空分装置原理
空分设备原理

空分设备原理
空气分离的基本原理是利用低温精馏法,将空气冷凝成液体,按
照各组分蒸发温度的不同将空气分离。
双级精馏塔在上塔顶部和
底部同时获得纯氮气和纯氧气;也可以在主冷的蒸发侧和冷凝侧
分别取出液氧和液氮。
精馏塔中空气分离分为两级,空气在下塔
进行第一次分离,获得液氮,同时得到富氧液空;富氧液空被送
向上塔进行精馏,获得纯氧和纯氮。
上塔又分为两段:以液空进料
口为界,上部为精馏段,精馏上升气体,回收氧组分,提纯氮气
纯度,下段为提馏段,将液体中的氮组分分离出来,提高液体的
氧纯度。
工艺流程
1、空气压缩:空气被空气压缩机压缩至0。
5~0。
7Mpa;
2、预冷:空气在预冷机组中预冷到5℃~10℃,并分离水分;
3、纯化:空气在分子筛纯化器中清除剩余水分、二氧化碳和碳氢化合物;
4、空气膨胀:空气在膨胀机中膨胀制冷以及提供装置所需的冷量;
5、换热:空气在分馏塔住换热器中与返流的氧气、氮气、污氮气进行换热,被冷却接近液化温度并把返流的氧气、氮气、污氮气反复热到环境温度;
6、过冷:氮气在过冷器中过冷节流前的液空和液氮;
7、精馏:空气在精馏塔中进行精馏分离,在上塔顶部获得产品氮气,在上塔底部获得产品氧气。
空分装置基本原理

空分装置基本原理嗨,朋友们!今天我想和你们聊聊一个超级神奇的东西——空分装置。
你们知道吗?这玩意儿就像是一个空气的魔法师,能把我们身边无处不在的空气变得“面目全非”,分离出各种有用的气体呢!那空分装置到底是怎么做到的呢?这得从空气的组成说起。
空气啊,可不是一种单纯的气体,它就像一个大杂烩,里面混合着好多不同的气体成分,氮气、氧气、氩气,还有少量的二氧化碳、氢气等等。
这些气体就像一群小伙伴,混在一起过日子。
空分装置首先要做的,就像是把一群混在一起的小动物按照种类分开一样。
它利用了不同气体的沸点不同这个特性。
沸点呢,就好比是每个气体小伙伴的“脾气”,有的气体“脾气”火爆,沸点低,稍微一加热就想跑;有的气体就比较“沉稳”,沸点高,需要更高的温度才肯活动。
我给你们打个比方吧。
想象一下,空气是一个大宿舍,里面住着氮气、氧气等各种气体室友。
空分装置就像是宿舍管理员,想把这些室友按照不同的规则分开。
它开始给这个“宿舍”降温、加压。
这就好比是给这些室友们来点压力,让他们老实点。
当温度和压力达到一定条件的时候,那些沸点低的气体,比如说氮气,就先变成液态了。
这就像宿舍里比较怕冷的小伙伴,先裹上了一层厚厚的被子(变成液态)。
然后呢,再通过一些巧妙的设计,比如蒸馏塔之类的设备,就可以把液态的氮气分离出来啦。
我曾经和一个在空分装置工厂工作的老师傅聊天。
他跟我说啊,“这空分装置啊,就像是一个大厨师在做菜,不同的气体就是食材,要把它们按照不同的顺序和方法分开处理。
”他那一脸自豪的样子,我到现在都还记得呢。
氧气的分离也是类似的道理。
不过氧气相对氮气来说,沸点稍微高一点。
就好像是氧气这个室友比氮气更能抗冻一点。
在空分装置的操作下,逐步调整温度和压力,就能把氧气也单独拎出来了。
这氧气可不得了啊,在医疗上,它就像生命的救星,对于呼吸困难的病人来说,那就是能让他们重新呼吸顺畅的神奇力量;在工业上,那也是钢铁冶炼等好多行业离不开的好帮手呢。
空分装置基本原理和过程

空分装置基本原理和过程以空分装置基本原理和过程为标题,我们来详细介绍一下。
一、基本原理:空分装置是一种用于将混合气体分离成不同组分的装置。
