电力系统对大规模风电并网要求及并网导则

合集下载

风电、光伏等新能源发电并网调度制度

风电、光伏等新能源发电并网调度制度

03
风电、光伏等新能源发电并 网调度制度
并网调度制度的实施原则
公平性原则
稳定性原则
所有并网发电主体应遵循公平、公正的原 则,按照调度指令进行发电调控,不得有 任何形式的歧视或优待。
并网调度制度应确保电力系统运行的稳定 性,防止因新能源发电的随机性和间歇性 导致的系统波动。
经济性原则
协调性原则
在保障系统安全稳定运行的前提下,应充 分考虑发电成本,合理调度,提高电力系 统的经济性。
02
并网调度制度概述
并网调度制度的定义与特点
定义
并网调度制度是指对并网运行的 风电、光伏等新能源发电系统进 行统一调度、管理和控制的制度 。
特点
以保障电网安全稳定运行为首要 任务,同时实现新能源发电的高 效利用和优化配置。
并网调度制度的重要性
保障电网安全
通过统一调度和管理,确保新能源发电系统与电网的协调运行, 降低运行风险,提高电网的稳定性和可靠性。
案例二:某地区光伏发电并网调度实践
总结词
技术应用、经济性与环境影响
详细描述
该地区光伏发电并网调度实践在提高光伏电站的利用率、降低弃光率以及优化调度运行方面取得了显 著成果。同时,也面临着光伏发电波动性、经济成本和环境影响等方面的问题。
案例三:新能源发电并网调度技术的创新应用
总结词
技术发展、应用前景与政策支持
VS
详细描述
随着新能源发电技术的不断发展,该地区 在新能源发电并网调度技术方面进行了创 新应用,如采用人工智能、大数据和云计 算等技术提高调度效率和安全性。同时, 政策支持对于新能源发电并网调度技术的 发展和应用也起到了积极的推动作用。
THANKS
风电、光伏等新能源发电并网调度制度

大型风电场运行的特点及并网运行的问题

大型风电场运行的特点及并网运行的问题

大型风电场运行的特点及并网运行的问题时间:2011-2-25 来源:<电器工业>广东电网公司茂名电白供电局区邓恩思近年来,我国风电已经迈向快速发展的步伐。

按装机总容量计算,我国已经超过意大利和英国,成为世界第6大风电大国。

大规模的风力发电必须要实现并网运行,然而由于风电自身的特点,大规模风电接入会对电网产生负面影响。

由于风力资源分布的限制,风电场大多建设在电网的末梢,网络结构相对薄弱,风电场并网运行必然会影响到电网的电压质量和电压稳定性。

由于风电本身具有不可控、不可调的特征,造成风电出力的随机性和间歇性。

而电网必须按照发、供、用同时完成的规律,连续、安全、可靠、稳定地向客户提供频率、电压合格的优质电力。

风电场并网的研究内容涉及到电能质量、电压稳定性、暂态功角稳定性及频率稳定性等。

本文主要介绍大型风电场并网对电力系统的影响及对策。

一、大型风电场运行的特点1、风能的能量密度小,为了得到相同的发电容量,风力发电机的风轮尺寸比相应的水轮机大几十倍。

2、风能的稳定性差。

风能属于过程性能源,具有随机性、间歇性、不稳定性,风速和风向经常变动,它们对风力发电机的工况影响很大。

为得到较稳定的输出电能,风力发电机必须加装调速、调向和刹车等调节和控制装置。

3、风能不能储存。

对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。

4、风轮的效率较低。

风轮的理论最大效率为59.3%,实际效率会更低一些,统计显示,水平轴风轮机最大效率通常在20%~50%,垂直轴风轮机最大效率在30%~40%。

5、风电场的分布位置经常偏远。

例如,我国的风电资源虽然比较丰富,但多数集中在西北、华北和东北“三北地区”。

由于风能具有以上特点,使得利用风能发电比用水力发电困难得多。

总之,风电的最大缺点是不稳定,风电系统所发出的电能若直接并入电网将影响局部电网运行的稳定性。

二、大型风力发电场并网运行引起的问题分析风电场接入电网一般有两种方式,一种是传统的并网方式,单个风电场容量均比较小,作为一种分布式电源,分散接入地区配电网络,以就地消纳为主;另一种是在风能资源丰富区域集中开发风电基地,通过输电通道集中外送,如欧美国家规划中的海上风电和我国正在开发的内蒙古、张家口、酒泉和江苏沿海千万千瓦级风电基地。

