核电厂系统及设备课件
合集下载
核电厂系统及设备课件

21
• 汽轮机乏汽在凝汽器内凝结为饱和水。凝 汽器具备热力除氧的条件,可利用凝汽器 兼作除氧器。图8.13给出了一种凝汽器热 井中鼓泡除氧装置设计,从图中可以看出, 其中的除氧主要靠鼓泡加热凝结水。
22
23
系统功能 • 除去凝结水中的气体(主要是氧气)。 • 除氧器同时又是混合式加热器。 • 为给水泵提供一定的净正吸入压头。
44
• 除氧给水箱水质合格后,冲水至正常液位, 启动除氧循环泵,投入备用汽源,使除氧器 给水升温至110.5℃,对应压力0.05MPa。在 低负荷时,除氧器定压运行,机组负荷升至 65%左右打开四段抽汽电动阀和逆止阀,同 时关闭备用汽源电动阀,除氧器开始滑压运 行。
45
• 除氧器启动前(指安装、大修后、或长期 停运后投运)应对除氧器系统进行除铁冲 洗,除铁冲洗的合格指标是含铁量≤50ppb, 悬浮物≤10ppb。
26
• 除氧后的余汽分别经节流垫排至空气系统, 并在该处设有放射性测点。两只给水箱内设 再沸腾管,在启动加热时使用。两套溢流装 置和放水管分别由1#、2#给水箱接出。汇 总后经Ф325×5mm溢流放水总管排入凝汽 器。两只给水箱分别装有取样分析器。以便 监督和分析除氧给水的各项数据。
27
• 给水箱的下水系统是这样布置的:1#、2# 给水箱分别接出一条Ф529×6mm的下水管 进入各自的主给水泵(1#、3#主给水泵)。 2#主给水泵由两台给水箱共用Ф529×6mm 的下水管供水。正常运行中,选用一、二号 或二、三号水泵运行时,可能会出现两台给 水箱的水位偏差。
共有128只,全部由不锈钢制造,其外形尺寸为 505×376mm,该箱由侧板、角钢和小槽钢组成。 恒速喷咀 • 恒速喷咀安装在充满凝结水的凝结水进水室中的 弓形不锈钢罩板上。
• 汽轮机乏汽在凝汽器内凝结为饱和水。凝 汽器具备热力除氧的条件,可利用凝汽器 兼作除氧器。图8.13给出了一种凝汽器热 井中鼓泡除氧装置设计,从图中可以看出, 其中的除氧主要靠鼓泡加热凝结水。
22
23
系统功能 • 除去凝结水中的气体(主要是氧气)。 • 除氧器同时又是混合式加热器。 • 为给水泵提供一定的净正吸入压头。
44
• 除氧给水箱水质合格后,冲水至正常液位, 启动除氧循环泵,投入备用汽源,使除氧器 给水升温至110.5℃,对应压力0.05MPa。在 低负荷时,除氧器定压运行,机组负荷升至 65%左右打开四段抽汽电动阀和逆止阀,同 时关闭备用汽源电动阀,除氧器开始滑压运 行。
45
• 除氧器启动前(指安装、大修后、或长期 停运后投运)应对除氧器系统进行除铁冲 洗,除铁冲洗的合格指标是含铁量≤50ppb, 悬浮物≤10ppb。
26
• 除氧后的余汽分别经节流垫排至空气系统, 并在该处设有放射性测点。两只给水箱内设 再沸腾管,在启动加热时使用。两套溢流装 置和放水管分别由1#、2#给水箱接出。汇 总后经Ф325×5mm溢流放水总管排入凝汽 器。两只给水箱分别装有取样分析器。以便 监督和分析除氧给水的各项数据。
27
• 给水箱的下水系统是这样布置的:1#、2# 给水箱分别接出一条Ф529×6mm的下水管 进入各自的主给水泵(1#、3#主给水泵)。 2#主给水泵由两台给水箱共用Ф529×6mm 的下水管供水。正常运行中,选用一、二号 或二、三号水泵运行时,可能会出现两台给 水箱的水位偏差。
共有128只,全部由不锈钢制造,其外形尺寸为 505×376mm,该箱由侧板、角钢和小槽钢组成。 恒速喷咀 • 恒速喷咀安装在充满凝结水的凝结水进水室中的 弓形不锈钢罩板上。
核电厂系统与设备(第五讲)

路漫漫其悠远
核电厂系统与设备(第五讲)
• Nf、NL分别为燃料和冷却剂中的核素数目,F为裂变 率,Y为裂变产额,λ为衰变常数,kd为核素在冷却剂 中的减少率(核素在离子交换树脂上的吸附,在设备
表面的沉积,泄漏等),γ为逃逸率系数。
• 冷却剂中裂变产物的放射性大小取决于三个因素:裂
变产物逃逸率;核素衰变;净化作用,裂变产物沉积等
• 对于一回路小的泄漏,由化容系统提供足够 的补给水。
路漫漫其悠远
核电厂系统与设备(第五讲)
• 容积控制就是通过CVCS吸收稳压器不能全部 吸收的那部分一回路水容积的变化的量,维 持稳压器水位在一个整定的范围内。
• 一回路水容积变化的原因主要是温度的改变, 如下图所示:
路漫漫其悠远
核电厂系统与设备(第五讲)
路漫漫其悠远
核电厂系统与设备(第五讲)
路漫漫其悠远
图(4) RCV系统冷却和降压
核电厂系统与设备(第五讲)
2 净化段
• 净化段的离子交换树脂的正常工作温度范围为 46℃~62.5℃。若下泄流温度高于57℃,三通阀将 自动切换,使下泄流旁路离子交换树脂床,防止离 子交换树脂经受高温后失效。下泄流经温控三通阀 进入两台并联的混合除离子床中的一台,除去大多 数离子状态的裂变产物和腐蚀产物,然后进入间歇 运行的除阳离子床除去铯、钼和过量的锂离子。在 除离子床下游,设置三通阀,借此可将下泄流导向 硼回收系统进行除硼操作。
路漫漫其悠远
核电厂系统与设备(第五讲)
管道的前后压差较大时,往往采用增加节流 孔板的方式,其原理是:流体在管道中流动时, 由于孔板的局部阻力,使得流体的压力降低,能
量损耗.
