Cracking Load and Ultimate Moment 开裂荷载和极限弯矩.ppt

合集下载

PHC管桩的开裂弯矩和极限弯矩计算(精)

PHC管桩的开裂弯矩和极限弯矩计算(精)

600 220
265
1 900 135
202
ቤተ መጻሕፍቲ ባይዱ
600 375
485
600 380
495
注 :对于单点加载 , 表中的剪跨 a是指集中力到最近支座的距离 ;箍筋为螺旋式配筋, 两端加密区 (长度 1 200 mm)间距为 50 mm, 其余间距 为 100 mm。
PHC管桩的开裂弯矩和极限弯矩 计算 ——— 曾庆响 , 等
CALCULATIONMETHODSOFCRACKING MOMENTANDULTIMATEFAILURE MOMENTOFPRESTRESSEDHIGH STRENGTH CONCRETEPIPEPILES
ZengQingxiang1, 3 LiangHuanhua2 XiaoZhilan1 LiFayao2 (1.DepartmentofCivilEngineering, WuyiUniversity, Jiangmen529020, China;2.PileFoundation SubsidiaryofGuangdongNo.7 ConstructionGroupLtd, Jiangmen529020, China;3.StateKeyLaboratory ofSubtropicalBuildingScience, SouthChinaUniversityofTechnology, Guangzhou 510640, China)
1 试验简介
根据 GB 13476— 2007的规定 , 管桩的桩型分为
A、AB、B和 C型 4 种 , 管 桩 直 径 范 围 在 300 ~
1 400 mm;壁厚范围在 70 ~ 150 mm;单桩长度与桩 径有关 , 长度最小值 7 m, 最大可达 39 m;而且还可

PVA纤维混凝土梁裂缝试验分析

PVA纤维混凝土梁裂缝试验分析

PVA 纤维混凝土梁裂缝试验分析3袁 勇 彭定超 邵晓芸(同济大学建筑工程系 上海 200092) 摘 要:纤维的加入使得混凝土梁的受力性能有所改变,对普通混凝土梁规范所给出的开裂荷载、极限荷载、裂缝宽度计算公式就不再适用。

通过对高强高弹聚乙烯醇纤维(简称PVA 纤维)配筋梁受弯试验,对梁的裂缝进行了研究,在试验数据的基础上,拟合出PVA 纤维混凝土梁的裂缝宽度的计算公式,对纤维混凝土裂缝宽度的计算提出建议。

关键词:纤维增强混凝土 配筋混凝土梁 裂缝宽度 计算公式CRACK ANA LYZING OF PVA FIBER REINFORCE D CONCRETE BEAMY uan Y ong Peng Dingchao Shao X iaoyun(The Department of Building Engineering ,T ongji University Shanghai 200092)Abstract :As fiber joining into concrete ,the mechanical behavior of concrete will be changed.The calculating formulas of cracking load ,ultimate load ,and crack width given by general concrete code for comm on rein forced concrete beam are not hold properly.The bending test on high strength high m odulus P olyvinyl Alcohol Fiber (PVA )rein forced concrete beam is studied here.Based on the measured data and cracking behavior ,a crack width formula of PVA fiber rein forced concrete beam is presented ,and s ome opinions on calculating crack width about this type of beam is given.K eyw ords :fiber rein forced concrete rein forced concrete beam crack width calculating formula3国家自然科学基金资助项目(编号:59778031)。

建筑专业土木工程词汇及术语--中英文对照

建筑专业土木工程词汇及术语--中英文对照

建筑专业笔记整理大全-结构工程常用词汇-土木工程常用英语术语结构工程常用词汇混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in—place reinforced concrete 双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent—up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non—reinforced concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load跨度:span跨高比:span—to-depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load分布钢筋:distribution steel挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section浇注:pouring浇注混凝土:concreting钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure土木工程常用英语术语第一节一般术语1。