大规模风电并网对电力系统稳定性的影响及应对措施

大规模风电并网对电力系统稳定性的影响及应对措施

三、1987年7月23日,日本东京电力系统电压稳定 性事故
• 事故起因: • (1)中午13时,负荷为38200MW,f,U
均保持正常,随后,负荷以每分钟400MW 速度增长,是过去同年2倍,调度中心投入 了所可用的并联电容器组和增发了可能旋 转备用无功功率,电压仍下降。
• (2)中年13时10分负荷上涨到历史新记录, 39300MW·U继续下降。西部地区500KV系 统电压下降至370KV,中部地区电压下降 390KV,f上升到50.74HZ,主干线传输网 上及电压持续下降,而电流不断增加致使 地区,继保动作,造成两个500KV变电所 和一个275KV变电所停运,负荷损失达到 8168MW,有280万用户受事故影响。
(2)故障发展使其余运行线路过负荷,53 S内所有Harma变电站400KV、220KV、 132KV线路相继因低压过流,由保护断 开,从而消弱整个系统联系。引起西部 和中部电压大大降低,结果使北部至中 部线路也全部切除。
(3)与挪威相连400KV线路解列。
(4)连接sealand的132KV线路以及连接
第四部分 提高电力系统电压稳定性的措施
• 一、电力系统规划设计方面 • 应考虑经常条件外,应满足以下技术要求: • (1)合理划分受端系统,电源(远方及就
地),接入和系统联络线三大部分。尽可能提高 网络极限能力和增强负荷中心电源对电调控能力。 (日本东京电力系统经验教训应引起我们重视) • (2)规划设计电力系统时应注意防止因负荷 转移引起恶性连锁反应,造成电力系统电压崩溃 性事故。(美国西部1996年两次电压崩溃) • (3)电网的结构应保证运行时的灵活性。
(3)发电机组励磁输出限制方面,事故中 一些发电机组励磁输出达到上限,限制
了机端电压调整和事故过程中无功功率 输出。

大规模风电并网引起的电力系统运行与稳定问题及对策

大规模风电并网引起的电力系统运行与稳定问题及对策

随 着 我 国 政 府 对 开 发 利 用 可 再 生 能 源 的 高 度 重视及 《 可 再 生 能 源 法 》的颁 布 实 施 ,包 括 风 力 发 电、生物 质 能发 电 、太 阳 能光 伏 发 电在 内 的可 再 生
能源 发 电在 近 几 年 得 到 了较 快 的 发 展 。其 中 ,风 力
发 电作 为技 术 最 成 熟 、 最 具规 模 化 开 发 和 商 业 化 发 展 的 新 能源 发 电方 式 之 一 , 其 发 展 速 度 居 于 各 种 可
再 生 能源 之 首 , 我 国风 资源 丰 富地 区 的风 电场 建 设
的技 术 解 决 措 施 。
2 大 规模 风 电接 入对 电 网 电压 的影 响及 其 风 电场 电压 控 制 问 题
2 0 1 0年 将 超 过 1 4 0 G W 。
明确 提 出 ,做 好 甘 肃 、 内蒙 古和 苏沪 沿 海 千 万 k w
级风 电基地 的准备和建设工作 。 风 电场 的大规模建 设, 给 电网规划和运行都带
来 了挑 战 。加 之 我 国的 电网 结 构相 对 薄 弱 ,而 许 多 建 设 或 规 划 中 的风 电 场 都 位 于 电 网 薄 弱 地 区 或 者
末端 , 如此大规模的风 电的接入 , 在全世界范 围内
尚属 首 次 ,没 有 任 何 的 经验 可 以借 鉴 ,对 风 电并 网 研 究及 风 电并 网后 的运 行 都 是 一个 巨大 的挑 战 。 本 文 对 大 规 模 风 电并 网 引 起 的 电力 系 统 运 行 与 稳 定
的 问题 进Байду номын сангаас行 了分 析 探 讨 , 并 在 此 基 础 上 提 出 了相 关