路漫漫其悠远
核电厂系统与设备(第五讲)
核电厂系统与设备-压水堆核电厂

2.1 概述
2.1.2 压水堆核电厂的工作原理 (8)循环水系统
功能 :为凝汽器提供凝结汽轮机乏汽的冷却水。
分类: 开式供水和闭式供水。
开式供水:指以江河湖海为天然水源, 冷却水一次通过, 不重 复使用。
闭式供水:把由凝汽器排出的水, 经过冷却降温之后, 再用循 环水泵送回凝汽器入口重复使用。
2.1 概述
2.1.2 压水堆核电厂的工作原理 (6)二回路系统的组成
汽轮机、发电机、凝汽器、凝结水泵、给水加热器、除 氧器、给水泵、蒸汽发生器、汽水分离再热器等设备
间接循环:二回路水不受一回路污染
2.1 概述
2.1.2 压水堆核电厂的工作原理 (7)沸水堆核电厂工作原理
汽轮机、发电机、凝汽器、凝结水泵、给水加热器、除 氧器、给水泵、蒸汽发生器、汽水分离再热器等设备 直接循环
本课程课程目录
《核电厂系统与设备》
序号
教学内容
1 第1章 绪论 2 第2章 压水堆核电厂 3 第3章 反应堆冷却剂系统和设备 4 第4章 核岛主要辅助系统 5 第5章 专设安全设施 6 第6章 核电厂热力学 7 第7章 核汽轮发电机组 8 第8章 核电厂二回路热力系统
共32学时
总学时
2 4 6 4 4 2 4 2
2.1 概述
2.1.2 压水堆核电厂的工作原理 (3)反应堆冷却剂系统(一回路系统)
(RCS)Reactor Coolant System Primary Coolant System 1.Reactor Pressure Vessel 2.Steam Generator 3.Primary Coolant Pump 4.Pressuriser
2.1 概述
2.1.2 压水堆核电厂的工作原理 (8)循环水系统
核电厂系统综述 PPT

1. 核电厂的系统
2)核电厂的系统“代码”
为表示具体系统所在的“机组”,在三字码前加1位数字1~4 或8、9、0,“1”~“4”表示1~4号机组上的系统,“9”表示 大亚湾及岭澳一期1、2号机的公用系统(如9SKH),“8”表示 岭澳二期3、4号机的公用系统,“0”表示全厂公用的系统(如 0KKK)。
6.6kV-LG*、LH*(0LHZ除外), 380V-LK*、LL* 220V-LM*、LN*,直流电-LA*、LB*、LC*、LD*
3.常规岛(CI)有关系统
4)其它系统
通风-DVM, 吊装设备-DMM, 照明-DNM 消防系统-JP* 压缩空气-SAT、SAR, 冷却水-SRI、SEN, 取样-SIT, (除盐水)补水-SER, 润滑油传输-SKH, 辅助蒸汽-STR、SVA, 污水-SEO、SEK,饮用水-SEP 循环水(三回路)-CRF
ቤተ መጻሕፍቲ ባይዱ
4.核岛(NI)有关系统
通风-DV*, 吊装设备-DMR、DMN、DMW, 照明-DN*, 泄漏监测-D**、E** 电气(电源)系统-L**(参看上节) 消防系统-JP* 其它公用系统(包括压缩空气、冷却水、取样……)- S**(参看上节)
5. BOP (Balance of Plant 电站辅助设施)有关系统
以上注“*” 的系统是“部分与质量和核安全相关”系统, 其余是“与质量相关”系统。
3.常规岛(CI)有关系统
2)主机(指汽轮机、发电机)的辅助系统:
汽轮机辅助系统-GSE、GRE、GGR、GFR、GME、GTH 发电机及其辅助系统-GEX、GST、GHE、GRH、GRV
3)电气系统:
输电系统:GSY、GEV 厂用电系统(向电机、仪控供电):L**
核电厂系统与设备

路漫漫其悠远
核电厂系统与设备
• 能动的安全性 必须依靠能动设备(有源设 备),即需由外部条件加以保证的安全性。
• 后备的安全性 指由冗余系统的可靠度或阻 止放射性物质逸出的多道屏障提供的安全 性保证。
路漫漫其悠远
核电厂系统与设备
• 固有安全性定义为:当反应堆出现异常工况 时,不依靠人为操作或外部设备的强制性干 预,只是由堆的自然安全性和非能动的安全 性,控制反应性或移出堆芯热量,使反应堆 趋于正常运行和安全停闭。
水送到高压安注泵入口,或当泵出口压力高
于一回路压力时直接注入一回路。
路漫漫其悠远
核电厂系统与设备
安全注入系统的主要参数
路漫漫其悠远
核电厂系统与设备
安注启动信号
• 高压和低压安注系统的触发信号由反应堆 保护系统给出。如果自动控制电路故障, 可由控制室手动启动。
• 中压安注系统不需要外电源或启动信号就 能快速响应。当反应堆冷却剂压力低于安 注箱的压力时就开始向一回路系统的冷段 注水,保证快速冷却堆芯。