结构工程常用英语词汇

结构工程常用英语词汇

结构工程常用英语词汇混凝土:concrete 钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs 刚度:rigidity徐变:creep 水泥:cement钢筋保护层:cover to reinforcement 梁:beam柱:column 板:slab 剪力墙:shear wall 基础:foundation剪力:shear 剪切变形:shear deformation 剪切模量:shear modulus拉力:tension 压力:pressure 延伸率:percentage of elongation位移:displacement 应力:stress 应变:strain应力集中:concentration of stresses 应力松弛:stress relaxation 应力图:stress diagram 应力应变曲线:stress-strain curve 应力状态:state of stress 钢丝:steel wire 箍筋:hoop reinforcement 箍筋间距:stirrup spacing 加载:loading抗压强度:compressive strength 抗弯强度:bending strength抗扭强度:torsional strength 抗拉强度:tensile strength裂缝:crack 屈服:yield 屈服点:yield point 屈服荷载:yield load屈服极限:limit of yielding 屈服强度:yield strength屈服强度下限:lower limit of yield 荷载:load 横截面:cross section 承载力:bearing capacity 承重结构:bearing structure弹性模量:elastic modulus 预应力钢筋混凝土:prestressed reinforced concrete 预应力钢筋:prestressed reinforcement 预应力损失:loss of prestress 预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete双向配筋:two-way reinforcement 主梁:main beam次梁:secondary beam 弯矩:moment 悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending 受拉区:tensile region 受压区:compressive region 塑性:plasticity轴向压力:axial pressure 轴向拉力:axial tension吊车梁:crane beam 可靠性:reliability 粘结力:cohesive force外力:external force 弯起钢筋:bent-up bar 弯曲破坏:bending failure 屋架:roof truss 素混凝土:non-reinforced concrete无梁楼盖:flat slab 配筋率:reinforcement ratio配箍率:stirrup ratio 泊松比:Poisson’s ratio偏心受拉:eccentric tension 偏心受压:eccentric compression偏心距:eccentric distance 疲劳强度:fatigue strength偏心荷载:eccentric load 跨度:span 跨高比:span-to-depth ratio跨中荷载:midspan load 框架结构:frame structure集中荷载:concentrated load 分布荷载:distribution load分布钢筋:distribution steel 挠度:deflection设计荷载:design load 设计强度:design strength构造:construction 简支梁:simple beam 截面面积:area of section 浇注:pouring 浇注混凝土:concreting钢筋搭接:bar splicing 刚架:rigid frame脆性:brittleness 脆性破坏:brittle failure。