其基本原理是根据组分在给定条件下的物理性质差异,通过一系列分离步骤将混合气体分离成纯净的组分。
常见的物理性质包括沸点、相对挥发性、溶解度等。
二、过程:空分装置的过程通常包括压缩、冷却、脱水、除尘、分离等多个步骤。
下面将逐一介绍各个步骤的基本原理和操作过程。
1. 压缩:混合气体首先经过压缩,提高气体的密度和压力,以便后续步骤的操作。
压缩过程通常采用压缩机完成。
2. 冷却:经过压缩后的混合气体需要冷却,以降低气体温度并增加气体的相对密度。
冷却过程通常采用冷却器,利用冷却介质(如水或液氨)与混合气体进行热交换,使气体冷却至接近露点温度。
3. 脱水:混合气体中的水分会影响后续分离步骤的效果,因此需要对气体进行脱水处理。
常见的脱水方法包括冷凝法、吸附法和膜分离法。
冷凝法利用温度差使水分在冷凝器中凝结,吸附法利用吸附剂吸附水分,膜分离法则利用特殊的膜材料将水分与气体分离。
4. 除尘:混合气体中可能存在固体颗粒或液滴,需要进行除尘处理,以保护后续设备的正常运行。
除尘方法包括重力沉降、惯性除尘器、过滤器等。
5. 分离:经过前面的处理步骤后,混合气体进入分离装置进行最终的组分分离。
常见的分离方法包括吸收、吸附、膜分离和蒸馏等。
吸收法利用不同组分在吸收剂中的溶解度差异,将目标组分吸收至吸收剂中,然后再通过脱吸收剂的方式将目标组分从吸收剂中提取出来。
吸附法利用不同组分在吸附剂上的相对吸附性差异,将目标组分吸附在吸附剂上,然后通过变换吸附剂的条件(如温度、压力等)将目标组分从吸附剂上解吸出来。
膜分离法利用薄膜的选择性透过性,将目标组分通过膜材料的选择性通透性而分离出来。
蒸馏法利用组分的沸点差异,在适当的压力下将混合物加热至沸腾,然后通过冷凝和回收收集不同沸点的组分。
以上就是空分装置的基本原理和过程。
空分技术原理

专科毕业论文题目:学生姓名:学院:专业:班组:指导老师:二零一零年十二月摘要空分装置主要是为气化车间气化炉提供高压氧气,为后部工号密封、置换、吹扫提供氮气,正常生产时为全厂提供仪表空气、装置空气及气化炉开工空气。
此外本装置还提供液氧、液氮产品。
空分装置是以空气为原料。
压缩机组将原料空气提到一定的工作压力送至空分装置,工艺采用膨胀机制冷、节流降温、直至空气液化,利用氧、氮、氩沸点的不同实现产品的分离。
关键字:空分装置氮气氧气压缩机膨胀机制冷节流制冷沸点Abstract绪论一、空气分离的几种方法1、低温法(经典,传统的空气分离方法)压缩膨胀低温法的核心2、吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特定的组分吸附能力的差异进行的一种分离方法。
特点:投资省、上马快、生产能力低、纯度低(93%左右)、切换周期短、对阀的要求或寿命影响大。
3、 膜分离法:利用有机聚合膜对气体混合物的渗透选择性。
2O 穿透膜的速度比2N 快约4-5倍,但这种分离方法生产能力更低,纯度低(氧气纯度约25%~35%)二、学习的基本内容1、 低温技术的热力学基础——工程热力学:主要有热力学第一、第二定律; 传热学:以蒸发、沸腾、冷凝机理为主; 流体力学:伯努利方程、连续性方程;2、 获得低温的方法绝热节流 相变制冷 等熵膨胀3、 溶液的热力学基础拉乌尔定律、康诺瓦罗夫定律(1、2 ,空分的核心、精馏的核心) 4、 低温工质的一些性质:(空气 、O 、N 、Ar )5、 液化循环(一次节流、克劳特、法兰德、卡皮查循环等)6、 气体分离(结合设备) 三、空分的应用领域1、 