• 手动启动。
路漫漫其悠远
核电厂系统与设备
启动信号触发后的保护动作
安注信号除立即启动RIS系统执行安注过程外, 还实施下列保护动作,包括:
• 反应堆紧急停堆(实际上应已停堆,这里是为 了确认),汽轮机脱扣;
• 启动应急柴油发电机; • 隔离主给水系统(ARE),并停运主给水泵; • 启动电动辅助给水泵;
核电厂系统与设备
路漫漫其悠远
2020/11/19
核电厂系统与设备
1 核反应堆的安全系统
• 在核电厂的设计、建造和运行过程中,必须 坚持和确保安全第一的原则。三哩岛和切尔 诺贝利两次重大事故的发生,使人们对反应 堆安全性提出了更高的要求。提出应以固有 安全(Inherent Safety)概念贯穿于核电厂 设计安全的新论点。
核电厂系统与动力设备课件04第四章一回路设备

5
大亚湾核电厂一回路系统主要参数
参看68页 表4-1
1 系统额定热功率,堆芯额定热输出功率,发电功 率的区别 2 工作压力?进出口温度?过冷度?设计温度? 3 压力损失情况:堆芯,蒸汽发生器。
4. 二次侧工作压力
6
安全辅助系统
第一类 牵涉到核安全的安全系统 4
安注,安喷,辅助给水,安全壳隔离系统
20
④管束组件
管束是呈正方形排列的倒U型管。 管束直段分布有若干块支撑板, 用以保持管子之间的间距。在U型 管的顶部弯曲段有防振杆防止管 子振动。支撑板结构的设计上。 早期的支撑板采用圆形管孔和流 水孔结构。新的设计普遍采用四 叶梅花孔。这种开孔将支撑孔和 流通孔道结合在一起,增加了管孔之间的流速,减少了腐蚀产物 和化学物质的沉积,使得该区的 腐蚀状况大为改善。 21
11
蒸汽发生器分类
Babcock & Wilcox
12
立式自然循环蒸汽发生器
蒸汽发生器结构
下封头、 管板、 U型管束、 汽水分离装置及 筒体组件
一、二回路冷却剂流程 循环倍率的定义
13
立式自然循环蒸汽发生器
14
主要设计参数
表4-2
Incoloy-800、Inconel-600、Inconel-690和321SS
⑤
筒体组件
蒸汽发生器筒体组件包括上封头、上筒体、 下筒体、锥形过渡段等。
蒸汽出口管嘴中有限流器,用来限制主蒸 汽管道破裂时的蒸汽流量,防止事故时对 一次侧的过度冷却,以避免反应堆在紧急 停堆后重返临界。 上筒体设有给水管嘴并与给水环相连。
上筒体还设有两个人孔,必要时可以进人 更换干燥器。下筒体在靠近管板处设有若 干检查孔,以便检查该区域内的传热管表 面和管板二次侧表面。必要时可用高压水 冲洗管板上表面的淤渣。(超声波气泡冲 洗技术)
精选核电厂系统及设备培训课件

一座典型的1000MW级压水堆核电厂在冷却剂中各种裂变产物和活化腐蚀产物的放射性。冷却剂的放射性主要是由惰性气体(占90%以上)、碘(占3%以上)、铷(占1%)、钼(约占1%)和铯(小于1%)组成的。进入一回路冷却剂的放射性惰性气体每年大约有数千万GBq,绝大部分是Kr(1.83h)、Xe(9.11h)等短寿命的同位素,它们在运行过程中自行衰变,排出堆外后很快就消失,需作净化处理的仅占很小一部分。
按其功能可分为以下几类:排出核燃料剩余功率;对反应堆冷却剂进行化学和容积控制;进行设备的冷却;废物的收集和处理;核岛通风空调系统。
1 化学和容积控制系统(CVCS)
1.1 系统的功能1.2 设计依据1.3 系统流程1.4 系统设备布置1.5 系统运行
1.1 系统的功能
化容系统主要功能如下:通过改变反应堆冷却剂的硼浓度,对堆芯进行反应性控制;维持稳压器的水位,控制一回路系统的水装量;对反应堆冷却剂的水质进行化学控制和净化,减少反应堆冷却剂对设备的腐蚀,控制反应堆冷却剂中裂变产物和腐蚀产物的含量,降低反应堆冷却剂的放射性水平;
一回路主要辅助系统
1 化学和容积控制系统2 反应堆硼和水的补给系统3 余热排出系统4 设备冷却水系统5 重要厂用水系统6 换料水池和乏燃料池冷却和净化系统7 废物处理系统
概述 一回路主要辅助系统是核岛的重组成部分。它不仅对核电厂正常运行是不可缺少的,而且在事故工况下,为核电厂安全设施系统提供支持。
上充泵出口水分两路:一路经上充流量调节阀和再生换热器进入一回路冷段;另一路经轴封水流量调节阀向主泵输送密封水。稳压器丧失正常喷淋时,上充泵提供辅助喷淋;上充流量调节阀的最小流量要考虑冷却下泄流(6m3/h) ,最大流量(25.6m3/h) 要考虑保证轴封水供应。
核电厂系统及设备培训课件(PPT86张)