材料力学部分专业术语中英文对照

材料力学部分专业术语中英文对照

CMmi@ Selected Technical Terms in Mechanics of Materials材料力学部分专业术语中英文对照(version 1.0, September 4, 2011)This tabulated list of selected technical terms in mechanics of materials is developed by Changwen Mi to facilitate the students in various engineering majors at the Southeast University. This file reflects part of our constant efforts in implementing bilingual teaching of a series of undergraduate and graduate mechanics courses hosted by the Department of Engineering Mechanics at the Southeast University. We had made every effort to ensure the accuracy and completeness of this file for the students’ sake. We, however, make no guarantee of the effects of using this file.Geometric properties of an area 截面几何性质centroid 形心centroidal axis 形心轴first moment of an area 静矩moment of inertia; second moment of an area 惯性矩parallel axis theorem 平行移轴定理products of inertia 惯性积polar moment of inertia 极惯性矩radius of gyration 惯性半径composite area组合截面principal centroidal axis主形心轴principal moment of inertia主惯性矩principal moments of inertia about centroidal axes 主形心惯性矩Structural members 构件bar 杆prismatic bars 等截面直杆CMmi@ shaft 轴column 柱(只受压缩)thin-walled tubes (闭口)薄壁杆thin-walled open tubes 开口薄壁杆pressure vessel 压力容器beam 梁neutral surface 中性层neutral axis 中性轴simply supported beams 简支梁cantilever beams 悬臂梁composite beams 复合梁overhanging beams 外伸梁continuous beams 连续梁fully stressed beams; beams of constant strength 等强度梁beams of variable cross section 变截面梁wide-flange beams 工字梁web 腹板flange 翼缘fixed support; clamped support 固定端pin support 固定铰支座roller support 可动铰支座curved beams 曲梁truss 桁架frame 刚架cross-section 横截面oblique cross-sectionaxis 轴线rigid joint 刚性结点CMmi@ Loads 荷载/载荷force 力force couple 力偶moment 力矩moment of a couple 力偶矩unit load 单位力unit couple 单位力偶concentrated loads 集中力distributed loads 分布力intensity of distributed loads 分布力的集度surface force 面力body force 体积力static loads 静载dynamic loads 动载allowable loads 许用荷载reaction 反作用力internal forces 内力axial force 轴力shear force 剪力Stress, Strain and Deformation 应力、应变及变形normal stress 正应力nominal stress 名义应力true stress 真实应力average stress 平均应力maximum stress 最大应力minimum stress 最小应力allowable stress 许用应力shear stress 剪切应力pure shear 纯剪切normal strain 正应变nominal strain 名义应变true strain 真实应变shear strain 切应变deformation 变形displacement 位移deflection 挠曲Common Terms in Mechanics of Deformable Bodies 可变形体力学常用术语mechanics of materials 材料力学strength of materials 材料力学mechanics of deformable bodies 变形体力学strength 强度stiffness 刚度stability 稳定性homogeneity/homogeneous 均质/匀质的continuity/continuous 连续性/连续的isotropy/isotropic 各向同性/各向同性的infinitesimal elastic deformation 微小弹性变形elasticity 弹性elastic deformation弹性变形linearly elastic body线性弹性体mechanical properties力学性质plasticity 塑性elastoplastic materials 弹塑性材料tension 拉伸compress 压缩shearing 剪切torsion 扭转bending 弯曲buckling 失稳allowable load method 许用荷载法allowable stress 许用应力allowable stress method 许用应力法method of safety factor 安全系数法method of discount factor 折扣系数法factor of safety 安全系数stress concentration factor 应力集中因数residual stress / initial stress / prestress 残余应力初应力,预应力stress distribution 应力分布equation of equilibrium 平衡方程method of sections 截面法Other Mechanical Terms 其它力学术语dimensionless quantities 无量纲量composite material复合材料specimen 试件elastic-perfectly plastic assumption理想弹塑性假设plastic hinge塑性铰Axial Loading 轴向荷载axially loaded bars 拉压杆,轴向承载杆axial tension 轴向拉伸axial compression 轴向压缩axial forces 轴向力internal forces 内力method of section 截面法diagram of axial forces 轴力图stress tensor 应力张量longitudinal 纵向的transverse 横向的Saint-Venant’s Principle 圣维南原理stresses on oblique planes 斜截面上的应力axial deformation 轴向变形elongation 伸长量extensometer 引伸计、伸展仪、伸长计uniaxial stress 单向应力,单轴应力normal stress 正应力sign convention 符号规定transverse/lateral strain 横向应变Tension/compression rigidity 拉压刚度(EA)stress concentration factor 应力集中系数Mechanical Behavior of Materials 材料力学行为gauge length 标记长度constitutive relations 本构关系(物理方程)Hooke’s Law 胡克定律generalized Hook’s law广义胡克定律stress-strain diagram 应力应变图Hook’s law of shearing剪切胡克定律brittle 脆性brittle materials脆性材料ductile 韧性ductile materials塑性材料,韧性材料,延展性材料plastic deformation塑性变形,残余变形creep 蠕变CMmi@ relaxation 松弛proportional limit 比例极限elastic modulus; modulus of elasticity 弹性模量Young’s modulus 杨氏模量elastic limit 弹性极限yield stress 屈服应力yield strength 屈服强度offset yield stress名义屈服强度strain hardening 强化,冷作硬化ultimate strength, strength limit 强度极限ultimate stress极限应力low carbon steel 低碳钢cast iron 铸铁transversely isotropic 横向同性necking 颈缩plastic flow 塑性流动percent reduction in area 断面收缩率percent elongation 延伸率bulk modulus 大块模量,体积模量Poisson’s ratio 泊松比Shearing