计15分) 证明:1).因—<1
(2
/ n )2|H()
A^
1 故当 / n =
2 时,
|H(W )| .—.
V 1 (2 J 2)2
所以,X 1 (2 2 )2
1,故无论阻尼比E 取何值恒有 X/A
A
;1 (2 厨
(2 / n )2 ( / n )2 2( / n )2 1 (2
/ n )2 (1 ( / n )2)2 (2
/ n )2'2
系统的势能为 从而可得
k 1r 2
k 2r 2
k 2r 2
k 2r 2 k 2r 2
k 3r 2
2kr 2 kr 2 kr 2
4kr 2
得 W 12 (3 .2)牛
(3
其振型分别为:U 1 u 2
4.
H( )| 1 (2
/ n )2,
|H( )| 1/ . 1-(
/ n )
2 2
(2 / n )2 证明:
1).无论阻尼比E 取何值,
i i
故当/ n V 2时,哇V 0,从而X/A 随E 增大而减小
d
而当/ n >• 2时,竺丸> 0,故X/A 随E 增大而增大。
d
原理求t> t o 后的响应。
(共计15分)
则由叠加原理可得,t t o 时,
6.如图5所示,由弹簧耦合的双摆,杆长为 1).写出系统的刚度矩阵,质量矩阵和频率方程 2).求出固有频率和振型
解:1).建立二个独立坐标
5. 一个高F o ,宽T o 的矩形脉冲力加到单自由度无阻尼系统上, 个矩形脉冲力看做两个阶跃脉冲力之和, 如图
T-2.43 所示, 把这
用叠加
系统的动能为:
E T
1
ml 2 12
2 1
-ml 2
厶匕
能
1 2 U ^k(a 1 a 2)
mgl (1 cos 1)
(
1 cos 2)
2
E T
可得
解:设
f i (t)
F o ,
x(t)=
F o “
2
COS 3n (t m 3 n
t o )
COS 3 n t
3).讨论k 值改变对固有频率的影响。
(共计15分)
ml20 “ ka2 M , K
0 ml2mgl cos 1
ka2
ka2
2 ka mgl cos 2
因1, 2很小,故可得cos 1
1, 1,C0S 2
ml20 0 ml2ka2 mgl
ka2ka2
ka2
mgl
其频率方程为:
2) . 2ka2 mgl
ml2
2ka2
ml2
相应振型分别为:
3). 当k变化时, 312没有变化, 0) 22产生变
化。
当k变小时, 32将变小,且32与31接近。
当k变大时, «2将变大,且5与31间距变大
7.证明相关系数的绝对值小于或等于1•,
即
证明:因
E XY
xy
xy
(共计10
分)
考虑到
2
y
2
y
2E X
2E
从而
xy 0, xy。