大规模风电并网对电力系统调峰能力的影响及对策的仿真研究

大规模风电并网对电力系统调峰能力的影响及对策的仿真研究

大规模风电并网对电力系统调峰能力的影响及对策的仿真研究标题:大规模风电并网对电力系统调峰能力的影响及对策的仿真研究摘要:本文研究了大规模风电并网对电力系统调峰能力的影响,并提出相应的对策。

首先,阐述了电力系统调峰能力的重要性及当前面临的挑战。

然后,提出了研究问题并分析了研究背景。

接下来,介绍了研究方案和方法,包括建立仿真模型、收集相关数据和进行数据分析。

通过仿真实验,分析了大规模风电并网对电力系统调峰能力的具体影响。

最后,根据实验结果提出了相应的结论和讨论,并提出了改进电力系统调峰能力的对策建议。

关键词:大规模风电并网、电力系统、调峰能力、仿真研究一、研究问题及背景电力系统调峰能力是指电力系统灵活调整电力供需平衡的能力,对于确保可靠稳定供电具有重要意义。

然而,随着大规模风电并网的推进,电力系统调峰能力面临新的挑战。

风电的不确定性、波动性以及时空分布特点使得电力系统的调度和运行变得复杂。

因此,研究大规模风电并网对电力系统调峰能力的影响,寻找对应的对策具有重要实际意义。

二、研究方案方法1. 建立仿真模型:基于电力系统的物理特性和风电发电机组的技术参数,构建电力系统调度模型和风电发电机组的模型,并建立二者之间的耦合关系。

2. 收集相关数据:收集电力系统的历史运行数据、天气数据以及风电发电机组的运行数据等,为仿真研究提供数据支持。

3. 进行数据分析:利用收集到的数据,进行数据分析,分析大规模风电并网对电力系统调峰能力的具体影响,包括电力系统的稳定性、供需平衡以及调度策略等方面。

三、数据分析和结果呈现通过对收集到的数据进行分析,我们得到了以下结果:1. 大规模风电并网导致电力系统的供需平衡难度加大,尤其是在高负荷时段和低风速时段。

2. 风电发电机组的低功率因素和波动性会给电力系统的稳定性带来不利影响,增加电力系统的运行压力。

3. 需要在电力系统调度策略中引入风电输出预测和优化调度方法,以提高电力系统的调峰能力。

风电并网运行技术导则自动化部分(试行)1

风电并网运行技术导则自动化部分(试行)1

风电场并网运行技术导则自动化部分(试行)宁夏电力调度通信中心二O一一年七月批准:丁茂生审核:马军编制:施佳锋、孙全熙、田炯、程彩艳总述:本导则严格遵循国家电网公司颁布的《风电功率预测功能规范(试行)》、《风电场接入电网技术规定》等相关技术要求,综合考虑宁夏电网的特征、宁夏风电发展的趋势及宁夏电网内并网运行风电场的现状,诣在规范宁夏风电的发展,提高宁夏电网接纳风电的能力,增强大规模风电并网后与宁夏电网的协调能力,保证宁夏电网能够最大限度的接纳新能源发电。