钢铁:还原法炼铁或熔融法炼铁(喷煤富氧鼓风技术);2、 煤气化:城市能源供应的趋势、煤气化能源联合发电;3、 化工:大化肥、大化工企业,电工、玻璃行业作保护气;4、 造纸:漂白剂;5、 国防工业:氢氧发动机、火箭燃料;6、 机械工业; 四、空分的发展趋势○ 现代工业——大型、超大型规模;○ 大化工——煤带油:以煤为原料生产甲醇; ○ 污水处理:富氧曝气; ○ 二次采油;第一章 空分工艺流程的组成一、工艺流程的组织我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革:第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质; 第二代:石头蓄冷除杂质,空气透平膨胀低压循环; 第三代:可逆式换热器; 第四代:分子筛纯化; 第五代:,规整填料,增压透平膨胀机的低压循环; 第六代:内压缩流程,规整填料,全精馏无氢制氩;○全低压工艺流程:只生产气体产品,基本上不产液体产品; ○内压缩流程:化工类:5~8MPa :临界状态以上,超临界; 钢铁类:3.0 MPa ,临界状态以下; 二、各部分的功用净化系统 压缩 冷却 纯化 分馏 (制冷系统,换热系统,精馏系统)液体:贮存及汽化系统; 气体:压送系统;○净化系统:除尘过滤,去除灰尘和机械杂质;○压缩气体:对气体作功,提高能量、具备制冷能力; (热力学第二定律)○预冷:对气体预冷,降低能耗,提高经济性有预冷的一次节流循环比无预冷的一次节流循环经济,增加了制冷循环,减轻 了换热器的工作负担,使产品的冷量得到充分的利用; ○纯化:防爆、提纯;吸附能力及吸附顺序为:2222CO H C O H >>; ○精馏:空气分离换热系统:实现能量传递,提高经济性,低温操作条件; 制冷系统:①维持冷量平衡 ②液化空气 膨胀机 h W ∆+ 方法 节流阀 h ∆膨胀机制冷量效率高:膨胀功W ; 冷损:跑冷损失 Q1 复热不足冷损 Q2 生产液体产品带走的冷量Q3321Q Q Q Q ++≥第一节 净化系统一、除尘方法:1、 惯性力除尘:气流进行剧烈的方向改变,借助尘粒本身的惯性作用分离;2、 过滤除尘:空分中最常用的方法;3、 离心力除尘:旋转机械上产生离心力;4、 洗涤除尘:5、 电除尘:二、空分设备对除尘的要求对0.1m μ以下的粒子不作太多要求,因过滤网眼太小,阻力大; 对0.1m μ以上的粒子要100%的除去; 三、过滤除尘的两种过滤方式1、内部过滤:松散的滤料装在框架上,尘粒在过滤层内部被捕集;2、表面过滤:用滤布或滤纸等较薄的滤料,将尘粒黏附在表面上的尘粒层作为过滤层,进行尘粒的捕集;自洁式过滤器:1m μ以上99.9%以上;阻力大于1.5KPa 。
空分设备原理

空分设备原理
空分设备是一种广泛应用于化工、石油、医药等领域的设备,其原理是利用气体的分子大小和亲和性差异来实现气体的分离和纯化。
空分设备主要包括吸附分离、膜分离和膨胀冷却分离等多种技术,下面将分别介绍这些原理及其应用。
吸附分离是利用吸附剂对气体分子的选择性吸附来实现分离的一种方法。
在吸附分离过程中,气体混合物通过吸附塔,不同组分的气体分子在吸附剂表面的亲和力不同,因此会在吸附剂上停留的时间不同,从而实现分离。
吸附分离广泛应用于气体纯化、气体分离和气体储存等领域。
膜分离是利用半透膜对气体分子的选择性渗透来实现分离的一种方法。