(1)放射性水平的控制 ① 水及其中杂质的活化; ② 裂变产物的释放; ③ 腐蚀产物的活化; ④ 化学添加物的活化
20
• 裂变产物向冷却剂的释放速度是以逃逸系数 来衡量的,定义为单位时间内裂片核由燃料 包壳缺陷释放出来的份额,单位为s-1。实验 证明,裂变产物的释放速度正比于它在燃料 中的累积量。对一定的核素可以列出如下两 个方程:
3
按其功能可分为以下几类:
• 排出核燃料剩余功率;
• 对反应堆冷却剂进行化学和容积控制;
• 进行设备的冷却;
• 废物的收集和处理;
• 核岛通风空调系统。
4
1 化学和容积控制系统(CVCS)
1.1 系统的功能 1.2 设计依据 1.3 系统流程 1.4 系统设备布置 1.5 系统运行
5
1.1 系统的功能
化容系统主要功能如下: • 通过改变反应堆冷却剂的硼浓度,对堆芯进 行反应性控制; • 维持稳压器的水位,控制一回路系统的水装 量; • 对反应堆冷却剂的水质进行化学控制和净化, 减少反应堆冷却剂对设备的腐蚀,控制反应 堆冷却剂中裂变产物和腐蚀产物的含量,降 低反应堆冷却剂的放射性水平;
6
• 向反应堆冷却剂泵提供轴封水;
1.3 系统流程
34
1 下泄管线
• 核电厂正常运行时,从一回路的冷管段引出一 股冷却剂,称为下泄流,其正常流量约为 13.6m3/h,经下泄隔离阀进入再生热交换器的 壳侧,冷却至140℃,再经过节流孔板,将压力 降至2.4MPa后,进入下泄热交换器的管侧,由 壳侧的设备冷却水将下泄流温度降低至46℃ 左右,离开下泄热交换器的下泄流经下泄压力 控制阀再次降压,进入过滤器,滤去水中5μ 以上的悬浮颗粒。经温控三通,进入净化段。 35
15
20
• 裂变产物向冷却剂的释放速度是以逃逸系数 来衡量的,定义为单位时间内裂片核由燃料 包壳缺陷释放出来的份额,单位为s-1。实验 证明,裂变产物的释放速度正比于它在燃料 中的累积量。对一定的核素可以列出如下两 个方程:
3
按其功能可分为以下几类:
• 排出核燃料剩余功率;
• 对反应堆冷却剂进行化学和容积控制;
• 进行设备的冷却;
• 废物的收集和处理;
• 核岛通风空调系统。
4
1 化学和容积控制系统(CVCS)
1.1 系统的功能 1.2 设计依据 1.3 系统流程 1.4 系统设备布置 1.5 系统运行
5
1.1 系统的功能
化容系统主要功能如下: • 通过改变反应堆冷却剂的硼浓度,对堆芯进 行反应性控制; • 维持稳压器的水位,控制一回路系统的水装 量; • 对反应堆冷却剂的水质进行化学控制和净化, 减少反应堆冷却剂对设备的腐蚀,控制反应 堆冷却剂中裂变产物和腐蚀产物的含量,降 低反应堆冷却剂的放射性水平;
6
• 向反应堆冷却剂泵提供轴封水;
1.3 系统流程
34
1 下泄管线
• 核电厂正常运行时,从一回路的冷管段引出一 股冷却剂,称为下泄流,其正常流量约为 13.6m3/h,经下泄隔离阀进入再生热交换器的 壳侧,冷却至140℃,再经过节流孔板,将压力 降至2.4MPa后,进入下泄热交换器的管侧,由 壳侧的设备冷却水将下泄流温度降低至46℃ 左右,离开下泄热交换器的下泄流经下泄压力 控制阀再次降压,进入过滤器,滤去水中5μ 以上的悬浮颗粒。经温控三通,进入净化段。 35
15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 正常运行中两台除氧给水箱水位应自动保 持平衡,若出现较大偏差时,应及时校对 就地水位计,并应查明原因予以消除。
51
• 除氧器长时间停用时应采取防腐措施,以 防止水箱内壁有害气体的侵蚀,一般采用 水箱充水并加氨和联氨,pH≥9.5~10,联 氨浓度200ppm以上,除氧器及水箱上部空 间充氮保养方式。
2
• 给水除氧分为化学除氧和物理除氧两类。 化学除氧利用化学药剂(如联氧或亚硫酸 钠)使水中游离氧形成化合物,它能达到 较彻底的除氧效果,但不能除去其它气体, 还增加了给水中可溶盐的含量,成本也比 较高。通常化学除氧与物理除氧结合使用, 以达到更好的除氧效果。
3
• 物理除氧采用热力除氧原理,它能去除氧和 其它气体。所以,除氧又称除气。本节下 面的介绍针对热力除氧。
共有128只,全部由不锈钢制造,其外形尺寸为 505×376mm,该箱由侧板、角钢和小槽钢组成。 恒速喷咀 • 恒速喷咀安装在充满凝结水的凝结水进水室中的 弓形不锈钢罩板上。
37
38
5.3 除氧器工作原理