and bearing Stress 剪切和挤压应力Shear/shearing 剪切Shear/shearing stress 切应力bearing 挤压bearing stress挤压应力bearing surface 挤压面single shear 单剪double shear 双剪CMmi@ rod 吊杆boom 托架pin 销钉rivet 铆钉joints/connectors 连接件lap joint 搭接butt joint 对接pure shear 纯剪切theorem of conjugate shearing stress 切应力互等定理shear modulus切变模量ultimate shear stress 剪切极限应力yield shear stress 剪切屈服应力Torsion 扭转torsional moment 扭矩twisting moment 扭力矩power & torque 功率与扭矩torque diagram 扭矩图angle of twist 扭转角angle of twist per unit length 单位长度扭转角torsional rigidity 抗扭刚度,扭曲刚度section modulus in torsion 抗扭截面系数slip-lines 滑移线slip bands 滑移带,剪切带free torsion 自由扭转constrained torsion 约束扭转Bending 弯曲symmetric bending 对称弯曲symmetric longitudinal plane 纵向对称面transverse loading 横向荷载shear force 剪力shear flow 剪流shear force diagram 剪力图equation of shear forces 剪力方程bending moment 弯矩equation of bending moment 弯矩方程bending moment diagram 弯矩图pure bending纯弯曲Transverse bending 横力弯曲plane cross-section hypothesis 平面假设hypothesis of uniaxial stress 单轴应力假设neutral surface 中性层neutral axis 中性轴bending normal stress 弯曲正应力section modulus 抗弯截面系数bending shear stress弯曲切应力constant-strength beam; fully stressed beams 等强度梁deflection 挠曲,挠度angle of rotation 转角slope 斜率curvature 曲率radius of curvature 曲率半径deflection curve 挠曲线approximate differential equation of deflection 挠曲轴近似微分方程flexural rigidity 抗弯刚度method of successive integrations 积分法boundary condition 边界条件continuity condition 连续性条件symmetry condition 对称性条件method of superposition 叠加法linear superposition 线性叠加superposition of loads 荷载叠加superposition of rigidized structures 刚化叠加,变形叠加method of singular/discontinuity function 奇异函数法boundary values 边界值moment-area theorems 图乘法unsymmetric bending 不对称弯曲shear center弯曲中心bending strain energy 弯曲应变能Indeterminate Problems 超静定问题statically determinate problem 静定问题statically indeterminate problem 静不定问题,超静定问题degree of static indeterminacy 静不定次,超静定次数redundancy 冗余,多余redundant restraint 多余约束basic determinate system 基本静定系force method 力法equation of deformation compatibility 变形协调方程complementary equation 补充方程thermal stress 热应力coefficient of thermal expansion 线胀系数assembly stress 装配应力residual stress 残余应力thermal strain 热应变eigenstrain 特征应变CMmi@ Stress States 应力状态state of stress 应力状态damage mechanisms 破坏机制stress state of a point 一点应力状态transformation of stresses 应力变换principal stresses 主应力principal axes 主轴,主方向stress circle 应力圆Mohr’s Circle 莫尔圆state of biaxial stress 二向应力状态state of plane stress 平面应力状态state of triaxial stress 三轴(复杂)应力状态triaxial stress 三向应力experimental stress analysis 实验应力分析volumetric strain energy density 体积应变能密度distortional strain energy density 畸变能密度volumetric strain 体应变decomposition of stress tensor 应力张量分解transformation of strain 应变变换Strength Theory 强度理论strength condition 强度条件equivalent stress 相当应力maximum tensile stress theory最大拉应力理论maximum tensile strain theory最大拉应变理论maximum shear stress theory最大切应力理论maximum distortion energy theory 最大畸变能理论Mohr theory of failure莫尔强度理论measurements of strain 应变测量strain gauge 应变计strain rosette 应变花three-element rectangular rosette 三轴直角应变花three-element delta rosette 三轴等角应变花full bridge 全桥接线法half bridge 半桥接法bridge balancing 电桥平衡compensating block 补偿块Combined Loadings 组合荷载eccentric tension 偏心拉伸eccentric compression 偏心压缩core of cross-sections 截面核心Stability of Columns 压杆稳定buckling 屈曲stability condition 稳定条件Euler’s formula欧拉公式critical load 临界压力critical stress 临界应力equivalent length相当长度,有效长度coefficient of equivalent length 长度因数slenderness ratio (压杆的)柔度或长细比long columns 大柔度杆intermediate columns 中柔度杆short columns小柔度杆safety factor of stability稳定安全因数discount factor of stability 折扣安全因数Energy Methods 能量方法strain energy 应变能strain energy density 应变能密度modulus of resilience 回弹模量modulus of toughness 韧度模量principle of work and energy 功能互等定理Castigliano’s theorem 卡氏定理reciprocal theorem of displacement; Maxwell’s reciprocal theorem位移互等定理method of dummy, method of virtual forces 虚力法method of unit dummy load 单位力法Dynamic Loading 冲击荷载impact load 冲击荷载dynamic load 动荷载constant acceleration 等加速constant rotation 等角速转动horizontal impact 水平冲击vertical impact 竖直冲击statically equivalent load 静力等效荷载dynamic load factor 动荷系数Cyclic Loading and Fatigue 交变荷载及疲劳cyclic/alternate load 交变荷载cyclic stress交变应力,循环应力fatigue failure 疲劳失效stress amplitude应力幅stress scope 应力范围cycle characteristics 循环特征symmetric cycling 对称循环unsymmetric cycling 非对称循环pulse cycling 脉冲循环fatigue life疲劳寿命stress-life diagram应力-寿命曲线,S-N曲线endurance limit 疲劳极限fatigue strength 疲劳强度surface roughness 表面粗糙度surface strength 表面强度equal-amplitude fatigue 等幅疲劳fatigue strength condition 疲劳强度条件fatigue factor of safety 疲劳安全因数。