在膜分离过程中,气体混合物通过半透膜,不同组分的气体分子由于在膜上的渗透速率不同,因此会在膜的两侧实现分离。
膜分离技术在天然气净化、气体分离和气体液体分离等领域有着重要的应用。
膨胀冷却分离是利用气体在膨胀过程中温度降低导致凝结的原理来实现分离的一种方法。
在膨胀冷却分离过程中,气体混合物通
过膨胀阀膨胀,不同组分的气体由于凝结温度不同,因此会在膨胀过程中发生凝结,从而实现分离。
膨胀冷却分离技术在液化空气、液化天然气和工业气体生产中有着重要的应用。
综上所述,空分设备原理主要包括吸附分离、膜分离和膨胀冷却分离三种技术,它们分别利用气体分子的选择性吸附、渗透和凝结特性来实现气体的分离和纯化。
这些原理在化工、石油、医药等领域有着广泛的应用,为相关产业的发展做出了重要贡献。
希望通过本文的介绍,能够更加深入地了解空分设备原理及其应用,为相关领域的研究和生产提供参考和帮助。
空分设备工作原理

空分设备工作原理
空分设备(也称为空气分离装置或空气分离设备)是一种利用物质组分间的差异性质将空气中的不同成分(主要是氧气、氮气和稀有气体)分离出来的装置。
空分设备的工作原理基于物质的分馏原理,即每种物质在特定条件下的沸点、凝固点或相对溶解度不同。
利用这些差异,通过适当的操作和设备,可以将混合物中的不同成分分离,并获得所需的纯净气体。
空分设备通常由多级组合的分离塔、换热器、压缩机和储气罐等组成。
在空分设备中,空气首先被压缩,然后进入分离塔,经过一系列步骤进行分离。
在分离塔中,利用不同组分之间的沸点差异,通过适当的温度和压力控制,在每个级别上将氧气、氮气和稀有气体分离出来。
具体来说,空气在低温下进入分离塔,经过一级冷却,并在此阶段得到液态氧气。
接着,剩余气体回流到下一级,经过整流操作,使氮气在高温条件下再次液化。
通过逐级操作,最终分离出纯净的氧气和氮气。
为了提高工艺效率和能量利用率,空分设备通常还采用了热交换技术。
在换热器中,从分离塔中产生的冷却液体或气体与压缩机进一步处理的空气进行热量交换,从而降低能耗,并使系统更加高效。
通过空分设备,可以获得高纯度的氧气和氮气。
这些纯净气体
在各种工业过程中广泛应用,如冶金、化工、医药等领域。
此外,空分设备还可以生产和分离稀有气体,如氩气、氦气、氖气等,具有广泛的应用前景。
空分设备结构及工作原理

空分设备结构及工作原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]空分装置系统划分所谓空分,就是将空气深度冷却至液态,由于液空其组分沸点各不相同,逐步分离出氧、氮、氩等等。
空分装置大体可分以下几个系统:1、空气过滤系统过滤空气中的机械杂质,主要设备有自洁式空气过滤器。
2、空气压缩系统将空气进行预压缩,主要设备有汽轮机、增压机、空压机等。
3、空气预冷及纯化系统将压缩空气进行初步冷却,并去除压缩空气中的水分和二氧化碳等杂质,主要设备有空冷塔、水冷塔、分子筛纯化器、冷却水泵、冷冻水泵等。
4、分馏塔系统将净化的压缩空气深度冷却,再逐级分馏出氧气、氮气、氩气等,主要设备有透平膨胀机、冷箱(内含主塔、主冷、主还、过冷器、粗氩塔、液氧泵、液体泵等)5、贮存汽化系统将分馏出的液氧、液氮、液氩进行贮存、汽化、灌充,主要设备有低温液体贮槽、汽化器、充瓶泵、灌充台等。
空气冷却塔结构工作原理空冷塔(Φ4300×26895×16),主要外部有塔体材质碳钢,内部有2层填料聚丙烯鲍尔环,并对应2层布水器。
其作用是对从空压机出来的空气进行预冷。