• 除氧器的工作原理是:凝结水通过进水管 进入除氧器进水室,因凝结水的压力高于 除氧器汽侧压力,水汽两侧的压差△P作用 在喷咀板上,将喷咀上的弹簧压缩,打开 喷咀,凝结水从喷咀中喷出,形成一个园 锥形的水膜,进入喷雾除氧段空间。
29
5.2 除氧器和除氧给水箱
• 除氧器和除氧给水箱是核电站二回路系统的 重要设备。
• 除氧器通过热力除氧方法,除去溶解于凝结 水中的氧气,二氧化碳等有害气体,确保进 入蒸发器的给水水质合格。
30
• 除氧给水箱则是贮存有一定容量的除氧给 水,以满足电站稳态和瞬态工况变更的需 要。
• 秦山核电站一期工程装机容量为30万千瓦 机组,配置了两台出力各为1080t/h的除氧 器和两只容积为180m3的给水箱。
• 3)采用蒸汽在水中鼓泡、减少水的表面张 力等措施改善深度除氧效果。
11
4.2.1 大气式淋水盘式除氧器
12
• 大气式淋水盘式除氧器如图8.11所示。水 由塔的上部进入,通过溢水口流入最上面 的淋水盘。在盘的整个环形面积上开有直 径为5mm~6mm的小孔。通过这些小孔水 呈细水柱状降落到下一块盘上,再经过同 样的小孔流到再下面的淋水盘上。
41
• 流经淋水盘箱的凝结水不断再沸腾,凝结水
中剩余的非冷凝气体在淋水盘中被进一步除
去,使凝结水中含氧量达到给水水质标准
(含氧量<7ppb)。故该段称之谓深度除氧
层。凡在喷雾除氧段或深度除氧段中被除去
的非冷凝气体,均上升到除氧器上部装有放
射性检测仪表的排管中排向大气。除氧水从
出口管流入除氧给水管。
7
• 热力除氧的过程是一个传热传质过程,必须 满足热力条件和传质条件。首先,要保证将 水加热至相应压力下的饱和温度。
8
欠热度5
9
4.2 除氧器
• 从上节的讨论可以看出,进行除氧器设计 时应遵循下述原则:
• 1)尽可能扩大汽水接触面积以利于传热传 质过程,被除氧水一般喷洒成雾滴或细水 柱。
10
• 2)为将水加热到除氧压力对应的饱和温度, 加热蒸汽与被除氧水一般采用逆流,这样 可以形成最大的不平衡压差,有利于及时 排除离逸的气体。
蒸汽进汽管和布汽孔板 • 除氧器两端各有一个Dg30进汽管,过热蒸汽从进
汽管进入除氧器时,由布汽孔板把蒸汽沿除氧器 的下部断面上均匀布开,使蒸汽均匀地从栅架底 部进入深度除氧段。 除氧器的出水管和蒸汽连通管。 • 除氧器的出水管和蒸汽连通管通过过渡接管直接 与除氧给水箱相连通。
36
淋水盘箱 • 淋水盘箱是除氧器深度除氧段中主要除氧元件,
44
5.5 运行
• 除氧给水箱水质合格后,冲水至正常液位, 启动除氧循环泵,投入备用汽源,使除氧器 给水升温至110.5℃,对应压力0.05MPa。在 低负荷时,除氧器定压运行,机组负荷升至 65%左右打开四段抽汽电动阀和逆止阀,同 时关闭备用汽源电动阀,除氧器开始滑压运 行。
45
5.5.1 除氧器运行要点
26
• 除氧后的余汽分别经节流垫排至空气系统, 并在该处设有放射性测点。两只给水箱内设 再沸腾管,在启动加热时使用。两套溢流装 置和放水管分别由1#、2#给水箱接出。汇 总后经Ф325×5mm溢流放水总管排入凝汽 器。两只给水箱分别装有取样分析器。以便 监督和分析除氧给水的各项数据。
27
• 给水箱的下水系统是这样布置的:1#、2# 给水箱分别接出一条Ф529×6mm的下水管 进Байду номын сангаас各自的主给水泵(1#、3#主给水泵)。 2#主给水泵由两台给水箱共用Ф529×6mm 的下水管供水。正常运行中,选用一、二号 或二、三号水泵运行时,可能会出现两台给 水箱的水位偏差。
49
• 除氧循环泵故障停运情况下,除氧器进水 中断。此时,禁止向除氧器供汽,除氧器 供汽阀应关闭,以防止除氧器超压。此时 给蒸汽发生器提供合格用水,可投入再沸 腾装置来加热除氧给水箱的给水,给蒸汽 发生器提供合格用水。
50
• 除氧器在安装后或大修后投运前,应进行 安全阀就地动作试验,运行中应进行定期 活动试验以防卡涩。
34
喷雾除氧段空间 • 喷雾除氧段空间是由两侧的两块侧包板与两端密
封板焊接后组成,两端密封板都有人孔。 深度除氧段 • 深度除氧段也是由两侧的两块侧包板与两端密封
板焊接后组成上部空间是喷雾除氧段空间,下部 空间是装满淋水盘箱的深度除氧段,深度除氧段 由上层布水槽钢、中层淋水盘箱、下层棚架组成。
35
pD ps pa
• 式中pD、ps、pa分别为除氧器内混合气体 全压、水蒸汽和空气的分压。
6