本导则共包括三部分内容:信息接入及通讯导则、预测系统导则、有功/无功控制导则。

第一部分信息接入及通讯导则一、总则本部分内容主要规范调通中心与风电场的通讯方案及信息交互标准,该导则适用于宁夏电网内所有并网运行的风电场。

《调自[2009]319号文附件-省级及以上智能电网调度技术支持系统总体设计(试行)》《智能电网调度技术支持系统应用功能系列导则第532部分:水电及新能源监测分析》《风电场接入电网技术规定》Q/GDW 215-2008 电力系统数据标记语言―E语言导则DL/T634.5101-2002 远动设备及系统第5-101部分-传输规约基本远动任务配套标准(IEC60870-5-101:2002,IDT)DL/T634.5104-2002 远动设备及系统第5-104部分-传输规约采用标准传输协议子集的IEC60870-5-101网络访问(IEC60870-5-101:2002,IDT)二、信息接入要求调度系统不仅需要接入风电场升压站的信息,还需要接入风电场场内的信息:a)遥测信息:风电场总有功功率和总无功功率;单台风机的有功功率、无功功率、电压、电流、风向、风速;风电场的气象信息(风向、风速、气温、气压、湿度);预计开机容量;联网线路有功功率、无功功率、电流、电压;母联、分段、旁路的有功功率、无功功率、电流;母线各等级的电压、频率;主变各电压等级的有功功率、无功功率、电流;主变的档位、温度;发电线路的有功功率、无功功率、电流;无功补偿装置的无功功率、电流;站用变的有功功率、无功功率、电流;b)遥信信息:事故总信号;风机运行状态位置信号;低电压穿越位置信号;主变、线路保护信号;联网线路的断路器、隔离刀闸、接地刀闸状态位置信号;母联、分段、旁路的断路器、隔离刀闸、接地刀闸状态位置信号;母线接地刀闸、PT刀闸状态位置信号;主变断路器、隔离刀闸、中性点接地刀闸状态位置信号;发电线路的断路器、隔离刀闸、接地刀闸状态位置信号;无功补偿装置的断路器、隔离刀闸、接地刀闸状态位置信号;站用变的断路器、隔离刀闸、接地刀闸状态位置信号;c)控制类信息:相关功能状态(遥信),AGC功能投入;风电场实时出力(有功、无功);风电场允许AGC控制信号;风电场已投入AGC控制信号;风电场当前出力限值;风电场调节速率(上升、下降);风电场增出力闭锁信号、减出力闭锁信号;风电场有功设点值返回值;相关功能状态(遥信),含AVC运行状态、当前控制模式等;无功设备的运行信息。

华北区域风电场并网运行管理实施细则(试行)

华北区域风电场并网运行管理实施细则(试行)

华北区域风电场并网运行管理实施细则(试行)第一章总则第一条为保障电力系统安全稳定运行,落实国家可再生能源政策,规范风电并网调度运行管理,依据《中华人民共和国电力法》、《中华人民共和国可再生能源法》、《电网调度管理条例》、《风电场功率预测预报管理暂行办法》、《风电场接入电力系统技术规定》等制定本细则。

第二条本细则应用范围为已并网运行的,由地级及以上电力调度机构直调的风电场。

县电力调度机构及其直接调度的风电场可参照执行。

第三条风电场以工商注册公司为基本单位参与本细则。

第四条电力监管机构负责对风电场执行本细则及结算情况实施监管。

华北区域省级及以上电力调度机构在电力监管机构授权下按照调度管辖范围具体实施所辖电网内风电场参与本细则的执行与结算,运行结果报电力监管机构批准后执行,依据运行结果风电场承担相应的经济责任。

第二章调度管理第五条新建风电场应在工程完成240小时整套启动试运后90天内向相应电力监管机构申请并完成进入商业运营意见书办理。

风电场非自身原因逾期未完成办理的风电场每延迟一日扣当月上网电量1‰,全月累计不超当月电量2%。

第六条华北区域参与并网运行的各类风电机组应当满足华北区域风电机组并网安全条件,并通过电力监管机构组织的并网安全性评价。

未按期开展并网安全性评价,并网安全性评价不合格并超出整改期限的,暂停电费结算,每超过期限1天,按风电场当月上网电量的2‰进行考核;安全性评价通过后次月进行电费追补。

- 2 -第七条风电场应严格服从所属电力调度机构的指挥,迅速、准确执行调度指令,不得以任何借口拒绝或者拖延执行。

接受调度指令的并网风电场值班人员认为执行调度指令将危及人身、设备或系统安全的,应立即向发布调度指令的电力调度机构值班调度人员报告并说明理由,由电力调度机构值班调度人员决定该指令的执行或者撤销。

出现下列事项之一者,定为违反调度纪律,每次按照全场当月上网电量的1%考核,若考核费用不足10万元,则按10万元进行考核。

风电标准体系及并网标准

风电标准体系及并网标准

风力发电标准化组织机构根据《中华人民共和国标准化法》,我国标准分为四级层次,即国家标准、行业标准、地方标准和企业标准,分别由相关的政府部门主管,企业标准由企业进行颁布。