土木工程英语证书考试PEC常用桥梁词汇

土木工程英语证书考试PEC常用桥梁词汇

土木工程英语证书(PEC)考试-常用桥梁词汇下部结构--substructure桥墩--pier-----墩身--pier-body墩帽--pier-cap,-pier-coping台帽--abutment-cap,-abutment-coping-盖梁--bent-cap又称“帽梁”。

重力式[桥]墩--gravity-pier实体[桥]墩--solid-pier空心[桥]墩--hollow-pier柱式[桥]墩--column-pier,-shaft-pier单柱式[桥]墩--single-columned-pier,-single-shaft-pier双柱式[桥]墩--two-columned-pier,-two-shaft-pier排架桩墩--pile-bent-pier丫形[桥]墩--Y-shaped-pier柔性墩--flexible-pier制动墩--braking-pier,-abutment-pier单向推力墩--single-direction-thrusted-pier抗撞墩--anti-collision-pier锚墩--anchor-pier辅助墩--auxiliary-pier破冰体--ice-apron防震挡块--anti-knock-block,-restrain-block桥台--abutment台身--abutment-body前墙--front-wall又称“胸墙”。

翼墙--wing-wall又称“耳墙”。

U形桥台--U-abutment八字形桥台--flare-wing-walled-abutment一字形桥台--head-wall-abutmentT形桥台--T-abutment箱形桥台--box-type-abutment拱形桥台--arched-abutment重力式桥台--gravity-abutment埋置式桥台--buried-abutment扶壁式桥台--counterfort-abutment,-buttressed-abutment 衡重式桥台--weight-balanced-abutment锚碇板式桥台--anchored-bulkhead-abutment支撑式桥台--supported-type-abutment又称“轻型桥台”。

预应力钢—混凝土连续组合梁力学性能分析及承载力计算

Analysis on Mechanical Property and Bearing Capacity of Prestressed Steel -Concrete Continuous Composite BeamsCandidate Du HuanhuanSupervisor Professor Liu ZhongCollege College of Civil Engineering and MechanicsProgram Constructional EngineeringSpecialization Steel and Concrete Composite StructureDegree Master of EngineeringUniversity Xiangtan UniversityDate April, 2013湘潭大学学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了本文特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在本文以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权湘潭大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日湘潭大学工学硕士论文摘要预应力钢-混凝土连续组合梁(Prestressed Steel-Concrete Continuous Composite beams,简称PCCB)是在普通组合梁的基础上采用预应力技术形成的一种横向承重组合构件,通过栓钉等剪力连接件使得钢筋混凝土板与钢梁两个部件共同承受荷载、协调变形的一种梁。

装配式双拼槽钢

第 54 卷第 6 期2023 年 6 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.6Jun. 2023装配式双拼槽钢−混凝土组合梁受弯性能试验与承载能力分析周凌宇1, 2,朱医博1, 2,李分规3,戴超虎3,周泉3,徐增武3,方蛟鹏1, 2,刘晓春1, 2(1. 中南大学 土木工程学院,湖南 长沙,410075;2. 中南大学 高速铁路建造技术国家工程研究中心,湖南 长沙,410075;3. 中建五局第三建设有限公司,湖南 长沙,410004)摘要:提出一种由两个预制模块组成的模块化装配式双拼预制槽钢混凝土组合梁,设计以不同宽跨比、抗剪连接件间距、槽钢型号为研究参数的7根组合梁,并对其进行静力受弯试验。

研究各试件的破坏模式、跨中平面外分离、承载能力及应变分布等,分析组合梁受力机理及各参数对抗弯承载力的影响规律。

基于简化塑性理论,提出该组合梁的极限抗弯承载力计算方法。

研究结果表明:2块预制模块应变协调发展,表现出良好的整体协同工作性能;组合梁最终均发生弯曲破坏;当宽跨比从0.15增加至0.20、0.25和0.30时,抗弯极限承载力分别提升7.9%、14.2%和18.8%;当抗剪连接件间距由250 mm 增加至750 mm 时,极限抗弯承载力降低1.8%;槽钢型号对组合梁承载力有明显影响;当型号由32b 增大至40b 时,试件DDCB-40-1、DCCB-40-2的极限抗弯承载力相较于试件DCCB-32-3分别提升100.34%和95.65%,且开裂荷载大幅提升。