• 根据亨利定律和道尔顿定律,降低水中溶解 气体的浓度的关键是减小它们在气空间的分 压。如果气体的分压趋近于零,则它们在水 中的浓度就会很小很小。把水加热至饱和温 度,水蒸汽的分压趋近于水面上的全压,其 它气体的分压便趋于零,其它气体在水中的 浓度就会趋近于零。这样我们得到热力除氧 的方法,即将水加热至饱和温度,使水中溶 解气体的分压趋近于零从而达到除氧目的。
21
4.2.3 真空式除氧器
• 汽轮机乏汽在凝汽器内凝结为饱和水。凝 汽器具备热力除氧的条件,可利用凝汽器 兼作除氧器。图8.13给出了一种凝汽器热 井中鼓泡除氧装置设计,从图中可以看出, 其中的除氧主要靠鼓泡加热凝结水。
22
23
5 秦山一期除氧器系统
系统功能 • 除去凝结水中的气体(主要是氧气)。 • 除氧器同时又是混合式加热器。 • 为给水泵提供一定的净正吸入压头。
31
32
33
除氧器本体
• 除氧器本体由园柱形筒身与两只椭球面封头焊制 而成,本体的材料是复合钢板,所有内部零件和 管接头材料均为不锈钢。
凝结水进水室
• 进水室是一个弓形不锈钢罩板与两端两块挡板焊 在筒体上而成。弓形罩板上沿除氧器长度方向均 布74只16t/h恒速喷咀及6只排放非冷凝气体用排 气管的套管。
25
• 三条主要进水管:Ф457×10mm的凝结水、 Ф406.8×8.8mm的三号高加疏水和 Ф273×7.1mm的汽水分离器疏水分别进入 一、二号除氧器。除氧器所用蒸汽在正常运 行中由低压缸第一级抽气供给,启动及低负 荷时由辅助蒸汽系统供汽。蒸发器疏水经扩 容器后的蒸发由Ф159×4.5mm管道直接接 在除氧器的汽侧平衡管上。
19
• 雾喷器喷洒的给水水滴溅到水箱内的溅射 挡板上,在周围空间形成雾化区,雾滴在 向下降落过程中与上升的加热蒸汽充分接 触,蒸汽对雾滴加热, 使给水加热到除氧 压力下对应的饱和温度,不凝结气体从排 气管排至凝汽器。
20
• 每个喷雾器的流量在10%~100%范围内变 化时,都能达到雾化和除氧效果。这种除 氧器工作压力0.75MPa,属于高压除氧器, 凝结水含氧量<12×10-9时,经除氧后的给 水含氧量<5×10-9。
52
42
5.4 除氧给水箱构造
• 除氧给水箱由水箱本体、支座、溢流管、 除氧器下水管、汽平衡接管、水平衡接管、 下水接管、放水接管、再沸腾管、安全阀、 液位计、电接点液位计等组成。
43
• 水箱本体是由δ=30mm钢板卷制而成的 φ3800×30.1的园柱形水箱,水箱两端设置 有人孔,水箱顶部两端装有三只安全阀, 给水箱出水接口设有防旋涡装置和再循环 管接口二个,为防止给水对筒壁的冲蚀, 设置有喷水管。水箱水位设置在水箱两侧。
13
• 沿高度安装有4~8块淋水盘,其中一部分 为园形,另一部分为环形,相间布置。加 热蒸汽从塔的下部进入,向上多次折流与 下落水柱接触(蒸汽流动方向如图中箭头 所示)。余汽和被除气体从塔顶部排出, 除氧水汇集到下面的贮水箱。
14
4.2.2 卧式喷雾式除氧器
15
16
17
18
• 加热蒸汽经蒸汽进口管引至蒸汽分配管, 然后分配到蒸汽耙管。蒸汽从耙管上的孔 流出,加热除氧水箱的给水。一部分蒸汽 在与给水混合时凝结;未凝结的蒸汽从液 面逸出,与喷雾器喷洒的给水进行热量和 质量交换。
28
• 辅助给水泵在除氧给水箱的水源处从水平衡 管接出(管径Ф219×6mm),从水平衡管 引出一条Ф273×7mm的管道供除氧循环泵 用水。在下水管处还设置加N2H4装置,运 行中加联氨进行化学除氧,使进入蒸发器的 水含氧量小于5ppb。
• 除氧循环泵从水侧平衡管吸水,升压后与凝 结水管相连,返回除氧器。
39
• 在这个空间中过热蒸汽与园锥形水膜充分 接触,迅速将凝结水加热到除氧器压力下 的饱和温度,绝大部分的非冷凝气体均在 喷雾除氧段中被除去。穿过除氧空间的凝 结水喷洒在淋水盘箱上的布水槽钢中,布 水槽钢均匀地将水分配给淋水盘箱。
40
• 淋水盘箱由多层一排排的小槽上下交错而 成。凝结水从上层小槽钢的两则分别流入 下层小槽钢中。一层层交错流下去,共经 过16层小槽钢,使凝结水在淋水盘中有足 够的停留时间,充分地与过热蒸汽接触, 使汽、水热交换面积达到最大值。
51
• 除氧器长时间停用时应采取防腐措施,以 防止水箱内壁有害气体的侵蚀,一般采用 水箱充水并加氨和联氨,pH≥9.5~10,联 氨浓度200ppm以上,除氧器及水箱上部空 间充氮保养方式。
2
• 给水除氧分为化学除氧和物理除氧两类。 化学除氧利用化学药剂(如联氧或亚硫酸 钠)使水中游离氧形成化合物,它能达到 较彻底的除氧效果,但不能除去其它气体, 还增加了给水中可溶盐的含量,成本也比 较高。通常化学除氧与物理除氧结合使用, 以达到更好的除氧效果。