对于电力行业,国家标准分为工程建设标准、产品类标准,分别由住房和城乡建设部、国家标准化管理委员会来颁布;行业标准由国家能源局进行颁布,电力标准包括DL 标准和NB 标准。

中国电力企业联合会(以下简称中电联)作为具体的标准化管理机构,负责相关的专业化标准委员会组织体系的建设,并对所有标准的计划、管理、执行进行统一管理,与国际惯例一致,设置了专业标准化技术委员会。

同时,指导企业标准化工作的开展,指导企业建立标准体系,组织标准化联合行为的确定工作。

到目前为止,电力行业的专业标准化委员会有37个,中电联代为管理的全国电力标准化委员会有13个,担任2个能源行业专业标准化工作组组长单位、智能电网工作组组长单位、全国光伏标准化工作组并网组长单位,同时指导特高压交流标准化工作委员会。

其中,能源行业专业标准化技术委员会工作组组长单位主要涉及到风电标准化技术委员会下设的运行组和并网组。

组织机构相对健全,覆盖了水电、火电、风电、光伏、核电等发电领域,同时也涉及到输电、变电、配电、用电等电网领域。

根据国家能源局加强风电标准化工作的管理规定,成立了三级组织:能源行业风电标准建设领导小组、能源行业风电标准建设专家咨询组、能源行业风电标准化技术委员会(TC)。

领导小组的职责主要是研究我国风电标准建设的政策,审查我国风电标准建设规划,协调督查技术问题。

由国家能源局任组长单位,国家标准化管理委员会任副组长单位,有关政府部门、电力行业、机械行业的个别专家领导担任成员。

专家咨询组主要由院士和专家构成,主要研究风电标准化技术问题和对重大问题提供咨询决策。

TC 由政府部门、发电企业、电网企业、制造企业共69名人员构成,包括设计、施工、安装、运行、科研等方面的专家。

标准化技术委员会在标准化工作中起着非常关键的作用,所有标准的通过、技术水平的确定,都要通过标准化技术委员会最终作技术把关和技术归口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
时间: 05:07
定速机组
0MW
236kV 244kV
0MW
251kV
38Mvar 电容器组
Post-Fault 故障后
11
时间: 05:13
系统调整后 After regulationFra bibliotek0MW
235kV
0MW
237kV
38Mvar 电容器组
控制电压
12
1.3 电网故障大面积风电切机的后果 Results of wind turbine break down
2020年,达到1.5亿风电装机 Year 2020, 150GW wind power
Northeast power grid 东北电网
Northwest power grid 西北电网
North China power grid 华北电网
Tibet 西藏
East China power grid
14000
12000 10000
累计装机容量
8000 (MW)6000
4000
2000
0 2000 2001 2002 2003 2004 2005 2006 2007 2008 年份
截至2009年底 风电吊装容量:2268万kW 风电装机容量:1613万kW
(根据中电联统计数据)
2
中国的风电发展情况介绍 Wind power development status
风电机组的低电压穿越的实现
Realization of wind turbines LVRT capability
我国风电并网标准的各方面要求
The Chinese wind power grid code requirements
4
1、 我们为什么需要低电压穿越
Why do we need LVRT (from power system point of view)
Central China power grid
华东电网
华中电网
千万千瓦风电基地 10GW Wind Power Base
South China power grid 南方电网
Taiwan 台湾
3
主要内容 Content
我们为什么需要风电的低电压穿越
Why do we need Low Voltage Ride Through of wind power
6
1.2 我们为什么需要低电压穿越 Why do we need LVRT
50.0Hz
50.2
49.8
发 电Generation
用 电 consumption
常规电源 Power Plant
电网(Power System)
用电负荷 (Load)
风电 (Wind)
保持系统功率平衡、频率稳定。 ­ Keeping power balance and frequency stable of power system
电网发生电压跌落对风电机组的影响 ­ 机械、电气功率的不平衡影响机组稳定运行 ­ 暂态过程导致发电机中出现过流,可能损坏器件 ­ 附加的转矩、应力可能损坏机械部分 The impact of voltage dips on wind turbine ­ Unbanlancing torque may influnce the stable operation of
13
1.4 电网故障大面积风电切机的原因 Reason of wind turbine break down
变速风电机组由于变频器对电网故障过于敏感,电网轻微故障会引起机组切除。 风电机组都是0s启动切除。 风电机组没有低电压穿越功能,当风电装机更大时,电网频率会有问题。 ­ The tripping of variable speed wind turbine caused by the grid
双馈变速机组的Crow-bar resistance 解决方案
只是旁路转子变频器,定子侧变频器仍挂网运行。 Crow-bar 动作期间,成为普通的异步机。