空气由塔底进入,塔顶出去,冷冻水从塔顶进入,塔顶出去,在这样一个工程中,冷冻水和空气在塔内,经布水器填料的作用充分的接触进行换热,把空气的温度降低。
水冷却塔的结构及工作原理水冷却塔(规格Φ4200×16600×12),主要外部有塔体材质碳钢,内部有一层聚丙烯鲍尔环填料,对应一根布水管;一层不锈钢规整填料。
其作用式把从冷却水进行降温,生成冷冻水供给空冷塔。
基本原理和空冷塔一样,从冷箱出来的温度较低的污氮气,进入水冷塔下部,在水冷塔内部经填料与从上部来的冷却水充分接触换热后排出,在此过程中冷却水生成冷冻水。
分子筛结构以及原理,其再生过程原理吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。
空分装置原理

空分装置原理空分装置是一种利用物质在不同条件下的物理和化学性质差异进行分离的设备。
它广泛应用于化工、石油、医药、食品等领域,是现代化工生产中不可或缺的重要设备之一。
本文将从空分装置的原理入手,介绍其工作原理和应用。
一、空分装置的原理空分装置的原理是基于物质在不同条件下的物理和化学性质差异进行分离。
在空分装置中,物质通常是以气态或液态形式存在的,通过改变温度、压力、流速等条件,使物质发生相变或化学反应,从而实现分离。
空分装置的主要原理包括物理吸附、化学吸附、膜分离、蒸馏等。
其中,物理吸附是指物质在表面上的吸附作用,如活性炭吸附空气中的有机物;化学吸附是指物质在表面上发生化学反应,如催化剂催化反应;膜分离是指利用膜的选择性通透性进行分离,如反渗透膜分离海水中的盐分;蒸馏是指利用物质的沸点差异进行分离,如石油精馏。
二、空分装置的工作原理空分装置的工作原理是根据物质在不同条件下的物理和化学性质差异进行分离。
具体来说,空分装置通常包括压缩机、冷却器、膜分离器、吸附器、蒸馏塔等组成部分。
在压缩机中,气体被压缩成高压气体,然后通过冷却器冷却,使气体冷却至液态。
液态气体进入膜分离器,通过膜的选择性通透性进行分离。
例如,反渗透膜可以分离海水中的盐分,使得海水变成淡水。
在吸附器中,气体通过吸附剂,如活性炭、分子筛等,进行物理吸附或化学吸附。
例如,活性炭可以吸附空气中的有机物,使得空气变得更加清新。
在蒸馏塔中,液态混合物被加热,使得其中沸点较低的物质先蒸发出来,然后通过冷却器冷却成液态,最终得到纯净的物质。
例如,石油精馏可以将原油分离成不同的馏分,如汽油、柴油、液化气等。
三、空分装置的应用空分装置广泛应用于化工、石油、医药、食品等领域。
其中,化工领域是空分装置的主要应用领域之一。
空分装置可以用于制取氧气、氮气、氢气等气体,也可以用于制取液态空气、液氧、液氮等液态气体。
此外,空分装置还可以用于制取高纯度气体,如高纯度氧气、高纯度氮气等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低温空分原理:[1]
标准大气压下,空气的主要组分为:氮气、氧气和氩气,其沸点分别为77.36K、90.19K和87.26K。
可见氧气和氮气的沸点相差近13K,而氧气和氩气的沸点相差仅近3K,故氧气和氩气相对于氮气都是难挥发组分。
一般而言,对于两种沸点不同的物质(如氮和氧)组成的混合液体在吸热部分蒸发时,易挥发组分(沸点较低)将较多的蒸发为气相,而两种沸点不同的混合蒸汽在放热而部分冷凝时,难挥发的组分(沸点较高)将较多的冷凝为液相。