采用所提出的该组合梁极限抗弯承载力计算方法所得理论计算值与试验值较吻合。

关键词:模块化;钢−混凝土组合梁;宽跨比;弯曲试验;极限抗弯承载力中图分类号:TU398.9 文献标志码:A 文章编号:1672-7207(2023)06-2131-10Experimental study on flexural capacity of prefabricated doubleC-shaped steel channel-concrete composite beamZHOU Lingyu 1, 2, ZHU Yibo 1, 2, LI Fengui 3, DAI Chaohu 3, ZHOU Quan 3, XU Zengwu 3,FANG Jiaopeng 1, 2, LIU Xiaochun 1, 2(1. School of Civil Engineering, Central South University, Changsha 410075, China;2. National Engineering Research Center of High-speed Railway Construction Technology, Central SouthUniversity, Changsha 410075, China;收稿日期: 2022 −08 −12; 修回日期: 2022 −10 −25基金项目(Foundation item):国家自然科学基金资助项目(51978662);中建五局科研项目(CSCEC5b-2021-05) (Project(51978662)supported by the National Natural Science Foundation of China; Project(CSCEC5b-2021-05) supported by the Scientific Research Program of China Construction Fifth Engineering Bureau)通信作者:刘晓春,博士,副教授,从事组合结构研究;E-mail :**************.cnDOI: 10.11817/j.issn.1672-7207.2023.06.005引用格式: 周凌宇, 朱医博, 李分规, 等. 装配式双拼槽钢−混凝土组合梁受弯性能试验与承载能力分析[J]. 中南大学学报(自然科学版), 2023, 54(6): 2131−2140.Citation: ZHOU Lingyu, ZHU Yibo, LI Fengui, et al. Experimental study on flexural capacity of prefabricated double C-shaped steel channel-concrete composite beam[J]. Journal of Central South University(Science and Technology), 2023, 54(6): 2131−2140.第 54 卷中南大学学报(自然科学版)3. The Third Construction Co. Ltd. of China Construction Fifth Engineering Bureau, Changsha 410004, China) Abstract:A prefabricated modular double C-channel steel-concrete composite beam was proposed. Static bending tests were carried out on seven composite beams with the parameters of width-span ratio, shear connector spacing and type of channel steel. The failure mode, out-of-plane separation, bearing capacity, strain distributions, the stress mechanism and the effect of each parameter on the flexural bearing capacity of composite beams were analyzed. Finally, based on the simplified plastic theory, the ultimate bending capacity calculation method was proposed for the proposed composite beams. The results show that the strains of the two prefabricated modules develop harmoniously and show good overall cooperative performance. The composite beams eventually exhibit bending failure. When the width-span ratio increases from 0.15 to 0.20, 0.25 and 0.30, the ultimate bending capacity increases by 7.9%, 14.2% and 18.8%, respectively. The ultimate load capacity decreases by 1.8% as the distance between shear connectors increases from 250 mm to 750 mm. The type of channel steel has a significant impact on the bearing capacity of the composite beam. When the type of channel steel from 32b changes to 40b, the cracking load increases significantly and the ultimate bending bearing capacity is increased by 100.34% and 95.65%, respectively. The theoretical experimental values are in good agreement with those of the ultimate bending capacity calculation method.Key words: modular; steel-concrete composite beam; wide span ratio; bending test; ultimate bending capacity钢−混凝土组合梁具有截面高度小、自身质量小、承载力高、刚度大等特点[1],已广泛应用于建筑结构[2−5]和公路桥梁[6−9]等领域。