3
• 物理除氧采用热力除氧原理,它能去除氧和 其它气体。所以,除氧又称除气。本节下 面的介绍针对热力除氧。
共有128只,全部由不锈钢制造,其外形尺寸为 505×376mm,该箱由侧板、角钢和小槽钢组成。 恒速喷咀 • 恒速喷咀安装在充满凝结水的凝结水进水室中的 弓形不锈钢罩板上。
37
38
5.3 除氧器工作原理
• 除氧器的工作原理是:凝结水通过进水管 进入除氧器进水室,因凝结水的压力高于 除氧器汽侧压力,水汽两侧的压差△P作用 在喷咀板上,将喷咀上的弹簧压缩,打开 喷咀,凝结水从喷咀中喷出,形成一个园 锥形的水膜,进入喷雾除氧段空间。
29
5.2 除氧器和除氧给水箱
• 除氧器和除氧给水箱是核电站二回路系统的 重要设备。
• 除氧器通过热力除氧方法,除去溶解于凝结 水中的氧气,二氧化碳等有害气体,确保进 入蒸发器的给水水质合格。
30
• 除氧给水箱则是贮存有一定容量的除氧给 水,以满足电站稳态和瞬态工况变更的需 要。
• 秦山核电站一期工程装机容量为30万千瓦 机组,配置了两台出力各为1080t/h的除氧 器和两只容积为180m3的给水箱。
• 3)采用蒸汽在水中鼓泡、减少水的表面张 力等措施改善深度除氧效果。
11
4.2.1 大气式淋水盘式除氧器
12
• 大气式淋水盘式除氧器如图8.11所示。水 由塔的上部进入,通过溢水口流入最上面 的淋水盘。在盘的整个环形面积上开有直 径为5mm~6mm的小孔。通过这些小孔水 呈细水柱状降落到下一块盘上,再经过同 样的小孔流到再下面的淋水盘上。
41
• 流经淋水盘箱的凝结水不断再沸腾,凝结水
中剩余的非冷凝气体在淋水盘中被进一步除
去,使凝结水中含氧量达到给水水质标准
(含氧量<7ppb)。故该段称之谓深度除氧
层。凡在喷雾除氧段或深度除氧段中被除去
的非冷凝气体,均上升到除氧器上部装有放
射性检测仪表的排管中排向大气。除氧水从
出口管流入除氧给水管。
7
• 热力除氧的过程是一个传热传质过程,必须 满足热力条件和传质条件。首先,要保证将 水加热至相应压力下的饱和温度。
8
欠热度5
9
4.2 除氧器
• 从上节的讨论可以看出,进行除氧器设计 时应遵循下述原则:
• 1)尽可能扩大汽水接触面积以利于传热传 质过程,被除氧水一般喷洒成雾滴或细水 柱。
10
• 2)为将水加热到除氧压力对应的饱和温度, 加热蒸汽与被除氧水一般采用逆流,这样 可以形成最大的不平衡压差,有利于及时 排除离逸的气体。
蒸汽进汽管和布汽孔板 • 除氧器两端各有一个Dg30进汽管,过热蒸汽从进
汽管进入除氧器时,由布汽孔板把蒸汽沿除氧器 的下部断面上均匀布开,使蒸汽均匀地从栅架底 部进入深度除氧段。 除氧器的出水管和蒸汽连通管。 • 除氧器的出水管和蒸汽连通管通过过渡接管直接 与除氧给水箱相连通。
36
淋水盘箱 • 淋水盘箱是除氧器深度除氧段中主要除氧元件,
44
5.5 运行
• 除氧给水箱水质合格后,冲水至正常液位, 启动除氧循环泵,投入备用汽源,使除氧器 给水升温至110.5℃,对应压力0.05MPa。在 低负荷时,除氧器定压运行,机组负荷升至 65%左右打开四段抽汽电动阀和逆止阀,同 时关闭备用汽源电动阀,除氧器开始滑压运 行。
45
5.5.1 除氧器运行要点
26
• 除氧后的余汽分别经节流垫排至空气系统, 并在该处设有放射性测点。两只给水箱内设 再沸腾管,在启动加热时使用。两套溢流装 置和放水管分别由1#、2#给水箱接出。汇 总后经Ф325×5mm溢流放水总管排入凝汽 器。两只给水箱分别装有取样分析器。以便 监督和分析除氧给水的各项数据。
27
• 给水箱的下水系统是这样布置的:1#、2# 给水箱分别接出一条Ф529×6mm的下水管 进Байду номын сангаас各自的主给水泵(1#、3#主给水泵)。 2#主给水泵由两台给水箱共用Ф529×6mm 的下水管供水。正常运行中,选用一、二号 或二、三号水泵运行时,可能会出现两台给 水箱的水位偏差。
49
• 除氧循环泵故障停运情况下,除氧器进水 中断。此时,禁止向除氧器供汽,除氧器 供汽阀应关闭,以防止除氧器超压。此时 给蒸汽发生器提供合格用水,可投入再沸 腾装置来加热除氧给水箱的给水,给蒸汽 发生器提供合格用水。
50
• 除氧器在安装后或大修后投运前,应进行 安全阀就地动作试验,运行中应进行定期 活动试验以防卡涩。
34
喷雾除氧段空间 • 喷雾除氧段空间是由两侧的两块侧包板与两端密
封板焊接后组成,两端密封板都有人孔。 深度除氧段 • 深度除氧段也是由两侧的两块侧包板与两端密封