如果将温度较高的饱和蒸汽和温度较低的饱和液体相接触时,则蒸汽放出热量而部分冷凝,而液体则吸收热量而部分蒸发,蒸汽部分冷凝时,蒸汽中氧组分较多的冷凝到液相,同样液相中的氮组分较多的蒸发到气相,使得气相中的氮组分浓度提高,液相中的氧组分浓度提高,如果进行多次这样的部分蒸发和部分冷凝过程,则气相中的氮组分浓度不断增加,同时液相中的氧组分浓度不断增加,最终达到氮氧分离的目的。
以上为空气精馏的原理,实现精馏的主要设备为精馏塔,塔内每块塔板都提供一次气液接触而发生部分蒸发和部分冷凝的场所,最终在塔顶得到高纯度的氮产品,而在塔底得到高纯度的氧产品。
为了同时得到高纯度的氮、氧产品以及氩等稀有气体产品,应用到空气得力的精馏塔一般是双级精馏塔。
其典型流程如下:
下塔为高压塔,压缩后冷却到接近饱和状态的空气进入下塔顶部,经过下塔的初步分离,在下塔顶得到高纯度的馏分液氮,下塔底得到富氧液空,将馏分液氮和富氧液空采出后经液空和液氮过冷器,节流后回流入上塔(低压塔)继续参与精馏分离,最终在上塔塔顶得到高纯度的氮气,塔底得到高纯度的气氧和液氧。
上塔由于回流液体较多,导致回流比较大,一般都大于实际所需回流比,为了挖掘精馏塔的精馏潜力,提高产品提取率,可以将部分空气直接引入上塔参与精馏,由于这个想法是拉赫曼提出,所以进上塔的膨胀空气量一般称为拉赫曼气。
上下塔之间通过一个冷凝蒸发器(也叫主冷器)耦合在一起,它既是下塔的冷凝器,也是上塔的再沸器,下塔顶部的高温气氮用来加热上塔底部的低温液氧,同时本身被液氧冷却为液氮,部分作为下塔回流液,部分采出作为上塔顶部的回流液。
富氧液空从上塔中部引入,液空进料口以上
为精馏段,主要是进行氧、氮分离,提浓氮气纯度,进料口以下为提馏段,主要是进行氧和氮,氧和氩的分离,提浓氧产品纯度。
从上塔提馏段氩富集区抽提部分气态氩馏分进入粗氩塔继续精馏得到含氩95%以上的粗氲馏分。
为了能够得到高纯度的氧、氮产品,从上塔上部抽出部分污气氮,增加精馏段回流比,有利于氧氮产品纯度的提高。
这里需要重点指出的是冷凝再沸器,其实质就是一种热耦合技术。
这个冷凝再沸器的结构是由德国的林德博士提出的。
这种热耦合技术,在1951年被D.c.Freshwater教授,被称为是多效热耦合精馏技术的一种(Freshwater,D.C,1951)。
多效精馏的原理是利用一个塔的精馏蒸汽热焓,去供应下一个塔的再沸器需要的热量,但是这种精馏耦合技术有一定的限制就是它一般应用于多塔结构,所以传统空气分离精馏塔可以看成下塔是一个只有冷凝器没有再沸器的独立塔,而上塔是一个没有冷凝器而具有再沸器的独立塔。
两塔恰恰用多效精馏技术来耦合在一起,达到节能的效果。
这个结构的存在要求相对挥发度不能改变太大的情况下,保证有一定的温度推动力,要求热交换的表面随着温差变小而应该变大。
对空气三元物系汽一液平衡实验数
文献[1]采用了对空气三元物系汽一液平衡实验数据进行回归的方法,从而得到比较准确的二元交互作用参数:
同样压力下,氮的饱和温度是比氧气的饱和温度要低,也就是说同压压力下,氮气是不能给液氧提供热量的。
但是饱和温度是压力有关的,随着压力提高而提高。
由于下塔顶部的绝对压力在O.68Mpa左右,相应得气氮冷凝温度为-177℃;上塔液氧的绝对压力约为O.14Mpa,相应得气化温度为-179℃。
,在冷凝蒸发器内部,需要设置两端的压力,保证气氮与液氧约有2℃的温差,使得热量能由气氮传给液氧。
参考文献
[1]祝育.高纯内部热耦合空气分离塔的概念设计、动态特性分析及控制研究[D].浙江:浙江大学,2006.。