铝合金构件T形连接承载性能

图4所示为所有铝合金连接件试验破坏照片. 表3列出了各连接试验的极限承载力及破坏模式, 并与 GB50429公式、EC9 公 式 和 有 限 元 计 算 结 果 进 行比较.其中,Fte为试件实测承载 力,Fnu为 有 限 元 模 拟得到 的 承 载 力,Fgs,Fes及 Fis分 别 为 GB50429 公 式、EC9公式及下文的修正公式求出的承载力.为 验 证规 范 公 式 的 合 理 性,计 算 时 均 采 用 材 性 试 验 测 得 的 材 性 参 数 ,且 不 考 虑 材 料 抗 力 分 项 系 数 .
腹板根部的翼缘截面达到屈服,形 成 塑 性 铰,翼 缘 端 为螺栓的实测抗拉强度.
部存在明显撬力;模式3:破坏时螺栓拉断,翼缘变形 正 式 试 验 前,在 铝 合 金 连 接 件 上 取 样 制 作 6 个
较小,撬力可忽略不计.根据破坏模式和 式(1),隔 离 拉伸试件,通过拉伸试验 得 到 铝 合 金 的 弹 性 模 量 E、
合金 T 型 件 与 刚 性 底 板 的 连 接,如 图 3a所 示,包 括
图2 T 形连接的几何参数
3组9 个 试 验.第 二 类 为 两 对 称 的 铝 合 金 T 形 件 的
Fig.2 Geometric parameters of T-stubs
连接试 验,如 图 3b 示,包 括 6 组 16 个 试 验.同 组 试
Load-bearing Capacity of Aluminum Alloy T- stub Joints
XU Han,GUO Xiaonong,LUO Yongfeng
(Department of Building Engineering,Tongji University,Shanghai 200092,China)

《土木工程专业英语》教学大纲

《土木工程专业英语》教学大纲一课程简介课程编号:课程名称:土木工程专业英语(Professional English for Civil Engineering)课程类型:专业基础课学时:45 学分:3开课学期:6开课对象:土木工程专业学生先修课程:基础英语,土木工程概论或建筑概论,建筑材料,混凝土结构等。

使用教材:土木工程专业英语(上),苏小卒主编,同济大学出版社,2000.8二课程性质、目的与任务本课程是土木专业本科生的专业基础(必修)课,是为对阅读土木工程及工程管理专业英文原版书籍和文章感兴趣的学生所开设。

本课程的基本任务,是针对大学英语专业阅读阶段教学的薄弱环节,旨在进一步提高学生阅读理解能力和综合分析的能力、熟悉专业词汇、开阔视野和思路、了解科技文体、进一步提高学生运用英语的能力,以满足日益增长的国际科技交流与合作的需求。

三教学基本内容与基本要求本课程总的基本要求是:通过本课程的学习,帮助学生完成从大学基础英语阅读阶段到专业英语阅读阶段的过渡,使学生在普通外语的学习基础上,进一步学习和提高阅读和翻译一般难度的专业英语书籍和科技资料,并能以英语为工具,获取专业所需要的信息和具有在一定的专业文章写作能力。

对学生能力培养的要求:阅读速度100—120词/分钟;理解正确程度70~80%;同时具备听、说和写作专业论文的能力。

各章节内容及要求如下:1.Civil Engineering(土木工程)通过详细讲解,使学生掌握文章中的生词、短语、专业术语和科技类文献常用句型。

2.Performance Criteria and Management(工作准则和管理)通过简单介绍,使学生了解这篇文章中的内容概要,熟悉科技类文献常用句型。