Crow-bar resistance solution of DFIG based wind turbines
Bypass the rotor side converter, and grid side converter will be still in operation.
5
1.1 低电压穿越(LVRT)的概念 Concept of Low Voltage Ride Through
什么是低电压穿越? ­ LVRT:Low Voltage Ride Through ­ 当电网故障或扰动引起风电场并网点的电压跌落时,在一定
电压跌落的范围内,风电机组能够不间断并网运行。 Wind turbines should stay connected to the network and keep operation following voltage dips caused by shortcircuit on any or all phases, where the voltage measured at the HV terminals of the grid connected transformer remains above the predefined voltage profile. ­ 也有故障穿越的提法。FRT:Fault Ride Through
223MW
234kV
38Mvar 电容器组
9
吉林电网风电机组切机情况介绍 Briefing of large scale wind turbine break down
80ms后故障线路三相切除; 80-110ms后,洮南大通风电场内所有机组跳闸;120-150ms 后,富裕风电场所有风机跳闸;同发龙源、华能场内所有风电 机组跳闸; 05:07:55 故障线路重合成功; ­ 80ms later, the 3 phases of faulted line was tripped ­ 80 - 110ms later, all the wind turbines in TaoNan Datong
Crow-bar 动作时间很短,60~80ms;Crow-bar的电阻可以阻 尼转子磁链,当转子磁链衰减后就可以退出,此时稳态短路电 流已不是很大。
Crow-bar退出后,变频器重新同步,控制能力恢复。
Crow-bar resistance solution of DFIG based wind turbines
Behaving as a normal induction machine during the activation of Crow-bar.
18
2.2 双馈风机低电压穿越实现的解决方案 Normal solutions of DFIG
双馈变速机组的Crow-bar resistance 解决方案
潮流反转; 电网电压由于潮流变化导致偏高或偏低; 电网频率有较大变化,严重时会引起频率稳定问题甚至大 停电。 ­ Load Flow reversal ­ Power Grid voltage increase or decrease caused by
load flow variation ­ Grid frequency variation, even power grid blackout.
disturbances is arisen from the higher sensitivity of converter to overcurrent. ­ The wind turbines are tripped instantaneously.
-低电压穿越必不可少! 其提出主要是基于有功平衡的考虑。
1
中国的风电发展情况介绍 Wind power development status
中国目前的风电大规模开发情况下,风电并网的技术难题、运行难题、 输电瓶颈逐步显现,风电并网难成为目前一个关注热点。 Grid Integration issue is becoming a focus highlight now.
Duration of Crow-bar activation is 60-80ms. The resistance of crow-bar damping the rotor flux and crow-bar out of service when the rotor flux declines.
16
2.2 双馈风机低电压穿越实现的解决方案 Normal solutions of DFIG
典型Crow-bar控制电路 Typical Crow-bar control circuit
DFIG 双馈机
Rotor Side
转子侧 变频器
Converter
转子短路器 (Crow-bar)
17
2.2 双馈风机低电压穿越实现的解决方案 Normal solutions of DFIG
7
吉林电网风电机组切机情况介绍 Briefing of large scale wind turbine break down
时间: 2008.04.09 早晨 天气情况: 刮风,下小雨。 故障位置: 白城至开发变66kV线路(19km) ,距离白城变2.4km。 故障类型: 2相短路 (B-C) 发生时间 05:07:54 保护动作情况: 线路距离保护与过流保护动作 ­ 2008.04.09 morning ­ Windy, small rain. ­ Fault type: 2 phase short circuit (B-C) happened at 05:07:54 ­ Fault location: 66kV distribution line from Baicheng to Kaifa
相关文档
最新文档