板焊接后组成上部空间是喷雾除氧段空间,下部 空间是装满淋水盘箱的深度除氧段,深度除氧段 由上层布水槽钢、中层淋水盘箱、下层棚架组成。
35
pD ps pa
• 式中pD、ps、pa分别为除氧器内混合气体 全压、水蒸汽和空气的分压。
6
• 根据亨利定律和道尔顿定律,降低水中溶解 气体的浓度的关键是减小它们在气空间的分 压。如果气体的分压趋近于零,则它们在水 中的浓度就会很小很小。把水加热至饱和温 度,水蒸汽的分压趋近于水面上的全压,其 它气体的分压便趋于零,其它气体在水中的 浓度就会趋近于零。这样我们得到热力除氧 的方法,即将水加热至饱和温度,使水中溶 解气体的分压趋近于零从而达到除氧目的。
21
4.2.3 真空式除氧器
• 汽轮机乏汽在凝汽器内凝结为饱和水。凝 汽器具备热力除氧的条件,可利用凝汽器 兼作除氧器。图8.13给出了一种凝汽器热 井中鼓泡除氧装置设计,从图中可以看出, 其中的除氧主要靠鼓泡加热凝结水。
22
23
5 秦山一期除氧器系统
系统功能 • 除去凝结水中的气体(主要是氧气)。 • 除氧器同时又是混合式加热器。 • 为给水泵提供一定的净正吸入压头。
31
32
33
除氧器本体
• 除氧器本体由园柱形筒身与两只椭球面封头焊制 而成,本体的材料是复合钢板,所有内部零件和 管接头材料均为不锈钢。
凝结水进水室
• 进水室是一个弓形不锈钢罩板与两端两块挡板焊 在筒体上而成。弓形罩板上沿除氧器长度方向均 布74只16t/h恒速喷咀及6只排放非冷凝气体用排 气管的套管。
25
• 三条主要进水管:Ф457×10mm的凝结水、 Ф406.8×8.8mm的三号高加疏水和 Ф273×7.1mm的汽水分离器疏水分别进入 一、二号除氧器。除氧器所用蒸汽在正常运 行中由低压缸第一级抽气供给,启动及低负 荷时由辅助蒸汽系统供汽。蒸发器疏水经扩 容器后的蒸发由Ф159×4.5mm管道直接接 在除氧器的汽侧平衡管上。
19
• 雾喷器喷洒的给水水滴溅到水箱内的溅射 挡板上,在周围空间形成雾化区,雾滴在 向下降落过程中与上升的加热蒸汽充分接 触,蒸汽对雾滴加热, 使给水加热到除氧 压力下对应的饱和温度,不凝结气体从排 气管排至凝汽器。
20
• 每个喷雾器的流量在10%~100%范围内变 化时,都能达到雾化和除氧效果。这种除 氧器工作压力0.75MPa,属于高压除氧器, 凝结水含氧量<12×10-9时,经除氧后的给 水含氧量<5×10-9。
52
42
5.4 除氧给水箱构造
• 除氧给水箱由水箱本体、支座、溢流管、 除氧器下水管、汽平衡接管、水平衡接管、 下水接管、放水接管、再沸腾管、安全阀、 液位计、电接点液位计等组成。
43
• 水箱本体是由δ=30mm钢板卷制而成的 φ3800×30.1的园柱形水箱,水箱两端设置 有人孔,水箱顶部两端装有三只安全阀, 给水箱出水接口设有防旋涡装置和再循环 管接口二个,为防止给水对筒壁的冲蚀, 设置有喷水管。水箱水位设置在水箱两侧。
13
• 沿高度安装有4~8块淋水盘,其中一部分 为园形,另一部分为环形,相间布置。加 热蒸汽从塔的下部进入,向上多次折流与 下落水柱接触(蒸汽流动方向如图中箭头 所示)。余汽和被除气体从塔顶部排出, 除氧水汇集到下面的贮水箱。
14
4.2.2 卧式喷雾式除氧器
15
16
17
18
• 加热蒸汽经蒸汽进口管引至蒸汽分配管, 然后分配到蒸汽耙管。蒸汽从耙管上的孔 流出,加热除氧水箱的给水。一部分蒸汽 在与给水混合时凝结;未凝结的蒸汽从液 面逸出,与喷雾器喷洒的给水进行热量和 质量交换。
28
• 辅助给水泵在除氧给水箱的水源处从水平衡 管接出(管径Ф219×6mm),从水平衡管 引出一条Ф273×7mm的管道供除氧循环泵 用水。在下水管处还设置加N2H4装置,运 行中加联氨进行化学除氧,使进入蒸发器的 水含氧量小于5ppb。
• 除氧循环泵从水侧平衡管吸水,升压后与凝 结水管相连,返回除氧器。
39
• 在这个空间中过热蒸汽与园锥形水膜充分 接触,迅速将凝结水加热到除氧器压力下 的饱和温度,绝大部分的非冷凝气体均在 喷雾除氧段中被除去。穿过除氧空间的凝 结水喷洒在淋水盘箱上的布水槽钢中,布 水槽钢均匀地将水分配给淋水盘箱。
40
• 淋水盘箱由多层一排排的小槽上下交错而 成。凝结水从上层小槽钢的两则分别流入 下层小槽钢中。一层层交错流下去,共经 过16层小槽钢,使凝结水在淋水盘中有足 够的停留时间,充分地与过热蒸汽接触, 使汽、水热交换面积达到最大值。