3.Structural Materials(建筑材料)通过详细讲解,使学生掌握文章中的生词、短语、专业术语和科技类文献常用句型。

4.Mechanics of Materials(材料力学)通过详细讲解,使学生掌握文章中的生词、短语、专业术语和科技类文献常用句型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当剪切和粘结比弯曲强的预应力受弯构件受荷失效 时,它们会以下列方式中的一种失效:
cracks in the tensile flange. (The linearity(直线性)is a function of the rate at which the load is applied.) For this reason, normal elastic-design relationships(关系式)can be used in computing the cracking load by
(压力线)for beams in the elastic range. This is a fundamental principle (规律)of prestressed construction. In a normal prestressed beam, this shift(移动)in the location of the pressure line continues at a relatively
uniform rate(速度), as(随着)the external load is increased, to the
point where cracks develop in the tension fiber. After the cracking load has
been exceeded, the rate of movement in the pressure line decreases as
desirable(想要)to make a precise estimate of the cracking load, such as is required in some research work, this effect(影响)should be considered.
应该承认有粘结的预应力构件的性能实际上是一个 换算截面的函数,不是混凝土毛截面的函数。如果想要对 开裂荷载作一精确估计,例如在一些研究工作中需要的, 该影响应该被考虑。
the applied loads, as described above, as well as to plastic
strains that begin to take place in the steel and the concrete when stressed to high levels(受到很大压力).
of rupture(断裂模量)of the concrete when computing the cracking load.
很多试验证明,在引起受拉翼缘最初开裂的荷载以内或稍微超过时, 预应力梁的荷载-挠度曲线是近似直线的。(直线性是荷载施加速度的函 数。)因此,通过简单地确定导致受拉翼缘中产生一个净的受拉应力的荷 载(预应力减去施加荷载的效应 ),普通的弹性设计关系式能用来计算开 裂荷载,其值等于混凝土的抗拉强度。当计算开裂荷载时,习惯上假定混 凝土的受弯抗拉强度等于混凝土的断裂模量。
在一些结构中,保持受弯构件不开裂可能是必要的,甚至在明显的超 载下。这可能是由于结构在它们的有效寿命期间被暴露在特别腐蚀的空气 中的原因。当设计预应力构件用于这种类型的特殊结构时,可能有必要计 算引起受拉翼缘开裂的荷载,以确保该设计提供足够抵抗开裂的安全性。 也有必要计算会导致开裂的弯矩,以确保符合一些设计标准。
In should be recognized that the performance(性 能)of bonded(有粘结的)prestressed member is actually a function of the transformed section(换算截面)
rather than the groIf it is
超载(-开裂荷载)下的反应
It has been shown that a variation in the external load acting on a
prestressed beam results in a change in the location of the pressure line
Cracking Load and Ultimate Moment
开裂荷载和极限弯矩
教学目标
了解预应力梁在开裂荷载下的反应 了解有(无)粘结力的预应力构件的极限弯矩能力 熟悉预应力构件中的专业词汇 熟悉科技类文献中的常用句型
Action Under Overload-Cracking Load
the load is increased above the cracking load. The curvature (弯曲)of the load-deflection curve for loads over the cracking load is due to(由于..所造成的)the change in the basic internal resisting moment action that counteracts(抵消)
Many tests have demonstrated(证明)that the load-deflection
curves of prestressed beams are approximately linear(近似直线的)up to and slightly in excess of(稍微超过)the load that causes the first
应该注意到荷载挠度曲线在开裂荷载以内是接近直线的, 且在超过开裂荷载后,该曲线随着荷载的增加逐渐变得更弯曲。 正如上面所描述的,当超过开裂荷载时,其荷载-挠度曲线的弯 曲是由于抵消施加荷载的基本内部抵抗弯矩作用的变化以及当 受到很大压力时钢筋和混凝土中开始发生的塑性应变所造成的。
In some structures it may be essential that the flexural members remain crack free(保持构件不开裂)even under significant(明显的) overloads. This may be due to the structures’ being exposed to exceptionally corrosive(特别腐蚀)atmospheres during their useful life (有效寿命). In designing prestressed members to be used in special structures of this type, it may be necessary to compute the load that causes cracking of the tensile flange(受拉翼缘), in order to ensure that adequate safety against cracking is provided by the design. The computation of the moment that will cause cracking is also necessary to ensure compliance with(符合)some design criteria(criterion的复数形式, 标准).
simply determining the load that results in a net(净)tensile stress in the tensile flange (prestress minus the effects of the applied loads) that is equal to the tensile strength of the concrete. It is customary to assume that the flexural tensile strength of the concrete is equal to the modulus
It should be noted that the load deflection curve is
close to(接近于)a straight line up to the cracking load and that the curve becomes progressively(逐渐)more curved as
additional load is applied, and a significant(显著)increase in the stress in the prestressing tendon(预应力钢筋束)and the resultant concrete force begins to take place.
已经显示作用在一根预应力梁上的外部荷载的变化会导致梁在弹性阶段 时其压力线位置的变化。这是预应力结构的基本规律。在一根普通的预应力 梁中,随着外力的增加,其压力线位置以一个相对均匀的速度不断移动直至 受拉纤维形成开裂的位置。在已经超过开裂荷载后,随着附加荷载的施加, 压力线移动的速度便会降低,且使预应力钢筋束中的应力和合成的混凝土力 开始发生显著的增加。
内部弯矩的作用不断变化直到所有压力线的移动都停止。其后施加的荷 载引起的弯矩完全通过相应的、且按比例的内力变化来抵消,正如在钢 筋混凝土的结构中。这个事实,即弹性阶段和塑性阶段的力由基本不同 的作用来传送是非常重要的,且使强度计算变得对所有的设计都是必要 的,以确保存在足够的安全系数。这是正确的,即使弹性阶段的应力可 能符合公认的弹性设计准则。
Principles of Ultimate Moments Capacity for Bonded members
有粘结的构件极限弯矩能力的规则
When prestressed flexural members that are stronger in shear and bond than in bending are loaded to failure, they fail in one of the following modes(方 式):
相关文档
最新文档